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Preface to  the Second 
J 

Edition 

After the publication of the first edition of the book, about five years ago, 
I have received a fair number of messages from readers, both students and 
practitioners, around the world. The recurring keyword, and the most im- 
portant thing to me, was useful. The book had, and has, no ambition of 
being a very advanced research book. The basic motivation behind this sec- 
ond edition is the same behind the first one: providing the newcomer with 
an easy, but solid, entry point to  computational finance, without too much 
sophisticated mathematics and avoiding the burden of difficult C++ code, 
also covering relatively non-standard optimization topics such as stochastic 
and integer programming. See also the excerpt from the preface to  the first 
edition. However, there are a few new things here: 

0 a slightly revised title; 

0 completely revised organization of chapters; 

0 significantly increased number of pages. 

The title mentions both Finance and Economics, rather than just Finance. To 
avoid any misunderstanding, it should be made quite clear that this is essen- 
tially a book for students and practitioners working in Finance. Nevertheless, 
it can be useful to Ph.D. students in Economics as well, as a complement to 
more specific and advanced textbooks. In the last four years, I have been 
giving a course on numerical methods within a Ph.D. program in Economics, 
and I typically use other available excellent textbooks covering advanced al- 
gorithms’ or offering well-thought MATLAB toolboxes2 which can be used 
to solve a wide array of problems in Economics. From the point of view of 
my students in such a course, the present book has many deficiencies: For 
instance, it does not cover ordinary differential equations and it does not 
deal with computing equilibria or rational expectations models; furthermore, 
practically all of the examples deal with option pricing or portfolio manage- 
ment. Nevertheless, given my experience, I believe that they can benefit from 
a more detailed and elementary treatment of the basics, supported by simple 
examples. Moreover, I believe that students in Economics should also get 

lK.L. Judd, Numerical Methods in Economics, MIT Press, 1998. 
2M. J.  Miranda and P.L. Fackler, Applied Computational Economics and Finance, MIT 
Press, 2002. 

xvii 
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at  least acquainted with topics from Operations Research, such as stochastic 
programming and integer programming. Hence, the “and  economic^" part of 
the title suggests potential use of the book as a complement, and by no means 
as a substitute. 

The book has been reorganized in order to ease its use within standard courses 
on numerical methods for financial engineering. In the first edition, optimiza- 
tion applications were dealt with extensively, in chapters preceding those re- 
lated to option pricing. This was a result of my personal background, which 
is mainly Computer Science and Operations Research, but it did not fit very 
well with the common use of a book on computational finance. In the present 
edition, advanced optimization applications are left to  the last chapters, so 
they do not get into the way of most financial engineering students. The book 
consists of twelve chapters and three appendices. 

0 Chapter 1 provides the reader with motivations for the use of numerical 
methods, and for the use of MATLAB as well. 

0 Chapter 2 is an overview of financial theory. It is aimed at students in 
Engineering, Mathematics, or Operations Research, who may be inter- 
ested in the book, but have little or no financial background. 

0 Chapter 3 is devoted to  the basics of classical numerical methods. In 
some sense, this is complementary to chapter 2 and it is aimed at peo- 
ple with a background in Economics, who typically are not exposed to  
numerical analysis. To keep the book to a reasonable size, a few clas- 
sical topics were omitted because of their limited role in the following 
chapters. In particular, I do not cover computation of eigenvalues and 
eigenvectors and ordinary differential equations. 

0 Chapter 4 is devoted to numerical integration, both by quadrature for- 
mulas and Monte Carlo methods. In the first edition, quadrature for- 
mulas were dealt with in the chapter on numerical analysis, and Monte 
Carlo was the subject of a separate chapter. I preferred giving a unified 
treatment of these two approaches, as this helps understanding their re- 
spective strengths and weaknesses, both for option pricing and scenario 
generation in stochastic optimization. Regarding Monte Carlo as a tool 
for integration rather than simulation is also helpful to  properly frame 
the application of low-discrepancy sequences (which is also known un- 
der the more appealing name of quasi-Monte Carlo simulation). There 
is some new material on Gaussian quadrature, an extensive treatment 
of variance reduction methods, and some application to vanilla options 
to illustrate simple but concrete applications immediately, leaving more 
complex cases to  chapter 8. 

0 Chapter 5 deals with basic finite difference schemes for partial differ- 
ential equations. The main theme is solving the heat equation, which 
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is the prototype example of the class of parabolic equations, to which 
Black-Scholes equation belongs. In this simplified framework we may 
understand the difference between explicit and implicit methods, as well 
as the issues related to convergence and numerical stability. With re- 
spect to the first edition, I have added an outline of the Alternating 
Direction Implicit method to solve the two-dimensional heat equation, 
which is useful background for pricing multidimensional options. 

a Chapter 6 deals with finite-dimensional (static) optimization. This 
chapter can be safely skipped by students interested in the option pric- 
ing applications described in chapters 7, 8, and 9. However, it may be 
useful to students in Economics. It is also necessary background for the 
relatively advanced optimization models and methods which are covered 
in chapters 10, 11, and 12. 

0 Chapter 7 is a new chapter which is devoted to binomial and trinomial 
lattices, which were not treated extensively in the first edition. The 
main issues here are proper implementation and memory management. 

a Chapter 8 is naturally linked to chapter 4 and deals with more advanced 
applications of Monte Carlo and low-discrepancy sequences to exotic 
options, such as barrier and Asian options. We also deal briefly with the 
estimation of option sensitivities (the Greeks) by Monte Carlo methods. 
Emphasis is on European-style options; pricing American options by 
Monte Carlo methods is a more advanced topic which must be analyzed 
within an appropriate framework, which is done in chapter 10. 

a Chapter 9 applies the background of chapter 5 to option pricing by finite 
difference methods. 

a Chapter 10 deals with numerical dynamic programming. The main rea- 
son for including this chapter is pricing American options by Monte 
Carlo simulation, which was not covered in the first edition but is gain- 
ing more and more importance. I have decided to deal with this topic 
within an appropriate framework, which is dynamic stochastic optimiza- 
tion. In this chapter we just cover the essentials, which means discrete- 
time and finite-horizon dynamic programs. Nevertheless, we try to offer 
a reasonably firm understanding of these topics, both because of their 
importance in Economics and because understanding dynamic program- 
ming is helpful in understanding stochastic programming with recourse, 
which is the subject of the next chapter. 

a Chapter 11 deals with linear stochastic programming models with re- 
course. This is becoming a standard topic for people in Operations 
Research, whereas people in Economics are much more familiar with 
dynamic programming. There are good reasons for this state of the 
matter, but from a methodological point of view I believe that it is very 
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important to compare this approach with dynamic programming; from 
a practical point of view, stochastic programming has an interesting po- 
tential both for dynamic portfolio management and for option hedging 
in incomplete markets. 

Chapter 12 also deals with the relatively exotic topic of non-convex opti- 
mization. The main aim here is introducing mixed-integer programming, 
which can be used for portfolio management when practically relevant 
constraints call for the introduction of logical decision variables. We also 
deal, very shortly, with global optimization, i.e., continuous non-convex 
optimization, which is important when we leave the comfortable domain 
of easy optimization problems (i.e., minimizing convex cost functions or 
maximizing concave utility functions). We also outline heuristic prin- 
ciples such as local search and genetic algorithms. They are useful to 
integrate simulation and optimization and are often used in computa- 
tional economics. 

Finally, we offer three appendices on MATLAB, probability and statis- 
tics, and AMPL. The appendix on MATLAB should be used by the 
unfamiliar reader to get herself going, but the best way to  learn MAT- 
LAB is by trying and using the online help when needed. The appendix 
on probability and statistics is just a refresher which is offered for the 
sake of convenience. The third appendix on AMPL is new, and it reflects 
the increased role of algebraic languages to  describe complex optimiza- 
tion models. AMPL is a modeling system offering access to a wide array 
of optimization solvers. The choice of AMPL is just based on personal 
taste (and the fact that a demo version is available on the web). In fact, 
GAMS is probably much more common for economic applications, but 
the concepts are actually the same. This appendix is only required for 
chapters 11 and 12. 

Finally, there are many more pages in this second edition: more than 600 
pages, whereas the first edition had about 400. Actually, I had a choice: 
either including many more topics, such as interest-rate derivatives, or offering 
a more extended and improved coverage of what was already included in the 
first edition. While there is indeed some new material, I preferred the second 
option. Actually, the original plan of the book included two more chapters on 
interest-rate derivatives, as many readers complained about this lack in the 
first edition. While writing this increasingly long second edition, I switched 
to plan B, and interest-rate derivatives are just outlined in the second chapter 
to point out their peculiarities with respect to stock options. In fact, when 
planning this new edition, many reviewers warned that there was little hope to  
cover interest-rate derivatives thoroughly in a limited amount of pages. They 
require a deeper understanding of risk-neutral pricing, interest rate modeling, 
and market practice. I do believe that the many readers interested in this 
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topic can use this book to  build a solid basis in numerical methods, which is 
helpful to tackle the more advanced texts on interest-rate derivatives. 

Interest-rate derivatives are not the only significant omission. I could also 
mention implied lattices and financial econometrics. But since there are excel- 
lent books covering those topics and I see this one just as an entry point or a 
complement, I felt that it was more important to give a concrete understand- 
ing of the basics, including some less familiar topics. This is also why I prefer 
using MATLAB, rather than C++ or Visual Basic. While there is no doubt 
that C++ has many merits for developing professional code, both in terms of 
efficiency and object orientation, it is way too complex for newcomers. Fur- 
thermore, the heavy burden it places on the reader tends to  overshadow the 
underlying concepts, which are the real subject of the book. Visual Basic 
would be a very convenient choice: It is widespread, and it does not require 
yet another license, since it is included in software tools that almost everyone 
has available. Such a choice would probably increase my royalties as well. 
Nevertheless, MATLAB code can exploit a wide and reliable library of nu- 
merical functions and it is much more compact. To the very least, it can 
be considered a good language for fast prototyping. These considerations, 
as well as the introduction of new MATLAB toolboxes aimed a t  financial 
applications, are the reasons why I am sticking to my original choice. The 
increasing number of books using MATLAB seems to confirm that it was a 
good one. 

Acknowledgments. I have received much appreciated feedback and encour- 
agement from readers of the first edition of the book. Some pointed out typos, 
errors, and inaccuracies. Offering apologies for possible omissions, I would like 
to thank I-Jung Hsiao, Sandra Hui, Byunggyoo Kim, Scott Lyden, Alexander 
Reisz, Ayumu Satoh, and Aldo Tagliani. 

Supplements. As with the first edition, I plan to keep a web page containing 
the (hopefully short) list of errata and the (hopefully long) list of supplements, 
as well as the MATLAB code described in the book. My current URL is: 

http://staff.polito.it/paolo.brandimarte 

For comments, suggestions, and criticisms, my e-mail address is 

paolo. brandimarteQpolito. it 

One of the many corollaries of Murphy’s law says that my URL is going 
to change shortly after publication of the book. An up-to-date link will be 
maintained both on Wiley Web page: 

ht tp : //www . wile y . com/mat hemat i cs 
and on The Mathworks’ web page: 

http : //www . mathworks. com/support/books/ 

PAOLO BRANDIMARTE 
Turin, March 2006 
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From the Preface to  the 
First Edition 

Crossroads are hardly, if ever, points of arrival; but neither are they points of 
departure. In some sense, crossroads may be disappointing, indeed. You are 
tired of driving, you are not a t  home yet, and by Murphy’s law there is a far- 
from-negligible probability of taking the wrong turn. In this book, different 
paths cross, involving finance, numerical analysis, optimization theory, prob- 
ability theory, Monte Carlo simulation, and partial differential equations. It 
is not a point of departure, because although the prerequisites are fairly low, 
some level of mathematical maturity on the part of the reader is assumed. It 
is not a point of arrival, as many relevant issues have been omitted, such as 
hedging exotic options and interest-rate derivatives. 

The book stems from lectures I give in a Master’s course on numerical 
methods for finance, aimed at graduate students in Economics, and in an 
optimization course aimed at  students in Industrial Engineering. Hence, this 
is not a research monograph; it is a textbook for students. On the one hand, 
students in Economics usually have little background in numerical methods 
and lack the ability to translate algorithmic concepts into a working program; 
on the other hand, students in Engineering do not see the potential application 
of quantitative methods to finance clearly. 

Although there is an increasing literature on high-level mathematics applied 
to financial engineering, and a few books illustrating how cookbook recipes 
may be applied to a wide variety of problems through use of a spreadsheet, I 
believe there is some need for an intermediate-level book, both interesting to  
practitioners and suitable for self-study. I believe that students should: 

Acquire reasonably strong foundations in order to appreciate the issues 
behind the application of numerical methods 

Be able to translate and check ideas quickly in a computational envi- 
ronment 

Gain confidence in their ability to apply methods, even by carrying out 
the apparently pointless task of using relatively sophisticated tools to 
pricing a vanilla European option 

Be encouraged to pursue further study by tackling more advanced sub- 
jects, from both practical and theoretical perspectives 

The material covered in the book has been selected with these aims in mind. 
Of course, personal tastes are admittedly reflected, and this has something to 

mi;; 
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do with my Operations Research background. I am afraid the book will not 
please statisticians, as no econometric model is developed; however, there is 
a wide and excellent literature on those topics, and I tried to come up with a 
complementary text book. 

The text is interspersed with MATLAB snapshots and pieces of code, to 
make the material as lively as possible and of immediate use. MATLAB is a 
flexible high-level computing environment which allows us to implement non- 
trivial algorithms with a few lines of code. It has also been chosen because of 
its increasing potential for specific financial applications. 

It may be argued that the book is more successful at raising questions than 
at giving answers. This is a necessary evil, given the space available to cover 
such a wide array of topics. But if, after reading this book, students will want 
to read others, my job will have been accomplished. This was meant to be a 
crossroads, after all. 

PS1. Despite all of my effort, the book is likely to  contain some errors and 
typos. I will maintain a list of errata, which will be updated, based on reader 
feedback. Any comment or suggestion on the book will also be appreciated. 
My e-mail address is: paolo. brandimarteOpolito. it. 

PS2. The list of errata will be posted on a Web page which will also include 
additional material and MATLAB programs. The current URL is 

http://staff.polito.it/paolo.brandimarte 

An up-to-date link will be maintained on Wiley Web page: 

http://www.wiley.com/mathematics 

PS3. And if (what a shame ...) you are wondering who Commander Straker 
is, take a look at the following Web sites: 

http://www.ufoseries.com 

http://www.isoshado.org 

PAOLO BRANDIMARTE 
Turin, June 2001 
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Mo tiva t io n 

Cornnion wisdom would probably associate the ideas of numerical methods 
aiid number crunching to problems in science and engineering, rather than 
finance. This irit.uit.ive view is contradicted by the relatively large number of 
books and scicritific journals devoted to computational finance; even more so, 
hy thc fact, that, these methods are not confined to academia, but are actually 
usrd i n  real life. As a result, there has been a steady increase in the number 
of academic programs devoted to quantitative finance, both a t  Master’s and 
Pt1.D. level, and they usually include a course on numerical methods. Fur- 
thermore, riiany people with a quantitative or numerical analysis background 
have started working in finance, including engineers, mathematicians, and 
physicists. 

Indeed, as the tern1 financial engineering may suggest, computational fi- 
nance is a field where different cultures meet. Hence, a wide array of students 
and practitioners, with diverse background, will hopefully be interested in a 
book on riurrirrical methods for finance. On t,he one hand, this is good news 
for the author. On the other one, the first difficult task is to get evcryonc 
on coniriion ground as far as financial theory and the basics of numerical 
aiialysis are concerned; if treatment is too brief, there is a significant risk of 
losing a considerable subset of readers along the way; if it is too detailed, 
aiiot,her subset will be considerably bored. The aim of the first three chapters 
is t,o “synchronize” readers with a background in Finance and readers with 
it scient.ific background, including students in Engineering, Mathematics, and 
Physics. In chapter 2, we will give the second subset of readers an overview 
of coiicept,s in finance, with an emphasis on asset pricing and portfolio man- 

3 
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agement. The first subset of readers will find a reasonably self-contained 
treatment on classical topics of numerical analysis in chapter 3. 

In this introductory chapter we want to give a preview of the problems we 
will deal with, along with some motivation. The reader who is unfamiliar with 
some topics just outlined here should not be worried, as they are not taken 
for granted and will be treated thoroughly in the next chapters. We want to 
make three points: 

1.  In financial engineering we need numerical methods (section 1.1). 

2. We need sophisticated and user-friendly numerical computing environ- 
ments, such as MATLAB' (section 1.2),  even if this does not prevent at  
all the use of (relatively) low-level languages such as Fortran or C++ or 
spreadsheets such as Microsoft Excel. 

3. Whatever software tool we select, we need a reasonably strong theoreti- 
cal background, as we must often select among competing methods and 
many things may go wrong with them (section 1.3). 

1.1 NEED FOR NUMERICAL METHODS 

Probably, the best-known result in financial engineering is the Black-Scholes 
formula to price options on stocks.2 Options are a class of derivatives, i.e., 
financial assets whose value depends on another asset, called the underlying. 
The underlying can also be a non-financial asset, such as a commodity, or an 
arbitrary quantity representing a risk factor to someone, such as weather, so 
that setting up a market to transfer risks makes sense. Options are contracts 
with very specific rules for issuing, trading, and accounting. For instance, 
a European-style call option on a stock gives the holder the right, but not 
the obligation, of buying a given stock a t  a given time (maturity, denoted 
by T ) ,  for a prespecified price (the strike price, denoted by K ) .  Similarly, 
a put option gives the right to sell the underlying asset at a predetermined 
strike price. In European-style derivatives, the right specified in the contract 
can only be exercised a t  maturity T ;  in American-style derivatives, one can 
exercise her right at  any time before T ,  which in this case plays the role of the 
expiration date of the option. 

In the case of a European-style call option, if the asset price at  maturity is 
S ( T ) ,  then the payoff is max{S(T) - K ,  0). The rationale here is that, under 
idealized assumptions on financial markets, the option holder could purchase 

'MATLAB is a registered trademark of The Mathworks, Inc. For more information, see 
http://vvv.mathvorks.com. 
2The formula was published by Fisher Black and Myron Scholes in 1973. A similar research 
line had been pursued by Robert Merton, and in fact Scholes and Merton were awarded the 
Nobel prize in Economics in 1997. By that time, unfortunately, Fisher Black was deceased. 
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the underlying asset at  the prevailing price S ( T )  and immediately sell it a t  
price K .  Clearly, the option holder will do so only if this results in a positive 
profit. Actually, market imperfections, such as transaction costs or bid-ask 
spreads, prevent such an idealized trade: even if S ( T )  is the last quoted price, 
there is no guarantee that the option holder can actually buy the stock a t  
that price. In the book we will neglect such issues, which are related to the 
micro-structure of financial markets. 

If we are at  a time instant t < T ,  we would like to assign a value, or a fair 
price, to the option. However, what we know is only the current price S( t )  
of the underlying asset, whereas its price S(T)  at maturity is not known. If 
we build some mathematical model for the dynamics of the price S( t )  as a 
function of time, we may regard S(T)  as a random variable; hence, the payoff 
is random as well, and there seems to be no trivial way to price this contract. 
Let f (S ( t ) ,  t )  be the price of the option at  time t if the current price of the 
underlying asset is S( t ) ;  to ease the notation burden we will usually write it 
as f (S, t ) .  It can be shown that, under suitable assumptions, the value of the 
contract really depends only on t and S,  and it satisfies the following partial 
differential equation (PDE): 

af 1 2 2d2 f  af 
at 2 as2 as - + - - a  S - + r S - - r f  = O ,  

where r is the risk-free interest rate, i.e., the rate of interest one can earn by 
investing her money in a safe account, and -a is a parameter related to the 
volatility of the price of the underlying asset, which is a risky asset. Typically, 
we are interested in the current value f(So,O), where So = S(0).  Equation 
(1.1), with the addition of suitable boundary conditions linked to the type of 
option, may be solved analytically in some cases. For instance, if we denote 
the cumulative distribution function3 for the standard normal distribution by 
N ( z )  = P{Z 5 z } ,  where 2 is a standard normal variable, the price CO for a 
European call option at  time t = 0 is 

CO = S O N ( ~ ~ )  - ~ e - ' ~ ~ ( d 2 ) ,  ( 1 . 2 )  

where 

ln(So/K) + ( r  + -a2/2)T 

ln(So/K) + ( r  - -a2/2)T 

d l  = 
U J T  

mm 

1 

d2 = = d l  --a&. 

This formula is easy to evaluate, but in general we are not so lucky. The com- 
plexity of the PDE or of some additional conditions, which we must impose to 
fully characterize a specific option, may require numerical methods. We will 

3See appendix B for a refresher on Probability and Statistics. 
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cover relatively simple numerical methods for solving PDEs, based on finite 
differences, in chapter 5, and applications to option pricing will be illustrated 
in chapter 9. Using finite differences, in turn, may call for the repeated solu- 
tion of systems of linear equations, which is among the topics of chapter 3 on 
numerical analysis. 

Apart from the obvious computational advantage, analytical formulas are 
of great importance in gaining insights into how different factors affect option 
prices. They also allow quick calculation of price sensitivities with respect to 
such factors, which are relevant for risk management. In the book, we will 
use analytical formulas quite often in order to validate numerical methods, 
by comparing the numerical result with the theoretically correct one. This is 
of no practical value by itself, but it is very instructive. Finally, we will also 
see that when a complex option cannot be priced analytically, knowing an 
analytical pricing formula for a related simpler option can be of great value. 
In option pricing by Monte Carlo simulation (see below), analytical pricing 
formulas may yield control variates useful to  reduce variance in the estimate 
of price. 

Nevertheless, we should note that the distinction between numerical and 
analytical methods is sometimes a bit blurred. It may happen that analytical 
formulas are quite complicated. As an example, let us consider the following 
formula, which we give without much explanation4: 

This is a formula for the price of a European-style call option when price 
jumps are included in the model. The Black-Scholes model assumes contin- 
uous paths for prices, and this formula by Robert Merton generalizes to a 
model in which jumps occur according to a compound Poisson process. Here 
CBLS(S, T,  K ,  u2, r )  is the standard Black-Scholes formula with the usual in- 
put arguments; X is related to  the rate of jumps, i.e., the expected number of 
jumps per unit time; X ,  is a random variable related to the size of jumps, and 
expectation in the formula is with respect to this variable; x is a number which 
is also related to the probability distribution of jump sizes. Even without fully 
understanding this formula, which goes beyond the scope of this introductory 
book, it is clear that evaluating it is not so trivial and calls for some computa- 
tional approximation. Nevertheless, it gives an explicit representation of the 
effect of each factor affecting price, whereas in a purely numerical approach 
this important information is lost. 

Even in the simple case of equation (1.2), some numerical method is actu- 
ally applied, since we have to evaluate the function: 

J' e-y2I2  dy, N ( 2 )  = - 
1 

J23; -ca 

4See [5, page 3201 for details. 
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where the integral cannot be solved in closed form. Here, we may evaluate 
the integral by quite efficient ad hoc approximation formulas, rather than by 
general-purpose methods for numerical integration. Sometimes, however, we 
have to compute or approximate integrals in multiple dimensions. In fact, 
thanks to a result known as  Feynman-KaE formula, the solution of a PDE 
such as (1.1) can be expressed as an expected value. This and other pricing 
arguments imply that option prices may be expressed as expected values, 
which boil down to an integral. Unfortunately, when expectation is taken with 
respect to many random variables, standard methods to compute integrals in 
low-dimensional spaces fail. 

In other problem settings, we have to approximate a function defined by 
an integral. For instance, consider a function g ( x ,  y) and define a function of 

b 
x by 

F ( x )  = d X l  Y)fY(Y) dY- 

Such a situation occurs often in stochastic optimization, when x is a decision 
variable influencing the result, which is only partially under our control be- 
cause of the effect of a random “disturbance” Y, whose density is fy(y) over 
the support [a, b] (possibly (-a, +o;))). The function F ( x )  can be consid- 
ered as the expected cost or profit resulting from our decisions. We will see 
concrete examples in chapters 10 and 11. 

Since computing integrals is so important, chapter 4 is entirely devoted to 
this topic. Apart from deterministic integration methods, we will also deal 
extensively with random sampling methods known as Monte Carlo integration 
or Monte Carlo simulation. Monte Carlo simulation has a incredibly wide 
array of applications, including option pricing and risk management. For 
instance, it can be shown that the price of a European call option at time 
t = 0 is given by the following expected value: 

c = EQ [eprT max{ST - K, 0}] , 

where ST is the (random) price of the underlying asset a t  maturity, and the 
expected value is taken under a suitably chosen probability measure (denoted 
by a). In other words, the option value is the expected value of the payoff, 
discounted back to time t = 0, under a certain probability measure. If we are 
able to generate A4 independent random samples Sg), j = 1,. . . , M ,  of the 
asset price, under probability measure Q, then by the law of large numbers 
we could estimate the expected value by the sample mean 

This is the essence of Monte Carlo simulation, and a number of tricks of the 
trade are needed in order to obtain a reliable and computationally efficient es- 
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timate.5 Variance reduction methods and alternative integration approaches 
based on low-discrepancy sequences will be introduced in chapter 4, and ap- 
plications to option pricing are illustrated in chapter 8. 

Another widely applied approach to option pricing is based on binomial 
or trinomial lattices. These can be regarded as a sort of clever discretization 
of the underlying stochastic process. From this point of view, they are a 
deterministic way to generate sample paths, whereas Monte Carlo is based on 
random sample path generation. Another point of view is that certain finite 
difference approaches can be regarded as generalization of trinomial lattices. 
We will see applications of these methods in chapter 7. 

Another major topic of the book is optimization, which is introduced in 
chapter 6. Optimization models and methods play many different roles in 
finance. In the option pricing context, optimization is at the core of pricing 
American-style options. Since American-style options may be exercised at any 
time before expiration, optimal exercise strategies must be accounted for in 
pricing. For instance, in an American-style call option, it would be tempting 
to exercise the option as soon as it gets in-the-money, i.e., when S(t)  > K for 
a call option and you could earn an immediate profit. However, one should 
also wonder if it could be better to  wait for a better opportunity. This is 
not a trivial problem; indeed, it can be shown that it is never optimal to 
exercise an American-style call option on a stock, unless it pays dividends 
before expiration. 

An older type of application of optimization methods is portfolio manage- 
ment. Given a set of assets in which one can invest her wealth, we must 
decide how much should be allocated to each one of them, given some char- 
acterization of the uncertainty in assets return. The best-known portfolio 
optimization model is based on the idea of minimizing the variance of port- 
folio return (a measure of risk), while meeting a constraint on its expected 
value. This leads to mean-variance portfolio theory, a topic pioneered by 
Harry Markowitz in the 1950s. While somewhat idealized, this model had 
an enormous practical and theoretical impact, eventually earning Markowitz 
a Nobel prize in Economics in 1990.6 Since then, many different approaches 
to portfolio optimization have been developed, and they will be illustrated in 
chapters 10, 11, and 12. 

5As we mentioned, option pricing by solving a partial differential equation or by computing 
an expectation are theoretically equivalent approaches, via Feynman-KaE formula. How- 
ever, they can be quite different in computational terms. It is interesting to  note that, 
historically, Black-Scholes formula was first obtained by solving the pricing PDE analyti- 
cally, whereas the recent tendency is to  use expectation based approaches because of their 
generality. 
6Markowitz shared the prize with Merton Miller and William Sharpe. What is probably 
less known is that he was among the developersof SimScript, one of the first programming 
languages for discrete-event simulation. By the way, Robert Merton had a background in 
engineering. This shows how artificial the barriers between Economics and Engineering 
may be. 
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It is also important to note that asset pricing and portfolio optimization are 
not necessarily disjoint topics. Many Financial Economics theories are based 
on portfolio optimization models which in turn lead to asset pricing models. 
We will not cover these topics, however, both because of space limitations and 
because they are not strictly related to numerical methods. 

There are still other kinds of application of optimization methods, which 
may more instrumental, such as parameter fitting or model calibration. In 
complex markets, asset prices may depend on a set of unobservable parame- 
ters, and one would like to introduce and price a new asset, in a way which 
is coherent with observed prices for other traded assets. To do so, a typical 
approach is the following. First we build a theoretical pricing model, depend- 
ing on such parameters. Then we try to find values for these Parameters, 
which are as coherent as possible with observed prices. Let a be the vector 
of unknown parameters; according to the asset pricing model, the theoretical 
price of asset j should be Pj(a), whereas the observed price is P:. We would 
like to get a vector of parameters yielding the best fit. A standard way to do 
so is solving the following optimization model: 

Then, given the optimal set of parameters, we may proceed to price new as- 
sets using the theoretical model. This type of approach is essential in pricing 
interest-rate derivatives. Interest-rate derivatives are considerably more diffi- 
cult to analyze than options on stocks and are outside the scope of this book; 
we will just outline the related issues in section 2.8. 

As expected, some simple optimization models may be solved analytically, 
yielding quite useful insights. However, as a rule, very sophisticated compu- 
tational approaches are needed. 

1.2 NEED FOR NUMERICAL COMPUTING ENVIRONMENTS: WHY 
MATLAB? 

MATLAB is an interactive computing environment, providing both basic and 
sophisticated functions. You may use built-in functions to solve possibly com- 
plex but standard problems, or you may devise your own programs by writing 
them as M-files, i.e., as text files including sequences of instructions written 
in a high-level matrix-oriented language. Moreover, MATLAB has a rich set 
of graphical capabilities, which we will use in a very limited fashion, includ- 
ing the ability of quickly developing graphical user interfaces. The unfamiliar 
reader is referred to appendix A for a quick tour of MATLAB programming. 

Some classical numerical problems are readily solved by MATLAB func- 
tions. They include: 

0 Solving systems of linear equations 
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0 Solving non-linear equations in a single unknown variable (including 
polynomial equations as a special case) 

0 Finding minima and maxima of functions of a single variable 

0 Approximating and interpolating functions 

0 Computing definite integrals (in low-dimensional spaces) 

0 Solving ordinary differential equations, as well as some simple PDEs 

This and much more is included in the basic MATLAB core. More complex 
versions of these problems may be solved by other MATLAB ready-to-use 
functions, but you have to get the appropriate toolbox. A toolbox is simply a 
set of functions written in the MATLAB language, and it is usually provided 
in source form, so that the user may customize or use the code as a starting 
point for further work. For instance, the Optimization toolbox is needed to  
solve complex optimization problems, involving several decision variables and 
possibly complex constrains, as well as to  solve systems of non-linear equa- 
tions. Another relevant toolbox for finance is the Statistics toolbox, which 
includes many more functions than we will use. In particular, it offers func- 
tions to generate pseudorandom numbers that are needed to carry out Monte 
Carlo simulations. Based on the Statistics and Optimization toolboxes, a 
Financial toolbox was first devised a few years ago, which included differ- 
ent groups of functionalities. Some were low-level functions aimed a.t date 
and calendar manipulation or finance-oriented charting, which are building 
blocks for real-life applications; others dealt with simple fixed-income assets, 
portfolio optimization, and derivatives pricing. 

After this first toolbox, others were introduced which are directly related 
to finance: 

0 GARCH toolbox 

0 Financial time series toolbox7 

0 Financial derivatives toolbox 

0 Fixed-income toolbox 

We will not deal with such toolboxes in the book, but information can be ob- 
tained by browsing The Mathworks’ Web site ( h t t p :  //www .mathworks. corn). 
We should also mention that other toolboxes, which were not specifically de- 
veloped for financial applications, could be useful, such as the PDEs toolbox 

’At the time of writing, the functionalities of this toolbox have been included in the Finan- 
cial toolbox. 
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or the genetic and direct search toolbox.8 Other more instrumental tools are 
useful to develop professional applications, such as Excel link, Web server, 
the compiler, or the Datafeed module enabling web connections to different 
financial web sites. 

Now the question is: Why choose MATLAB for this book? Indeed, there 
are different competitors, a t  different levels: 

0 User-friendly spreadsheets, such as Microsoft Excel. In fact, there are 
spreadsheet-based books showing how optimization and simulation meth- 
ods may be applied to financial problems. Spreadsheets are equipped 
with solvers able to cope with small-scale mathematical programming 
problems, and extensions are available to run Monte Carlo simulations 
or optimization by genetic algorithms. 

0 On the opposite side of the spectrum, one could use low-level languages 
such as C++ or Fortran. C++ seem a favorite, if you look a t  the number 
of books on computational finance based on this language, but there 
are people maintaining that the recent versions of Fortran do still have 
some advantages. C++ or Fortran may be used either to implement the 
algorithms directly or to call available scientific computing libraries. 

0 There are also specialized libraries or environments, such as statistical 
or optimization tools. 

How does MATLAB compare against such alternatives? The obvious answer 
is that the choice is largely a matter of taste, and it depends on your aim. 

Sure, when you have to carry out simple computations, there's little point in 
resorting to a full-fledged computing environment, and probably spreadsheets 
are the best choice. However, the extra effort in learning a programming 
language pays off when you have to program a complex numerical method 
which goes beyond what is standard and readily available. Actually, there 
is no way to really learn numerical methods without some knowledge of a 
programming language, and in any case, even if you use a spreadsheet as the 
front end, it is quite likely that you have to write some code in Visual Basic 
or C++. 

Compiled languages such as Fortran and C++ are certainly the most effi- 
cient option, in terms of execution speed.9 If you have to write really lightning- 
fast code, this is the best choice. 

'Genetic algorithms and direct search methods are optimization methods which do not 
require computing derivatives of the objective function. This makes them very flexible for 
some types of optimization models, as we will see in chapters devoted to optimization. 
9A compiled language is based on the translation of source level code to  machine level 
language. You need a compiler t o  do  that;  optimized compilers are able to  obtain extremely 
fast code. An interpreter does not translate t o  machine level code, but to some internal form 
which is then executed. Usually an interpreter has some advantage in terms of debugging 
and flexibility, which is paid in terms of execution speed. 
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MATLAB is an interpreted language, and even if it is quite efficient, there 
is some difference. However, the performance gap is being bridged by increas- 
ingly fast MATLAB versions. Furthermore, executable libraries can be gener- 
ated from MATLAB code by using the MATLAB compiler; these libraries can 
then be linked within the application just as any C++ code. But the most 
important advantage of MATLAB is that it is a very simple, yet powerful, 
programming language. Unlike C++, you may avoid bothering with issues 
such as memory allocation, variable declaration, etc. MATLAB is an excellent 
rapid prototyping tool: You may implement a quite complex algorithm with 
a very limited amount of lines. Simple code means less time to develop and 
less chances for programming bugs. Then, if it is really needed, you may go 
on by translating the prototyped code to, e.g., C++. This is obviously im- 
portant in a practical setting, but it is not really essential in a didactic book 
like the present one. When learning a numerical method, being distracted by 
too many programming details is certainly bad. 

MATLAB can be thought of as a suitable compromise between conflicting 
requirements. The increasing number of toolboxes and books using MATLAB 
is a good proof of that. Needless to say, this does not imply that MATLAB has 
no definite limitations. When one has to deal with large-scale optimization 
problems, it is necessary to resort to specialized packages such as CPLEX,1° 
against which MATLAB is unlikely to be competitive (it should be noted 
that the Optimization toolbox is aimed at  general non-linear programming, 
whereas some optimization packages deal only with linear and quadratic pro- 
gramming). Furthermore, mixed-integer programming problems" cannot be 
solved, at present, by MATLAB.12 Even worse, when you have a large op- 
timization model, loading the data in a form suitable to a numerical library 
function is a difficult and error-prone task without the support of algebraic 
modeling languages such as AMPL.I3 This is one of the reasons why, in the 
chapters on optimization models, we will sometimes solve them using AMPL. 
This should not place any burden on the reader, since a free demo version can 
be downloaded from the AMPL web site. See appendix C for a quick tour of 
AMPL. 

By the same token, if one is interested in statistical computing applied to  
finance, it is quite likely than some of the many econometric packages are 

'OCPLEX is a registered trademark of ILOG. See http: //www. ilog.com. 
' Mixed-integer programming models are optimization models in which some decision vari- 
ables are restricted to  integer, rather than real, values. They are dealt with in chapter 12. 
See also example 1.2 on page 15. 
lZWe should mention that  the latest release of the Optimization Toolbox does include a 
solver for certain pure binary (0/1) linear programming. However, this is not suitable to 
large scale mixed-integer programming. 
13AMPL (A Mathematical Programming Language) was originally developed at Bell Lab- 
oratories. At present it is available in many versions through different sellers, including 
ILOG, under license from the copyright owner. See http: //www. ampl. corn. 
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better suited to the task. The point is that none of these offers the many 
functionalities of MATLAB within a single integrated environment. 

To summarize, we may argue that a product like MATLAB is the best single 
tool to lay down good foundations in numerical methods. Cheap MATLAB 
student editions are available, and its use in finance is spreading. So we believe 
that learning MATLAB is definitely an asset for students and practitioners in 
financial engineering. 

A last choice had to be made in writing the book: To which extent should 
toolboxes be used? On the one hand, using too many toolboxes would place 
some burden on the reader, who may not have access to all of them. On the 
other hand, using only the MATLAB core would probably limit what we can 
do, So, again, a compromise must be reached. Our choice has been to  use 
a very limited subset of functions from the Statistical and Financial toolbox, 
which can be easily replicated. We will sometimes use functions from the 
Optimization toolbox, but the same results can be obtained by the free AMPL 
demo version. We will use neither advanced financial toolboxes nor the Partial 
Differential Equations Toolbox. This choice is somewhat contradictory: Why 
use the Optimization toolbox and not the PDEs one? The point is that there 
is a wide gap between a conceptual statement of optimization methods, and 
a robust working implementation. It is not the aim of this book to bridge 
that gap, so we will avoid a detailed treatment of most optimization methods, 
limiting ourselves to the principles behind them. On the contrary, simple 
finite difference methods are relatively easy to implement, and can be treated 
in detail. Finally, we should also note that typical computational finance 
courses do cover basic finite difference methods for solving PDEs, but not 
sophisticated optimization methods. 

1.3 NEED FOR THEORY 

Now that we established that we are going to use MATLAB in the book, an- 
other question may arise: Why should we bother learning numerical methods, 
when they are already available in professionally crafted, ready-to-use code? 
Can we get rid of theory? Although, in most cases, there is no need for a deep 
knowledge of numerical analysis in order to use MATLAB, there are a t  least 
three reasons to gain a basic understanding of the theoretical background of 
numerical methods. 

1. Without a sound background, you cannot go on developing your own 
solutions when the available methods are not enough. 

2. Without a sound background, you cannot choose the most appropriate 
algorithm when alternatives are given. 

3. Without a sound background, you cannot use methods properly and, 
most important, you cannot understand what is going wrong when re- 
sults are not reasonable or you get weird error messages. 
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In particular, we need some understanding of fundamental issues like “con- 
ditioning of a numerical problem” and “stability of an algorithm.” These 
concepts are briefly discussed in chapter 3. Here we give some simple exam- 
ples of the trouble one can get into without a sound knowledge of the pitfalls 
of numerical computing. 

Example 1.1 Consider the following expression: 

9 .8 .1  + 8.1 

Everyone would agree that this is just a complicated way to write 10 x 8.1 = 
81. Let us try it on a computer, using MATLAB: 

>> 9 * 8.1 + 8.1 
ans = 

81.0000 

Everything seems right. Now, there is a built-in function in MATLAB, fix, 
which can be used to round a number to the integer nearest to zero.14 Note 
that fix does not round to  the nearest integer: 

>> fix(4.1) 

4 
>> fix(4.9) 

4 

ans = 

ans = 

Let us try it on the expression above: 

>> fix(9*8.1 + 8.1) 
ans = 

80 

Now something seems quite wrong. Actually, the point is that the first result 
is not what it looks like. This may be seen by changing the visualization 
format of numbers and trying again: 

>> format long 
>> 9 * 8.1 + 8.1 
ans = 

80.99999999999999 

Actually, there was some warning, since MATLAB printed 81.0000 rather 
than 81, as it happens with 

14The reader is urged to explore the differences between f i x  and the related functions 
f l o o r ,  c e i l ,  and round. 


