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There are a number of illustrative examples given at  the end of some chapters. 
Many of these involve code in the S language, a high-level language for manipu- 
lating, analyzing and displaying data. There are two different implementations of 
S available, the commercial system S-PLUS (@Insightful Corporation, Seattle, WA 
http: //ww. insightful. corn) and the open source R (R Development Core Team 
(2006), http: //ww.R-project . org). Invaluable references for the use of either 
system are Venables and Ripley (2000, 2002). 

The two systems are implementations of the same Slanguage (Becker et a]., 
1988), but are free to differ in features not defined in the language specification. 
The major differences that a user will see are in the handling of third party libraries 
and in the interfaces with C and Fortran code (Venables and Ripley (2000) give a 
summary of the differences). 

We will use the Rsystem in the examples, and will make use of the many 
third party contributed software libraries available through the “Comprehensive 
R Archive Network” (see http: //www .R-project. org). Many of these examples 
will directly translate over to S-PLUS . 

A number of the functions described here (and the code for the examples) are 
available through the website http: / / w w .  bioinf ormatics . csiro . au/sannpr. 
hlany of the functions are packaged into the mlp R library. 



PREFACE 

l h i s  work grew out of two stimuli. One was a series of problems arising in remote 
sensing (the interpretation of multi-band satellite imagery) and the other was the 
lack of answers to  some questions in the neural network literature. 

Typically, in remote sensing, reflected light from the earth’s surface is gathered 
by a sensing device and recorded on a pixel by pixel basis. The  first problem is to  
produce images of the earth’s surface. These can be realistic looking images but 
more likely (as they are more useful) they will be “false-colored” images where the 
coloriiig is designed to  make some feature more visible. A typical example would 
be making vegetation covered ground stand out from bare ground. 

However, the next level of problems in remote sensing concerns segmenting the 
image. Remote sensing gives rise to many problems in which it is important to  
assign a class membership label to  the vector of pixel measurements. For example, 
each pixel in the image on page 90 has been assigned to  one of the ground cover 
classes: “pasture”; “wheat”; “salt bush”; . . . on the basis of its vector of measured 
light reflectances. 

This was a problem tha t  I worked on with the members of the Remote Sensing 
and Monitoring’ project in Perth, Australia for many years during the 1990s as a 
PhD student, visiting academic and group member. The  problems tackled by this 
group were (and are) of great practical importance. The  group was heavily involved 
in developing methods of monitoring and predicting the spread of salinity in the 
farming areas of the south western corner of Australia. Due to  changes in land use 
(clearing and broadacre farming) many areas of the world are experiencing similar 
problems with spreading salinity. 

‘http://vvv.crnis. csiro. au/RSM 
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To monitor salinity the group utilized the resources of the archived data col- 
lected by the LandSat series of satellites (jointly managed by NASA and the US. 
Geological Survey) with information going back to the early 1970s. The approach 
of the Remote Sensing and Monitoring group was unique in that, due to the large 
area it monitors and the need to gain an historic perspective on the salinity process, 
it pursued the use of lower resolution and more limited bandwidth data. This is 
different to many methodology groups in remote sensing who are keen to explore 
data from the latest high resolution multi-band sensors. It meant that a major 
focus of the group was on quite difficult classification problems. 

It  was in this context that I started looking at  neural networks. While I found 
numerous explanations of how “multi-layered perceptrons” (MLPs) worked, time 
and time again I found, after working through some aspect of MLPs: implementing 
it; thinking about it; that it was a statistical concept under a different terminology. 

This book then is partly the result of bringing the MLP within the area of statis- 
tics. However, not all statisticians are the same. There is a decided emphasis on 
robustness in this book and very little discussion of Bayesian fitting methods. We 
are all shaped by the times we lived through and by the questions we have struggled 
with. I have always worked with data sets that are large either in terms of observa- 
tions (remote sensing) or variables (bioinformatics). It seems to me that training 
times for MLP models are long enough already without introducing Bayesian pro- 
cedures. However there will always be a need to ensure that the model is resistant 
to anomalies in the data. 
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Chapters 8 and 9 investigate the robustness of the MLP model. The reader who 
is not interested in all the detail of Chapters 8 and 9 could read the summaries on 
pages 139 and 157 respectively. 
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Chapter 10 describes a fitting procedure for making the MLP model more robust. 
Chapter 11 describes a modification for dealing with spectral data. Chapter 12 and 
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The book should give a largely self contained treatment of these topics but relies 
on at least an undergraduate knowledge of statistics and mathematics. 
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CHAPTER 1 

INTRODUCTION 

Neural networks were originally motivated by an interest in modelling the organic 
brain (McCulloch and Pitts, 1943; Hebb, 1949). They consist of independent pro- 
cessors that return a very simple function of their total input. In turn, their outputs 
foriii the inputs to other processing units. “Connectionism” was an early and re- 
vealing name for this work as the capabilities of the brain were felt to lie in the 
coriiiections of neurons rather than in the capabilities of the individual neurons. 
Despite many debates over the years about the biological plausibility of various 
models, this is still the prevailing paradigm in neuro-science. 

Important sources for the history of “connectionism” are McCulloch and Pitts 
(1943), Hebb (1949), Rosenblatt (1962), Minsky and Papert (1969), and Rumelhart 
et al. (1986). Anderson and Rosenfeld (1988) reproduce many of the historic papers 
in  one volume and Widrow and Lehr (1990) give a history of the development. 

However, the modern area of neural networks has fragmented somewhat and 
there is no attempt a t  biological plausibility in the artificial neural networks that 
are used for such tasks as grading olive oil (Goodacre et al., 1992), interpreting 
sonar signals (Gorman and Sejnowski, 1988) or inferring surface temperatures and 
water vapor content from remotely sensed data (Aires et al., 2004). 

This book, and artificial neural networks in general, sit somewhere in a shared 
space between the disciplines of Statistics and Machine Learning (ML), which is 
in turn a cognate discipline of Artificial Intelligence. Table 1.1 summarizes some 
of the correspondences between the discipline concerns of Machine Learning and 
Statistics. 

A Stutistacal Approach to Neural Networks for Pattern Recognatron by Robeit A Dunne 
Copylight @ 2007 John Wiley & Sons, IIIC 
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2 INTRODUCTION 

supervised learning 

unsupervised learning 

Table 1.1 
Learning and Statistics. 

Some correspondences between the discipline concerns of Machine 

machine IearninE I statistics n 
“learning with a teacher” classification 

“learning without a teacher” clustering 

Riedman (1991b) carries the teacher analogy further and suggests that a useful 
distinction between ML and statistics is that statistics takes into account the fact 
that the “teacher makes mistakes.” This is a very accurate and useful comment. A 
major strand of this work is understanding what happens when “the teacher makes 
a mistake” and allowing for it (this comes under the heading of “robustness“ in 
statistics). 

Clearly one of the differences between ML and statistics is the terminology, which 
of course is a function of the history of the disciplines. This is exacerbated by the 
fact that in some cases statistics has its own terminology that differs from the one 
standard in mathematics. Another easily spotted difference is that ML has better 
names for its activities’. 

More substantial differences are that: 

0 machine learning tends to have a emphasis on simple, fast heuristics. It has 
this aspect in common with data mining and artificial intelligence: 

0 following on from the first point, whereas statistics tends to start with a 
model for the data, often there is no real data model (or only a trivial one) 
in machine learning. 

Breiman in his article “Statistical modelling: The two cultures” (2001) talks 
about the divergence in practice between Statistics and Machine Learning and 
their quite different philosophies. Statistics is a “data modeling culture,” where a 
function f : 2 + y is modeled in the presence of noise. Both linear and generalized 
linear models fall within this culture. However, Machine Learning is termed by 
Breiman an “algorithmic modeling culture.” Within this culture, the function f is 
considered both unknown and unknowable. The aim is simply to predict a y value 
froiri a given z value. 

Breiman argues that in recent years the most exciting developments have come 
from the ML community rather than the statistical community. Among these de- 
velopments one could include: 

0 decision trees (Morgan and Sonquist, 1963); 

0 neural networks, in particular perceptron and multi-layer perceptron (MLP) 
models; 

0 support vector machines (and statistical learning theory) (Vapnik, 1995: 
Burges, 1998); 

0 boosting (Freund and Schapire, 1996) 

‘ I  believe t h a t  this comment was made in the lecture for which Friedman (1991b) are the notes. 
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Breiman in what, from the discussion*, appears to have been received as quite a 
provocative paper, cautions against ignoring this work and the problem areas that 
gave rise to it. 

While agreeing with Breiman about the significance of working with the algorith- 
mic modeling culture we would make one point in favor of the statistical discipline 
While these methodologies have been developed within the machine learning com- 
munity, the contribution of the statistical community to a full understanding of 
these methodologies has been paramount. For example: 

decision trees were put on a firm foundation by Breirnan et al. (1984). They 
clarified the desirability of growing a large tree and then pruning it as well as 
a number of other questions concerning the splitting criteria; 

neural networks were largely clarified by Cheng and Titterington (1994); 
Krzanowski and Marriott (1994); Bishop (1995a) and Ripley (1996) amongst 
others. The exaggerated claims made for MLP models prior to the interven- 
tion of statisticians no longer appear in the literature; 

boosting was dernystified by Friedman et  al. (1998) and Friedman (1999, 
2000) ; 

support vector machines have yet to be widely investigated by statisticians, 
although Breiman (2001) and Hastie et  al. (2001) have done a lot t o  explain 
the workings of the algorithm. 

Brad Efron, in discussing Breiman’s paper, suggests that  it appears to be an 
argument for “black boxes with lots of knobs to twiddle.” This is a common statis- 
tical criticism of ML. It arises, not so much from the number of knobs on the black 
box, which is often comparable to the number of knobs in a statistical model3, but 
from the lack of a data  model. 

When we have a data  model, it gives confidence in the st,atistical work. The 
data  model arises from an  understanding of the process generating the data  and 
in turn assures us that we have done the job when the model is fitted to the data.  
There are then generally some diagnostic procedures that can be applied, such as 
examining the residuals. The expectation is that ,  as the data model matches the 
process generating the data,  the residuals left over after fitting the model will be 
random with an appropriate distribution. Should these prove to have a pattern, 
then the modelling exercise may be said to have failed (or to be as good as we can 
do). In the absence of a data  model, there seems little to prevent the process being 
reduced to an ad-hock empiricism with no termination ctiteria. 

However the ML community is frequently working in areas where no plausible 
data  model suggests itself, due to our lack of knowledge of the generating mecha- 
nisms. 

’As Breiman (2001) was the leading paper in that issue of Statistical Science, it was published 

’111 some instances the number of “knobs” may be fewer for M L  algorithms than  for comparable 
with comments from several eminent statisticians and a rejoinder from Leo Breiman. 

statistical models. See Breiman’s rejoinder to the discussion. 



4 INTRODUCTION 

1.1 THE PERCEPTRON 

We will start with Rosenblatt’s perceptron learning algorithm as the foundation of 
the area of neural networks. Consider a set of data as shown in Figure 1 .1 .  This 
is a 2-dimensional data set in that 2 variables, 11 and z2, have been measured for 
each observation. Each observation is a member of one of two mutually exclusive 
classes labelled “ x ”  and “+” in the figure. 

To apply the perceptron algorithm we need to have a numeric code for each of 
the classes. We use 

1 for class x and .={ -1 for class + . 
The model then consists of a function f, called an “activation function,” such 

that: 

X 

X 

1 w g + W T I L O  

I = {  -1 otherwise. 

+ 

t 

Figure 1.1 A 2-dimensional da ta  set consisting of points in two classes, labelled “ x ”  
and “+”. A perceptron decision boundary wo + ~ 1 x 1  + wzxz is also shown. One point is 
misclassified, that is, it  is on the wrong side of the decision boundary. The margin of its 
misclassification is indicated by an arrow. On the next iteration of the perceptron fitting 
algorithm (1.1) the decision boundary will move to correct the classification of that point. 
Whether it changes the classification in one iteration depends on the value of r ) ,  the s tep 
size parameter. 

The perceptron learning algorithm tries to minimize the distance of a misclas- 
sified point to  the straight line wg + wlzl + wzzz. This line forms the “decision 
boundary” in that points are classified as belonging to class “ x ”  or “+” depending 
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1 

Figure 1.2 The perceptron learning model can be represented as a processing node that 
receives a number of inputs, forms their weighted sum, and gives an output that is a function 
of t,his sum. 

on which side of the line they are on. The rnisclassification rate is the proportion 
of observations that are misclassified, so in Figure 1 . 1  it is 1/9. Two classes that 
can be separated with 0 misclassification error are termed “linearly separable.” 

The algorithm uses a cyclic procedure to adjust the estimates of the w parame- 
ters. Each point 3: is visited in turn and the ws are updated by 

w, - w, + v[y - f(w0 + W‘Z)].. (1.1) 

This means that only incorrectly classified points move the decision boundary. 
The 17 term has to be set in advance and determines the step size. This is generally 
set to a small value in order to try to prevent overshooting the mark. 

Where the classes are linearly separable it can be shown that the algorithm 
converges to a separating hyperplane in a finite number of steps. Where the data 
are not linearly separable, the algorithm will not converge and will eventually cycle 
through the same values. If the period of the cycle is large this may be hard to 
detect. 

Where then is the connection with brains and neurons? It lies in the fact that the 
algorithm can be represented in the form shown in Figure 1.2 where a processing 
node (the “neuron”) receives a number of weighted inputs, forms their sum, and 
gives an output that is a function of this sum. 

Interest in the perceptron as a computational model flagged when Minsky and 
Papert (1969) showed that it was not capable of learning some simple functions. 
Consider two logical variables A and B that take values in the set {TRUE, FALSE}. 
Now consider the truth values of the logical functions AND, OR, and XOR (exclu- 
sive OR, which is true if and only if one of its arguments is true) as shown in Table 
1.2. 

We can recast the problem of learning a logical function as a geometric problem 
by encoding {TRUE,FALSE} as { l , O } .  Now for the XOR function, in order to 
get. a 0 classification error the perceptron would have to put the points { 1 , 1 }  arid 
{ O , O }  on one side of a line and { l , O }  and {0,1} on the other. Clearly this is not 
possible (see Figure 1.3). 

We note here the very different flavor of this work to traditional statistics. Linear 
discriminant analysis (see Chapter 3, p. 19, and references therein) is the classical 
statistical technique for classification. It can not achieve a zero error on the geo- 
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Figure 1.3 The problem of learning a logical function can be recast. as a geometric 
problem by encoding {TRUE, FALSE} as { l , O } .  The figure shows decision boundaries that 
iinplernent the function OR and AND. The XOR function would have to have points A aiid 
C on one side of the line and B and D on the other. It is clear that no single line can achieve 
t.hat, although a set of lines defining a region or a non-linear boundary can achieve it .  

metric XOR problem any more than the perceptron can. However, as far as I know. 
no statistician has ever shown a lot of concern about this fact. 

Table 1.2 Consider two logical variables A and B that can take values in the set 
{TRUE, FALSE}. The truth values of the logical functions AND, OR, and XOR are 
shown 

Using a layered structure of perceptron as shown in Figure 2.1 (p. 10) overcame 
this problem and lead to a resurgence in interest in this research area. These are the 
“multi-layer perceptrons” (MLPs) that are the topic of this work. They required 
a different learning algorithm to the single perceptron and require that f be a 
differentiable function. It was the development of such algorithms that was the 
first step in their use. This has appeared several times in the literature, common 
early references being Werbos (1974) and Rumelhart et al. (1986). 

Already a large number of questions are apparent: such as: 

what if  there are more than two classes; 

0 what if the classes are not linearly separable - but there is a non-linear decision 
boundary that could separate them; 
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0 do we want a classifier that performs well on this data set or on a new, as yet 
unseen, data set? Will they be the same thing? 

These questions will be consider in the ensuing chapters. 
David Hand has recently written a interesting paper entitled “Classifier Technol- 

ogy and the Illusion of Progress” (Hand, 2006). The progress that he is questioning 
is the progress of sophisticated techniques like MLPs, support vector machines 
(Vapnik, 1995; Burges, 1998), and others. He shows that for many examples, the 
decrease in classification error using sophisticated techniques is only marginal. It 
may be so small, in fact, that it may be wiped out by the vagaries and difficulties 
in  attendance with real word data sets 

I think that David Hand’s caution should be taken to heart. Sophisticated tech- 
niques should be used with caution and with an appreciation of their limitations 
and idiosyncrasies. If there is a good data model available, for example, an under- 
standing that the data are Gaussian, then there may be no justification for using 
an MLP model. 

MLP models have not always been used with an appreciation of their charac- 
teristics. The fact that MLPs can be used in a “black box” fashion, and seem to 
produce reasonable results without a lot of effort being put into modeling the prob- 
lem, has often led to them being used in this way. It appears that MLPs were being 
used on hard problems, such as speech recognition and vision, long before any real 
groundwork was done on understanding the behavior of the MLP as a classifier*. 

This has led to debate in the literature on such elementary points as the capa- 
bilities of MLPs with one hidden layer5, and a lack of understanding of the possible 
roles of hidden layer units in forming separating boundaries between classes. How- 
ever, such understanding can be readily arrived at by considering the behavior of 
the MLP in simple settings that are amenable both to analytic and graphical pro- 
cedures. In this book the simplest case of two classes and two variables is often 
used as an example and some points that have been debated in the literature may 
be amongst the first things that an investigator will notice when confronted with a 
graphical representation of the output function of an MLP in this simple setting. 

The aim of this book is to reach a fuller understanding of the MLP model and 
extend it in a number of desirable ways. There are many introductions and surveys 
of multi-layer perceptrons in the literature (see below for references); however, 
none should be necessary in order to understand this book, which should contain 
the necessary introduction. Other works that could usefully be consulted to gain 
insight into the MLP model include Cheng and Titterington (1994), Krzanowski 
and Marriott (1994), Bishop (1995a), Ripley (1996) and Haykin (1999). 

We use a number of examples from the area of remote sensing to illustrate 
various approaches. Richards and Jia (2006) is a good introduction to this problem 
area while Wilson (1992) and Kiiveri and Caccetta (1996) discuss some of the 
statistical issues involved. Once again, this work should be entirely self contained 
- with as much of the problem area introduced in each example as is needed for 
a full appreciation of the example. Multi-layer perceptrons have been used in the 
analysis of remotely sensed data in Bischof et al. (1992), Benediktsson et al. (1995) 

‘Early exceptions to this tendency to use MLPs without investigating their behavior are Gibson 
and Cowan (1990), Lee and Lippmann (1990) and Lui (1990). The situation has been changing 
markedly in recent years and many of the lacunae in the literature are now being filled. 

5That is, are they capable of forming disjoint decision regions; see Lippmann (1987). 
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and Wilkinson et al. (1995). Paola and Schowergerdt (1995) give a review of the 
application of MLP models to remotely sensed data. 


