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Preface 

This book covers a broad range of limit theorems useful in mathematical 
statistics, along with methods of proof and techniques of application. The 
manipulation of “probability” theorems to obtain “statistical” theorems 
is emphasized. It is hoped that, besides a knowledge of these basic statistical 
theorems, an appreciation on the instrumental role of probability theory and 
a perspective on practical needs for its further development may be gained. 

A one-semester course each on probability theory and mathematical 
statistics at the beginning graduate level is presupposed. However, highly 
polished expertise is not necessary, the treatment here being self-contained 
at an elementary level. The content is readily accessible to students in 
statistics, general mathematics, operations research, and selected engineering 
fields. 

Chapter 1 lays out a variety of tools and foundations basic to asymptotic 
theory in statistics as treated in this book. Foremost are: modes of conver- 
gence of a sequence of random variables (convergence in distribution, con- 
vergence in probability, convergence almost surely, and convergence in the 
rth mean); probability limit laws (the law of large numbers, the central 
limit theorem, and related results). 

Chapter 2 deals systematically with the usual statistics computed from a 
sample: the sample distribution function, the sample moments, the sample 
quantiles, the order statistics, and cell frequency vectors. Properties such as 
asymptotic normality and almost sure convergence are derived. Also, deeper 
insights are pursued, including R. R. Bahadur’s fruitful almost sure repre- 
sentations for sample quantiles and order statistics. Building on the results 
of Chapter 2, Chapter 3 treats the asymptotics of statistics concocted as 
transformations of vectors of more basic statistics. Typical examples are 
the sample coefficient of variation and the chi-squared statistic. Taylor 
series approximations play a key role in the methodology. 

The next six chapters deal with important special classes of statistics. 
Chapter 4 concerns statistics arising in classical parametric inference and 
contingency table analysis. These include maximum likelihood estimates, 

vii 
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likelihood ratio tests, minimum chi-square methods, and other asymptoti- 
cally efficient procedures. 

Chapter 5 is devoted to the sweeping class of W. Hoeffding’s U-statistics, 
which elegantly and usefully generalize the notion of a sample mean. Basic 
convergence theorems, probability inequalities, and structural properties 
are derived. Introduced and applied here is the important “projection” 
method, for approximation of a statistic of arbitrary form by a simple sum 
of independent random variables. 

Chapter 6 treats the class of R. von Mises’ “differentiable statistical 
functions,” statistics that are formulated as functionals of the sample dis- 
tribution function. By differentiation of such a functional in the sense of the 
Gateaux derivative, a reduction to an approximating statistic of simpler 
structure (essentially a &statistic) may be developed, leading in a quite 
mechanical way to the relevant convergence properties of the statistical 
function. This powerful approach is broadly applicable, as most statistics of 
interest may be expressed either exactly or approximately as a “statistical 
function.” 

Chapters 7, 8, and 9 treat statistics obtained as solutions of equations 
(“M-estimates ”), linear functions of order statistics (“L-estimates ”), 
and rank statistics (“R-estimates ”), respectively, three classes important 
in robust parametric inference and in nonparametric inference. Various 
methods, including the projection method introduced in Chapter 5 and the 
differential approach of Chapter 6, are utilized in developing the asymptotic 
properties of members of these classes. 

Chapter 10 presents a survey of approaches toward asymptotic relative 
efficiency of statistical test procedures, with special emphasis on the contri- 
butions of E. J. G. Pitman, H. Chernoff, R. R. Bahadur, and W. Hoeffding. 
To get to the end of the book in a one-semester course, some timecon- 

suming material may be skipped without loss of continuity. For example, 
Sections 1.4, 1.1 1, 2.8, 3.6, and 4.3, and the proofs of Theorems 2.3.3C 
and 9.2.6A, B, C, may be so omitted. 

This book evolved in conjunction with teaching such a course at The 
Florida State University in the Department of Statistics, chaired by R. A. 
Bradley. I am thankful for the stimulating professional environment con- 
ducive to this activity. Very special thanks are due D. D. Boos for collabora- 
tion on portions of Chapters 6, 7, and 8 and for many useful suggestions 
overall. I also thank J. Lynch, W. Pirie, R. Randles, I. R. Savage, and J. 
Sethuraman for many helpful comments. To the students who have taken this 
course with me, I acknowledge warmly that each has contributed a con- 
structive impact on the development of this book. The support of the Office 
of Naval Research, which has sponsored part of the research in Chapters 
5,6,7,8, and 9 is acknowledged with appreciation. Also, I thank Mrs. Kathy 
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Strickland for excellent typing of the manuscript. Finally, most important 
of all, I express deep gratitude to my wife, Jackie, for encouragement 
without which this book would not have been completed. 

ROBERT J. SERFLING 

Baltimore, Maryland 
September 1980 
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C H A P T E R  1 

Preliminary Tools and Foundations 

This chapter lays out tools and foundations basic to asymptotic theory in 
statistics as treated in this book. It is intended to reinforce previous knowledge 
as well as perhaps to fill gaps. As for actual proficiency, that may be gained in 
later chapters through the process of implementation of the material. 

Of particular importance, Sections 1.2-1.7 treat notions of convergence of 
a sequence of random variables, Sections 1.8-1.1 1 present key probability 
limit theorems underlying the statistical limit theorems to be derived, Section 
1.12 concerns differentials and Taylor series, and Section 1.15 introduces 
concepts of asymptotics of interest in the context of statistical inference 
procedures. 

1.1 PRELIMINARY NOTATION AND DEFINITIONS 

1.1.1 Greatest Integer Part 

For x real, [x] denotes the greatest integer less than or equal to x. 

1.1.2 O(*), o(*), and - 
These symbols are called “big oh,” “little oh,” and “twiddle,” respectively. 
They denote ways ofcomparing the magnitudes of two functions u(x) and u(x) 
as the argument x tends to a limit L (not necessarily finite). The notation 
u(x)  = O(o(x)), x -+ L, denotes that Iu(x)/o(x)l remains bounded as x + L. 
The notation u(x) = o(u(x)), x + L, stands for 

u(x )  lim - = 0, 
x + L  dx) 

1 



2 PRELIMINARY TOOLS AND FOUNDATIONS 

and the notation u(x) - dx), x + L, stands for 

Probabilistic versions of these “order of magnitude’, relations are given in 
1.2.6, after introduction of some convergence notions. 

Example. Consider the function 

f ( n ) =  1 - (1 -;)(I -$. 
Obviously, f(n) + 0 as n + 00. But we can say more. Check that 

3 
f(n) = n + O(n-Z), n -b 00, 

3 
n 

= - + o(n-’)* n -b 00, 

, n - + a o .  
3 
n 

r y -  

1.13  Probability Space, Random Variables, Random Vectors 

In our discussions there will usually be (sometimes only implicitly) an 
underlying probability space (Q, d, P), where Q is a set of points, d is a 
a-field of subsets of Q and P is a probability distribution or measure defined 
on the elements of d. A random variable X(w) is a transformation off2 into the 
real line R such that images X - ’ ( E )  of Bore1 sets B are elements of d. A 
collection of random variables X,(o) ,  X,(w), . . , on a given pair (n, d)  will 
typically be denoted simply by XI, X2,. . . . A random uector is a k-tuple 
x = (XI, . . . , xk) of random variables defined on a given pair (Q d). 

1.1.4 Distributions, Laws, Expectations, Quantiles 

Associated with a random vector X = (XI,. . ., xk) on (n. d, P) is a 
right-continuous distribution junction defined on Rk by 

F X l , . , . , X k ( t l ,  * * * I t k )  = P({O:  l l ,  - - * 3 xk(0) tk)) 

for all t = ( t l , .  . . , t k )  E Rk. This is also known as the probability law of X. 
(There is also a left-continuous version.) Two random vectors X and Y, 
defined on possibly different probability spaces, “have the same law *I if their 
distribution functions are the same, and this is denoted by U ( X )  = U(Y), or 
Fx = Fy. 
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By expectation of a random variable X is meant the Lebesgue-Stieltjes 

integral of X(o) with respect to the measure P. Commonly used notations for 
this expectation are E{X}, EX, jn X(w)dP(o), jn X(o)P(do) ,  X dP, 1 X ,  
jfm t dF,(t), and t d F x .  All denote the same quantity. Expectation may also 
be represented as a Riemann-Stieltjes integral (see Cramkr (1946), Sections 
7.5 and 9.4). The expectation E{X} is also called the mean of the random 
variable X. For a random vector X = (XI, .  . . , XJ, the mean is defined as 
E{X} = ( E { X , ) ,  a .  9 E{Xk}). 

Some important characteristics of random variables may be represented 
conveniently in terms of expectations, provided that the relevant integrals 
exist. For example, the variance of X is given by E{(X - E{X})z}, denoted 
Var{X}. More generally, the covariance of two random variables X and Y is 
given by E{(X  - E { X } ) (  Y - E {  V})}, denoted Cov{X, Y}. (Note that 
Cov{X, X) = Var{X}.) Of course, such an expectation may also be repre- 
sented as a Riemann-Stieltjes integral, 

For a random vector x = (XI, ,  . . , xk), the covariance matrix is given by 
C = (61,)kxk, where ut, = Cov{Xf, X,}. 

For any univariate distribution function F, and for 0 < p < 1, the quantity 

F - ' ( p )  = inf{x: F(x)  2 p} 

is called the pth quantile orfractile of F .  It is also denoted C,. In particular, 

The function F-'( t ) ,  0 < c -= 1, is called the inoerse function of F.  The 
following proposition, giving useful properties of F and F - I ,  is easily 
checked (Problem l.P. 1). 

= F-'(+) is called the median of F. 

Lemma. Let F be a distribution function. The function F-'(t), 0 < t < 1, 
is nondecreasing and left-continuous, and sat is-es 

(i) F-'(F(x)) s x, --a0 < x < 00, 
and 

(ii) F(F-'(t)) 2 t, 0 < t < 1. 

Hence 

(iii) F(x) 2 t ifand only ifx 2 F-'(t). 

A further useful lemma, concerning the inverse functions of a weakly 
convergent sequence of distributions, is given in 1.5.6. 
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1.1.5 4, a2), Mlr, 
The normal distribution with mean p and variance o2 > Ocorresponds to the 
distribution function 

F(x)  = - 1 ex,[ - 1 ( - a ) D ] d r ,  r - p  -GO < x < GO. 
(27t)"20 - m  

The notation N ( p ,  d) will be used to denote either this distribution or a 
random variable having this distribution-whichever is indicated by the 
context. The special distribution function N(0, 1) is known as the standard 
normal and is often denoted by 0. In the case o2 = 0, N @ ,  0') will denote the 
distribution degenerate at p, that is, the distribution 

A random vector X = (XI, . . . , xk) has the k-oariate normal distribution 
with mean vector p = (pl, . . . , pk) and covariance matrix I: = (0tj)kxk if, 
for every nonnull vector a = ( a l , .  . . , ak), the random variable a x  is N(ap', 
nu'), that is, a x  = c:-, a l X ,  has the normal distribution with mean 
ap' = c: alpl and variance aCa' = xt- B,= alalorj. The notation N(p,  C) 
will denoteeither this multivariatedistribution or a random vector having this 
distribution. 

The components XI of a multivariate normal vector are seen to have 
(univariate) normal distributions. However, the converse does not hold. 
Random variables X I , .  , . , xk may each be normal, yet possess a joint 
distribution which is not multivariate normal. Examples are discussed in 
Ferguson (1967), Section 3.2. 

1.1.6 Chi-squared Distributions 

Let Z be k-variate N(p,  I), where I denotes the identity matrix of order k. For 
the case p = 0, the distribution of Z Z  = 2: is called the chi-squared with 
k degrees offleedom. For the case p # 0, the distribution is called noncentral 
chi-squared with k degrees offreedom and noncentrality parameter A = pp'. 
The notation &A) encompasses both cases and may denote either the random 
variable or the distribution. We also denote x,'(O) simply by xf .  

1.1.7 Characteristic Functions 

The characteristicfunction of a random k-vector X is defined as 

4x(t) = E{eftX'} = /. - - /eltx' dFxcx),  t E Rk. 
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In particular, the characteristic function of N(0, 1) is exp( -it2). See Lukacs 
(1970) for a full treatment of characteristic functions. 

1.1.8 Absolutely Continuous Distribution Functions 

An a6solutely continuous distribution function F is one which satisfies 

F(x)  = J:J‘(t)dr, -a c x < co. 

That is, F may be represented as the indefinite integral of its derivative. In this 
case, any function f such that F(x)  = I”- f ( t )d t ,  all x ,  is called a density for F.  
Any such density must agree with F‘ except possibly on a Lebesgue-null set. 
Further, iff is continuous at x o ,  then f ( x o )  = F’(xo) must hold. This latter 
may be seen by elementary arguments. For detailed discussion, see Natanson 
(1961), Chapter IX. 

1.1.9 I.I.D. 
With reference to a sequence {Xi} of random vectors, the abbreviation I.I.D. 
will stand for “independent and identically distributed.” 

1.1.10 lndicator Functions 
For any set S, the associated indicatorfunction is 

1, XES,  
= (00, x # S .  

For convenience, the alternate notation I ( S )  will sometimes be used for Is, 
when the argument x is suppressed. 

1.1.11 Binomial (n,p) 

The binomialdistribution with parameters nand p ,  where n is a positive integer 
and 0 5 p 5 1, corresponds to the probability mass function 

k = 0, 1, ..., n. 

The notation B(n, p )  will denote either this distribution or a random variable 
having this distribution. As is well known, B(n, p) is the distribution of the 
number of successes in a series of n independent trials each having success 
probability p. 

1.1.12 Uniform (a, 6 )  

The unrorm distribution on the interval [a, 61, denoted U(a, 6), corresponds 
to the density function f ( x )  = l/(b-u), a s x 5 6, and =0, otherwise. 
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1.2 MODES OF CONVERGENCE OF A SEQUENCE OF 
RANDOM VARIABLES 

Two forms of approximation are of central importance in statistical ap- 
plications. In one form, a given random variable is approximated by another 
random variable. In the other, a given distribution function is approximated 
by another distribution function. Concerning the first case, three modes of 
convergence for a sequence of random variables are introduced in 1.2.1, 
1.2.2, and 1.2.3. These modes apply also to the second type of approximation, 
along with a fourth distinctive mode introduced in 1.2.4. Using certain of 
these convergence notions, stochastic versions of the O(.$, o(0) relations in 
1.1.2 are introduced in 1.2.5. A brief illustration of ideas is provided in 1.2.6. 

1.2.1 Convergence In Probability 

Let X,, X,, . . . and X be random variables on a probability space (9 d, P). 
We say that X, converges in probability to X if 

lim P(IX,  - XI < E )  = 1, every e > 0. 
n- a0 

This is written X, 3 X ,  n -+ 00, or p-lim,,+m X, = X. Examples are in 1.2.6, 
Section 1.8, and later chapters. Extension to the case of X,, X,, . . . and X 
random elements of a metric space is straightforward, by replacing (X, - XI 
by the relevant metric (see Billingsley (1968)). In particular, for random k- 
vectors X,, X,, . . . and X, we shall say that X, 3 X if IlX,, - Xll 4 0 in the 
above sense, where llzll = (zi- , for z E Rk. It then follows (Problem 
1.P.2) that X, 3 X if and only if the corresponding component-wise con- 
vergences hold. 

1.2.2 Convergence with Probability 1 

Consider random variables X,, X,, . . . and X on (Q d, P). We say that X ,  
converges with probability 1 (or strongly, almost surely, almost euerywhere, etc.) 
to X if 

P limX,= - 1. 

This is written X ,  * X ,  n + 00, or pl-lim,+m X, = X .  Examples are in 
1.2.6, Section 1.9, and later chapters. Extension to more general random 
elements is straightforward. 

(n-m X) 

An equivalent condition for convergence wpl is 

lim P(lX,,, - XI < e, all rn 2 n) = 1, each e > 0. 
n-m 
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This facilitates comparison with convergence in probability. The equivalence 
is proved by simple set-theoretic arguments (Halmos (1950), Section 22), as 
follows. First check that 

(*I {a: lim x,(a) = x(a)) = n u {a: IX,,,(~) - x(w)l< s, all m 2 n), 

whence 

(**I 

m 

R+ 09 r > O  n - 1  

. . k: lim x,,(a) = x(o)j = lim lim {a: IX,,,(~) - x ( a ) l <  e, all m 2 n}. 

By the continuity theorem for probability functions (Appendix), (**) implies 

P(X,  + X) = lim lim P(JX,,, - XI < e,allm 2 n), 

which immediately yields one part of the equivalence. Likewise, (*) implies, 
for any E > 0, 

P(X,+X)S l imP((X,-X(<e,al lmrn) ,  

w m  8-0  n-m 

8 - 0  n-m 

14 m 

yielding the other part. 
The relation (*) serves also to establish that the set {m: X,(w) + X ( a ) }  

truly belongs to d, as is necessary for "convergence wpl to be well defined. 
A somewhat stronger version of this mode of convergence will be noted in 

1.3.4. 

1.2.3 Convergence in rth Mean 
Consider random variables XI, Xz , . . . and X on (Q d, P). For r > 0, we say 
that X, converges in rth mean to X if 

lim EIX, - X r  = 0. 

This is written X,- X or L,-lim,,+m X, = X. The higher the value of r, the 
more stringent the condition, for an application of Jensen's inequality (Ap- 
pendix) immediately yields 

I- m 
rtb 

Given (Q d, P) and r > 0, denote by L,(Q d, P) the space of random 
variables Y such that El Y I' < 00. The usual metric in L, is given by d( Y, 2) = 
IIY - Zll,, where 

O < r < l ,  
[El Yl'l''', r 2 1. 
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Thus convergence in the rth mean may be interpreted as convergence in the 
L, metric, in the case of random variables XI, X2, . . . and X belonging to L,. 

1.2.4 Convergence in Distribution 

Consider distribution functions F,(.), F2(.), . . , and F(.), Let XI, X2,. . . 
and X denote random variables (not necessarily on a common probability 
space) having these distributions, respectively. We say that X ,  converges in 
distribution (or in law) to X if 

lim F,(t) = F(t), each continuity point t of F. 

This is written X, 4 X ,  or d-iim,-= X ,  = X .  A detailed examination of this 
mode of convergence is provided in Section 1.5. Examples are in 1.2.6, 
Section 1.9, and later chapters. 

The reader should figure out why this definition would not afford a 
satisfactory notion of approximation of a given distribution function by other 
ones if the convergence were required to hold for all t. 

In as much as the definition of X ,  A X is formulated wholly in terms of the 
corresponding distribution functions F, and F, it is sometimes convenient to 
use the more direct notation “F, * F” and the alternate terminology “F, 
conuerges weakly to F.” However, as in this book the discussions will tend to 
refer directly to various random variables under consideration, the notation 
X ,  % X will be quite useful also. 

Remark. The convergences 3, %, and 3 each represent a sense in 
which, for n sufficiently large, X,(w) and X(w) approximate each other as 
functions ofw, o E R. This means that the distributions of X ,  and X cannot be 
too dissimilar, whereby approximation in distribution should follow. On the 
other hand, the convergence 5 depends only on the distribution functions 
involved and does not necessitate that the relevant X ,  and X approximate 
each other as functions of o. In fact, X, and X need not be defined on the same 
probability space. Section 1.3 deals formally with these interrelationships. W 

1.2.5 Stochastic O(.) and 4) 
A sequence of random variables {X,,}, with respective distribution functions 
{F,}, is said to be bounded in probability if for every e > 0 there exist M ,  and 
N, such that 

n- a~ 

F,(M,) - F,( - M,) > 1 - e all n > N,. 

The notation X ,  = 0,,(1) will be used. It is readily seen that X ,  5 X 3 
X, = 0,,(1) (Problem 1.P.3). 
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More generally, for two sequences of random variables { U,} and { K}, the 
notation U, = O p ( K )  denotes that the sequence {UJV,}  is Op(l). Further, 
the notation U, = op(K)  denotes that UJV,, 4 0. Verify (Problem 1.P.4) that 
u, = op(v,) * u, = OP(v,). 

1.2.6 Example: Proportion of Successes in a Series of Trials 

Consider an infinite series of independent trials each having the outcome 
“success” with probability p .  (The underlying probability space would be 
based on the set f2 of all infinite sequences o of outcomes of such a series of 
trials.) Let X, denote the proportion of successes in the first n trials. Then 

P (i) X, + P; 

Is it true that 

Justification and answers regarding (i)-(v) await material to be covered in 
Sections 1.8-1.10. Items(vi)and(vii)may be resolved at once, however,simply 
by computing variances (Problem 1.P.5). 

1.3 RELATIONSHIPS AMONG THE MODES OF CONVERGENCE 

For the four modes ofconvergence introduced in Section 1.2, we examine here 
the key relationships as given by direct implications (1.3.1-1.3.3), partial 
converses (1.3.4-1.3.9, and various counter-examples (1.3.8). The question 
of convergence of moments, which is related to the topic of convergence in 
rth mean, is treated in Section 1.4. 
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1.3.1 Convergence wpl Implies Convergence in Probability 

Theorem. If X,, wp? X ,  then X ,  4 X .  

This is an obvious consequence of the equivalence noted in 1.2.2. Incidentally, 
the proposition is not true in gerreral for all measures(e.g., see Halmos (1950)). 

1.3.2 Convergence in rth Mean Implies Convergence in Probability 

Theorem. If X ,  2% then X ,  X. 

PROOF. Using the indicator function notation of 1.1.10 we have, for any 
E > 0, 

E I X ,  - Xl'r E { I X ,  - X r q l X ,  - XI > E ) }  2 E'P(IX, - XI > E )  

and thus 

P( IX,, - x I > E )  s E-'E I x, - x I' -+ 0, n -+ ao. H 

13.3 Convergence in Probability Implies Convergence in Distribution 

(This will be proved in Section 1.5, but is stated here for completeness.) 

1.3.4 Convergence in Probability Sufficiently Fast Implies Convergence wpl 

Theorem. If 
m 2 P ( I X ,  - X I  > E) < 00 for every E > 0, 

n =  1 

then X ,  =% X .  

PROOF. Let E > 0 be given. We have 

m 

(**) p(lx,,, - XI > e for some m 2 n) = P u { IX, - X I  > 8 1 )  
d . n  

m 

5 C p(IXm - XI > E). 
m = n  

Since the sum in (**)is the tail of aconvergent series and hence -+0 as n -+ 00, 

the alternate condition for convergence wpl follows. H 

Note that the condition of the theorem defines a mode of convergence 
stronger than convergence wpl.  Following Hsu and Robbins (1947), we say 
that X ,  converges completely to X if (*) holds. 



RELATIONSHIPS AMONG THE MODES OF CONVERGENCE 11 

1.3.5 Convergence in rth Mean Sufficiently Fast Implies Convergence wpl 

The preceding result, in conjunction with the proof of Theorem 1.3.2, yields 

Theorem. lf c."- EIX, - XI' < 00, then X, % X. 

The hypothesis ofthe theorem in fact yields the much stronger conclusion that 
the random series EX1 !X, - XI' converges wpl (see Lukacs (1975), 
Section 4.2, for details). 

1.3.6 Dominated Convergence in Probability Implies Convergence in Mean 

Theorem. Suppose that X, 3 X, I X, I < I Y I wpl (all n), and E I Y l r  < 00. 

Then X, * X. 
PROOF. First let us check that 1x1 5 I Y Iwpl. Given 6 > 0, we have 

P(IX( > lYl+ 6) s P ( I X (  > IX,,l+ 6) < P((X, - XI > 6)+0, n + m. 
HencelXl S ( Y I + S w p l f o r a n y S > O a n d s o f o r S = O .  

Consequently, IX, - XI s 1x1 + IX,I s 21 Y IwpI. 
Now choose and fix E > 0. Since El Y I' < 00, there exists a finite constant 

A, > E such that E {  I Y rl(21 Y I > A,)} s E. We thus have 

E(X, - XI'= E{JX, - X('l((X, - XI > At)}  
+ E{IX, - XI'l(lXn - XI 5 E ) }  

+ E{lX, - xl'l(~ < IX, - XI 5 A,)} 
S E{(12Y)'1(2(YI > A,)} + E' + A:P(IX, - XI > E )  

5 2'E + E' + A:P()X, - XI > E). 

Since P ( ) X ,  - XI > E )  + 0, n + 00, the right-hand side becomes less than 
2'6 + 26' for all n sufficiently large. 

More general theorems of this type are discussed in Section 1.4. 

1.3.7 Dominated Convergence wpl Implies Convergence in Mean 

By 1.3.1 we may replace 4 by * in Theorem 1.3.6, obtaining 

Theorem. Suppose that X, * X, 1 X, I s; I Y I wpl (all n), and E I Y 1' < 00. 

Then X, 5 X .  

1.3.8 Some Counterexamples 

Sequences {X,} convergent in probability but not wpl are provided in 
Examples A, B and C. The sequence in Example B is also convergent in 
mean square. A sequence convergent in probability but not in rth mean for 
any r > 0 is provided in Example D. Finally, to obtain a sequence convergent 
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wpl but not in rth mean for any r > 0, take an appropriate subsequence of the 
sequence in Example D (Problem 1.P.6). For more counterexamples, see 
Chung (1974), Section 4.1, and Lukacs (1975), Section 2.2, and see Section 2.1. 

Example A. The usual textbook examples are versions of the following 
(Royden (1968), p. 92). Let (n, d, P) be the probability space corresponding 
to R the interval [0,1], d the Bore1 sets in [0, 13, and P the Lebesgue measure 
on d. For each n = 1,2, . . . , let k, and v, satisfy n = k, + 2"", 0 5 k, < 2'", 
and define 

1, if O E  [k,2-'", (k, + 1)2-'"] 
X n ( 0 )  = { 0, otherwise. 

It is easily seen that X, 4 0 yet X,(o) --* 0 holds nowhere, o E [0,1]. H 

Example B. Let Yl, Yz, . . . be I.I.D. random variables with mean 0 and 
variance 1. Define 

c1 yr 
(n log log n)l'Si 

x, = 

By the central limit theorem (Section 1.9) and theorems presented in Section 
1.5, it is clear that X, 4 0. Also, by direct computation, it is immediate that 
X, 5 0 ,  However, by the law of the iterated logarithm (Section LlO), it is 
evident that X,(o)  -P 0, n --* 00, only for o in a set of probability 0. 

Example C (contributed by J. Sethuraman). Let Yl, Y,, . . , be I.I.D. random 
variables. Define X, = YJn.'+hen clearly X, 1: 0. However, X, "p'. 0 if and 
only if El Y, I < m. To verify this claim, we apply 

Lemma (Chung (1974), Theorem 3.2.1) For any positive random variable 
z, 

m f' P(Z 2 n) s E{Z) 5 1 + c P(Z 2 n). 
n i l  n= 1 

Thus, utilizing the identical distributions assumption, we have 

1 m f P(lxnl* = c ~ ( 1  y1 I 2 n&) 5 ; EJ yi I, 
m m 

n- 1 n= 1 

n= 1 n= 1 

1 
1 + C P(IXnI 2 8) = 1 + C p(I Y. I 2 na) 2 e EI Yi I. 

The result now follows, with the use of the independence assumption, by an 
application of the Borel-Cantelli lemma (Appendix). H 
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Example D. Consider 

n, with probability l/log n 
xn= { 0, with probability l-l/log n. 

Clearly X, 1: 0. However, for any r > 0, 

1 A CONVERGENCE OF MOMENTS; UNIFORM INTEGRABILITY 

Suppose that X, converges to X in one of the senses $,A, ws? or 5. What 
isimpliedregardingconvergenceofE{X:} toE{X'},or E IX,p toEIXI',n + co? 
The basic answer is provided by Theorem A, in the general context of 5, 
which includes the other modes of convergence. Also, however, specialized 
resultsareprovided for thecases 3, 3,and *.These aregiven by Theorems 
B, C, and D, respectively. 

Before proceeding to these results, we introduce three special notions and 
examine their interrelationships. A sequence of random variables { Y,} is 
uniformly integrable if 

limsupE{JY,II(IY,I > c ) }  = O .  

A sequence of set functions {Q.} defined on d is uniformly absolutely con- 
tinuous with respect to a measure P on d if, given E > 0, there exists S > 0 
such that 

P(A)  < 6 =$ sup( Q,(A)I < E. 

The sequence { Q n }  is equicontinuous at 4 if, given E > 0 and a sequence {A,} 
in d decreasing to 4, there exists M such that 

c+oo n 

n 

m > M supIQ,(A,)J c E. 
n 

Lemma A. (i) 
the pair of conditions 

and 

(b) the set Junctions {Q,} defined by Q,(A) = I,, IY,(dP are uniformly 
absolutely continuous with respect to P. 

Uniform integrability of {Y,} on (a, d, P) is equivalent to 

(a) SUPn EIYnI < 00 
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(ii) Susfcientfor uniform integrability of {Y,} is that 

sup EIYnI1+' < 00 
n 

for some E > 0. 

variable Y such that E I Y I < 00 and 
(iii) Susfcient for uniform integrability of {Y,} is that there be a random 

P(IY,( 2 Y) 5 P(IYI 2 y),alln 2 1,ally > 0. 

(iv) For set functions Q,  each absolutely continuous with respect to a 
meusure P ,  equicontinuity at 4 implies uniform absolute continuity with respect 
to P. 

PROOF. (i) Chung (1974), p. 96; (ii) note that 

H I  y,lI(l Kl > c ) )  5 c - T I  XI'+'; 
(iii) Billingsley (1968), p. 32; (iv) Kingman and Taylor (1966), p. 178. 

Theorem A. Suppose that X, % X and the sequence {X:} is uniformly 
integrable, where r > 0. Then ElXl' < 00, limn E{X:} = E{X'}, and 
lim, EIXn(' = EJXI'. 

PROOF. Denote the distribution function of X by F. Let 8 > 0 be given. 
Choose c such that fc are continuity points of F and, by the uniform 
integrability, such that 

SUP E { l ~ I r ~ ( l ~ I l  2 c)} < e. 
I 

For any d > c such that f d  are also continuity points of F, we obtain from 
the second theorem of Helly (Appendix) that 

lim E{IX,I'I(c s IX,l s, 4) = E{IXI'I(c s 1x1 s 4). 

It follows that E{ IXrf(c 5 IX I s d)} < e for all such choices of d. Letting 
d-,oo,weobtainE{lXI'I(IXI Zc)} <6,whenceEJXr< 00. 

n+m 

Now, for the same c as above, write 

IE{X:} - E{X'}I s IE{X~(lxnl 5 c)} - E{X'I(IXl 5 c))l 
+ E{lXnI'I(lXnl > c)} + E{IXI'I(IXI > c)}* 

By the Helly theorem again, the first term on the right-hand side tends to 0 as 
n + 00. The other two terms on the right are each less than 8. Thus lim;E{X:} 
= E{X'}. A similar argument yields limn ElX,,r = EIXI'. 
By arguments similar to the preceding, the following partial converse to 

Theorem A may be obtained (Problem 1.P.7). 
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Lemma B. Suppose that X ,  5 X and limn EIXnr = EJXI '  < 00. Then the 
sequence {X:} is uniformly integrable. 

We now can easily establish a simple theorem apropos to the case 3. 

Theorem B. Suppose that Xn*X and EIX( '  < 00. Then limn E{X:} = 
E{X'}  and limn EIX,(' = EIXI'. 

PROOF. For 0 < r S 1, apply the inequality Ix + y r  S I x r  + Iyr to 
write Ilxr - I y r l  s Ix - y J '  and thus 

IEIX,r - E l X r l  S EJX, - XI'. 
For r > 1, apply Minkowski's inequality (Appendix) to obtain 

l(ElX,r)l/r - (EIxr)lq s (EJX, - XI')'". 
In either case, limn E(X, ( '  = EIX < 00 follows. Therefore, by Lemma B, 
{X:} is uniformly integrable. Hence, by Theorem A, limn E{X:} = E{Xr} 
follows. 

Next we present results oriented to the case 3. 

Lemma C. Suppose that X ,  3 X and E I X ,  I' < 00, all n. Then the following 
statements hold. 

(i) X ,  
(ii) Ifthe set functions {Q,} defined by Q,(A) = JA l X n r  dP are equicon- 

PROOF. (i) see Chung (1974), pp. 96-97; (ii) see Kingman and Taylor 

It is easily checked (Problem 1.P.8) that each of parts (i) and (ii)generalizes 

Combining Lemma C with Theorem B and Lemma A, we have 

X i f  and only i f  the sequence {X:}  is uniformly integrable. 

tinuous at 4, then X , s  X and EJXI'  < 00. 

(1966), pp. 178-180. 

Theorem 1.3.6. 

Theorem C. Suppose that X ,  -% X and that either 

(i) E I X 1' < 00 and {X:} is uniformly integrable, 
or 

(ii) sup, EIX,I' < 00 and the set functions {Q,} defined by Q,(A) = 
I X ,  (' dP are equicontinuous at 4. 

Then limn E{X:} = E{X'}  and limn EJX,/ '  = EIXJ'. 
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Finally, for the case 5, the preceding result may be used; but also, by a 
simple application (Problem l.P.9) of Fatou’s lemma (Appendix), the follow- 
ing is easily obtained. 

Theorem D. Suppose that Xn * X. If G n  EIXnr S ElXl’ < 00, then 
limn E{X:} = E{X’} and limn EIX,)’ = ElX)’. 

As noted at the outset of this section, the fundamental result on convergence 
of moments is provided by Theorem A, which imposes a uniform integrability 
condition. For practical implementation of the theorem, Lemma A(i), (ii), (iii) 
provides various sufficient conditions for uniform integrability. Justification 
for the trouble of verifying uniform integrability is provided by Lemma B, 
which shows that the uniform integrability condition is essentially necessary. 

1.5 FURTHER DISCUSSION OF CONVERGENCE 1N DISTRlBUTION 

This mode of convergence has been treated briefly in Sections 1.2-1.4. Here 
we provide a collection of basic facts about it. Recall that the definition of 
X ,  A X is expressed in.terms of the corresponding distribution functions F, 
and F, and that the alternate notation Fn F is often convenient. The reader 
should formulate “convergence in distribution” for random vectors. 

1.5.1 Criteria for Convergence in Distributibn 

The following three theorems provide methodology for establishing conver- 
gence in distribution. 

Theorem A. Let the distribution functions F, F1, F2, . . . possess respective 
characteristic functions 4, 41, 42, . . . . The following statements are equivalent: 

(i) F, =* F; 
(ii) limn +,(t) = Nt), each real t; 
(iii) limn g dF, = g dF, each bounded continuousfitnction g. 

PROOF. That (i) implies (iii) is given by the generalized Helly theorem 
(Appendix). We now show the converse. Let t be a continuity point of F and 
let E > 0 be given. Take any continuous function g satisfying g ( x )  = 1 for 
x 1s t ,  0 5 g(x) S 1 for t < x < t + e, and g(x) = 0 for x 2 t + e. Then, 
assuming (iii), we obtain (Problem 1.P.10) 

Tim F,(t) 5 F(t + 6). 
n-+ m 
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Similarly, (iii) also gives 

- lim F,(t) 2 F(t - 8). 
n+ m 

Thus (i) follows. 
For proof that (i) and (ii) are equivalent, see Gnedenko (1962), p. 285. 

Example. If the characteristic function of a random variable X, tends to the 
function exp(-+t2) as n --* 00, then X, % N(0, 1). H 

The multivariate version of Theorem A is easily formulated. 

Theorem B (Frkchet and Shohat). Let the distribution functions F, 
possess Jinite moments arb = j tk  dF,(t) for k = 1, 2,. . . and n = 1,2,. . . . 
Assume that the limits ak = limn ap) exist (finite), each k. Then 

(i) the limits {ak} are the moments o f a  distributionfunction F; 
(ii) Vthe F gioen by (i) is unique, then F, =+ F. 

For proof, see Frtchet and Shohat (1931), or Loeve (1977), Section 11.4. 
This result provides a convergence of moments criterion for convergence in 
distribution. In implementing the criterion, one would also utilize Theorem 
1.13, which provides conditions under which the moments {ak}  determine a 
unique F. 

The following result, due to Scheff6 (1947) provides a convergence of 
densities criterion. (See Problem 1.P.11.) 

Theorem C (Scheffk). Let {f.) be a sequence of densities of absolutely 
continuous distribution functions, with limn f,(x) = f(x), each real x. IJ f is a 
densityfunction, then limn (f,(x) - f(x)ldx = 0. 

PROOF. Put gn(x) = [ f ( x )  - f , (x ) ] ! ( f (x )  2 h ( x ) ) ,  each x .  Using the 
fact that f is a density, check that 

11 fn(x) - f ( x )  I dx = 2 Jen(x)dx* 

Now Ig,(x)l $ f ( x ) ,  all x,each n. Hence, by dominated convergence(Theorem 
1.3.7), limn g,(x)dx = 0. H 

1.5.2 Reduction of Multivariate Case to Univariate Case 
The following result, due to Cramer and Wold (1936), allows the question of 
convergence of multivariate distribution functions to be reduced to that of 
convergence of univariate distribution functions. 
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Theorem. In  R', the random vectors X, converge in distribution to the random 
vector X tfand only tfeach linear combination of the components of X, converges 
In distribution to the same linear combination of the components ofX. 

PROOF. Put X, = (X,,,, . . . , X,,,Jand X = (Xl,. . . , Xk)and denote the 
corresponding characteristic functions by 4, and 4. Assume now that for any 
real A,, . . . , 

AlXn1 + ' * '  + AkXx,, 1, Alxl + * "  + A k x k .  

Then, by Theorem 1.5.1A, 

lim #&Al,. . . , t&) = 4(rA,,  . . . , th), all r. 

With t = 1, and since A t , .  . . , Ak are arbitrary, it follows by the multivariate 
version of Theorem 1.5.1A that X,, % X. 

n+ w 

The converse is proved by a similar argument. H 

Some extensions due to Wald and Wolfowitz (1944) and to Varadarajan 
(1958) are given in Rao (1973), p. 128. Also, see Billingsley (1968), p. 49, for 
discussion of this "Cramer-Wold device." 

1.5.3 Uniformity of Convergence in Distribution 

An important question regarding the weak convergence of F,, to F is whether 
the pointwise convergences hold uniformly. The following result is quite 
useful. 

Theorem (Pblya), f'f F, * F and F is continuous, then 

lim supIF,(t) - F(t)I = 0. 
,-+a I 

The proof is left as an exercise (Problem 1.P.12). For generalities, see 
Ranga Rao (1962). 

1.5.4 Convergence in Distribution for Perturbed Random Variables 

A common situation in mathematical statistics is that the statistic of interest 
is a slight modification of a random variable having a known limit distribution. 
A fundamental role is played by the following theorem, which was developed 
by Slutsky (1925) and popularized by CramCr (1946). Note that no restric- 
tions are imposed on the possible dependence among the random variables 
involved. 
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Theorem (Slutsky). Let X ,  4 X and Y, J$ C, where c is a finite constant. 
Then 

(i) X, + Y, x + c; 
(ii) X,Y, 5 CX; 

(iii) XJY, 5 X/C ifc z 0. 

Coroffury A. Convergence in probability, X ,  .% X ,  implies convergence In 
distribution, X ,  5 x. 

Coroffury B. Convergence in probability to a constant is equivalent to con- 
vergence in distribution to the given constant. 

Note that Corollary A was given previously in 1.3.3. The method of proof of 
the theorem is demonstrated sufficiently by proving (i). The proofs of (ii) and 
(iii) and of the corollaries are left as exercises (see Problems 1.P.13-14). 

PROOF OF (i). Choose and fix t such that t - c is a continuity point of 
F x .  Let e > 0 be such that t - c + E and t - c - E are also continuity points 
of F x .  Then 

Fx. + ~ , ( t )  = p(xn + Yn S t )  
5 p(x, + Yn S t,  lYn - CI  < 6) + P ( (  Y, - CI 2 E) 

s p ( X ,  S t - c + 6) + P(lY, - CI 2 6). 

Hence, by the hypotheses of the theorem, and by the choice oft - c + e, 

(*) EG Fxn+yn(t) S G P ( X n  S t - c + 8) + TimP(JY, - CI 2 E )  
n n n 

= Fx(t - c + E) .  

Similarly, 

P(Xn 5 t - c - e) 5 P(Xn + Yn S t )  + P(lYn - cl 2 e )  

and thus 

Since t - c is a continuity point of F x ,  and since e may be taken arbitrarily 
small, (*) and (**) yield 

lim Fxn+yn(t) = F,(t - c) = FX+&). I 
n 
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1.5.5 Asymptotic Normality 
The most important special case of convergence in distribution consists of 
convergence to a normal distribution. A sequence of random variables {X,} 
converges in distribution to N ( p ,  u2), u > 0, if equivalently, the sequence 
{(X, - p)/u} converges in distribution to N(0, 1). (Verify by Slutsky’s 
Theorem.) 

More generally, a sequence of random variables { X , }  is asymptotically 
normal with “mean” p, and “variance” a,” if a, > 0 for all n sufficiently large 
and 

x, - A 5 N(0,l). 
all 

We write “ X ,  is AN(!,, a:).” Here {p,} and {a,} are sequences of constants. 
It is not necessary that A,, and u,” be the mean and variance of X,, nor even that 
A’, possess such moments. Note that if X, is AN@,, u:), it does not necessarily 
follow that {X,} converges in distribution to anything. Nevertheless in any 
case we have (show why) 

sup I p(X ,  s t )  - P(N(p,, of) s t )  I + 0, n + 00, 
I 

so that for a range of probability calculations we may treat X, as a Nb,, a,’) 
random variable. 
As exercises (Problems 1.P.15-16), prove the following useful lemmas. 

Lemma A. If Xn is AN(&,, a:), then also Xn is AN(&, a,”) if and only i f  

Lemma B. I .  X n  is AN(Pn, o:), then also anX, + bn is AN&, af) if and 
only if 

Example. If X ,  is AN(n, 2n), then so is 

n - 1  
n X, 

but not - 
Jn - 1 x,. 
Jr; 
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We say that a sequence of random uectors {X,} is asymptotically (multf- 
uariate) normal with "mean vector" pn and "covariance matrix" C,, if C, 
has nonzero diagonal elements for all n sufficiently large, and for every vector 
1 such that 1Z,X > 0 for all n sufficiently large, the sequence AX; is AN(&&, 
AE,X), We write "X, is AN(pn, I;,)." Here {p,} is a sequence of vector con- 
stants and {&} a sequence of covariance matrix constants. As an exercise 
(Problem l.P.17), show that X, is AN(p, ,  C ~ C )  if and only if 

xn - 5 N(0, Z). 
Cn 

Here {c,} is a sequence of real constants and I; a covariance matrix. 

1.5.6 Inverse Functions of Weakly Convergent Distributions 

The following result will be utilized in Section 1.6 in proving Theorem 1.6.3. 

Lemma. IfFn =s F, then the set 

{ t :O<t  < l,F,'(t)f*F-'(t),n-,co} 

contains at most countably many elements. 

PROOF. Let 0 < to < 1 be such that F;'( to)  f i  F-'( t0) ,  n -+ 00. Then 
there exists an E > 0 such that F - ' ( t o )  f E are continuity points of F and 
IF; ' ( to)  - F-'(to)l > E for infinitely many n = 1.2,. . , , Suppose that 
F;l( to)  < F - ' ( t 0 )  - E for infinitely many n. Then, by Lemma 1.1.4(ii), 
to 5 F,(F; ' ( t o ) )  s F,(F-'(to) - E). Thus the convergence F, =s F yields 
to 4 F(F-' ( to)  - E), which in turn yields, by Lemma 1.1.4(i), F-' ( to)  5 
F-'(F(F-'( to)  - E ) )  I; F-' ( t0)  - E, a contradiction. Therefore, we must 
have 

~ ; ' ( t ~ )  > F-' ( to)  + e for infinitely many n = 1,2, . . . . 
By Lemma 1.1.4(iii), this is equivalent to 

F,(F-'(C,) + E )  < to for infinitely many n = 1,2,. . . , 
F yields F(F-'( to)  + E )  5 to.  But also which by the convergence F ,  

to s F(F-'(to)), by Lemma 1.1.4(i). It follows that 

to  = F(F-'(to)) 

and that 

F(x) = to for x E [F-'( t , ) ,  F - ' ( t o )  + E ] ,  


