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PREFACE 

Rien ne serf de couril; 
i1,faut partir a point. 

Jean de la Fontaine 

Many physical processes in nature, whose correct understanding, prediction, and control 
are important to people, are described by equations that involve physical quantities together 
with their spatial and temporal rates of change (partial derivatives). Among such processes 
are the weather, flow of liquids, deformation of solid bodies, heat transfer, chemical reac- 
tions, electromagnetics, and many others. Equations involving partial derivatives are called 
partial diferential equations (PDEs). The solutions to these equations are functions, as 
opposed to standard algebraic equations whose solutions are numbers. For most PDEs we 
are not able to find their exact solutions, and sometimes we do not even know whether a 
unique solution exists. For these reasons, in most cases the only way to solve PDEs arising 
in concrete engineering and scientific problems is to approximate their solutions numeri- 
cally. Numerical methods for PDEs constitute an indivisible part of modern engineering 
and science. 

The most general and efficient tool for the numerical solution of PDEs is the Finite 
element method (FEM),  which is based on the spatial subdivision of the physical domain 
intofinite elements (often triangles or quadrilaterals in 2D and tetrahedra, bricks, or prisms 
in 3D), where the solution is approximated via a finite set of polynomial skape,funcrions. 
In this way the original problem is transformed into a discrete problem for a finite number 
of unknown coefficients. It is worth mentioning that rather simple shape functions, such 
as affine or quadratic polynomials, have been used most frequently in the past due to 
their relatively low implementation cost. Nowadays, higher-order elements are becoming 
increasingly popular due to their excellent approximation properties and capability to reduce 
the size of finite element computations significantly. 

The higher-order finite element methods, however, require a better knowledge of the 
underlying mathematics. In particular, the understanding of linear algebra and elementary 

xxv 



xxvi PREFACE 

functional analysis is necessary. In this book we follow the modern trend of building 
engineering finite element methods upon a solid mathematical foundation, which can be 
traced in several other recent finite element textbooks, as, e.g., [ 181 (membrane, beam and 
plate models), [29] (finite element analysis of shells), or [83] (edge elements for Maxwell’s 
equations). 

The contents at a glance 

This book is aimed at graduate and Ph.1~. students of all disciplines of computational engi- 
neering and science. It provides an introduction into the modern theory of partial differential 
equations, finite element methods, and their applications. The logical beginning of the text 
lies in Appendix A, which is a course in linear algebra and elementary functional analy- 
sis. This chapter is readable with minimum prerequisites and it contains many illustrative 
examples. Readers who trust their skills in function spaces and linear operators may skip 
Appendix A, but it will facilitate the study of PDEs and finite element methods to all others 
significantly. 

The core Chapters 1 4  provide an introduction to the theory of PDEs and finite element 
methods. Chapter 5 is devoted to the numerical solution of ordinary differential equations 
(ODES) which arise in the semidiscretization of time-dependent PDEs by the most fre- 
quently used Method of lines (MOL). Emphasis is given to higher-order implicit one-step 
methods. Chapter 6 deals with Hermite and Argyris elements with application to fourth- 
order problems rooted in the bending of elastic beams and plates. Since the fourth-order 
problems are less standard than second-order equations, their physical background and 
derivation are discussed in more detail. Chapter 7 is a newcomer’s introduction into com- 
putational electromagnetics. Explained are basic laws governing electromagnetics in both 
their integral and differential forms, material properties, constitutive relations, and interface 
conditions. Discussed are potentials and problems formulated in terms of potentials, and 
the time-domain and time-harmonic Maxwell’s equations. The concept of NCdClec’s edge 
elements for the Maxwell’s equations is explained. 

Appendix B deals with selected algorithmic and programming issues. We present a uni- 
versal sparse matrix interface sMatrix which makes it possible to connect multiple sparse 
matrix solver packages simultaneously to a finite element solver. We mention the advantages 
of separating the finite element technology from the physics represented by concrete PDEs. 
Such approach is used in the implementation of a high-performance modular finite element 
system HERMES. This software is briefly described and applied to several challenging 
engineering problems formulated in terms of second-order elliptic PDEs and time-harmonic 
Maxwell’s equations. Advantages of higher-order elements are demonstrated. 

After studying this introductory text, the reader should be ready to read articles and 
monographs on advanced topics including a-posteriori error estimation and automatic adap- 
tivity, mixed finite element formulations and saddle point problems, spectral finite element 
methods, finite element multigrid methods, hierarchic higher-order finite element methods 
(hp-FEM), and others (see, e.g., [9,23,69, 1051 and [ 1 1 11). Additional test and homework 
problems, along with an errata, will be maintained on my home page. 

PAVEL S O L ~ N  
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CHAPTER 1 

PART I AL D I F F E R E NT I AL EQ UATl 0 N S 

Many natural processes can be sufficiently well described on the macroscopic level, with- 
out taking into account the individual behavior of molecules, atoms, electrons, or other 
particles. The averaged quantities such as the deformation, density, velocity, pressure, 
temperature, concentration, or electromagnetic field are governed by partial differential 
equations (PDEs). These equations serve as a language for the formulation of many engi- 
neering and scientific problems. To give a few examples, PDEs are employed to predict and 
control the static and dynamic properties of constructions, flow of blood in human veins, 
flow of air past cars and airplanes, weather, thermal inhibition of tumors, heating and melt- 
ing of metals, cleaning of air and water in  urban facilities, burning of gas in vehicle engines, 
magnetic resonance imaging and computer tomography in medicine, and elsewhere. Most 
PDEs used in practice only contain the first and second partial derivatives (we call them 
second-order PDEs). 

Chapter 1 provides an overview of basic facts and techniques that are essential for both the 
qualitative analysis and numerical solution of PDEs. After introducing the classification and 
mentioning some general properties of second-order equations in Section 1.1, we focus on 
specific properties of elliptic, parabolic, and hyperbolic PDEs in Sections I .2-1.4. Indeed, 
there are important PDEs which are not of second order. To mention at least some of them, 
in Section 1.5 we discuss first-order hyperbolic problems that are frequently used to model 
transport processes such as, e.g., inviscid fluid flow. Fourth-order problems rooted in the 
bending of elastic beams and plates are discussed later in  Chapter 6. 

Purficil Difewzficrl Eyucifions trnd the Finite Eleinent Mrflzod. By Pave1 Solin 
Copyright @ 2006 John Wiley & Sons, Inc. 
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2 PARTIAL DIFFERENTIAL EQUATIONS 

1.1 SELECTED GENERAL PROPERTIES 

Second-order PDEs (or PDE systems) encountered in physics usually are either elliptic, 
parabolic, or hyperbolic. Elliptic equations describe a special state of a physical system, 
which is characterized by the minimum of certain quantity (often energy). Parabolic prob- 
lems in most cases describe the evolutionary process that leads to a steady state described 
by an elliptic equation. Hyperbolic equations describe the transport of some physical 
quantities or information, such as waves. Other types of second-order PDEs are said to 
be undetermined. In this introductory text we restrict ourselves to linear problems, since 
nonlinearities induce additional aspects whose understanding requires the knowledge of 
nonlinear functional analysis. 

1.1 -1 Classification and examples 

Let U be an open connected set in RTL. A sufficiently general form of a linear second-order 
PDE in n independent variables z = (zI, z2. . . ., z , , ) ~  is 

where = aY(z) ,  b, = bi (z ) ,c ,  = c,(z) ,ao = ao(z )  and f = f(z). For all derivatives 
to exist in the classical sense, the solution and the coefficients have to satisfy the following 
regularityrequirements: u E C2(U),a, ,  E C1(U) ,b ,  E C' (U) , c ,  E C'(U),ao E C(U) ,  
f E C(U) .  These regularity requirements will be reduced later when the PDE is formulated 
in the weak sense, and additional conditions will be imposed in order to ensure the existence 
and uniqueness of solution. If the functions a,, , b,, c,, and a0 are constants, the PDE is said 
to be with constant coefficients. Since the order of the partial derivatives can be switched for 
any twice continuously differentiable function u, it is possible to symmetrize the coefficients 
a,? by defining 

and adjusting the other coefficients accordingly so that the equation remains in the form 
(1.1). This is left to the reader as an exercise. Based on this observation, in the following 
we always will assume that the coefficient matrix A ( z )  = {a,,}:q,=l is symmetric. 

(a;;zg + aol.zY ( y p w  := 
J L  )I2 

Recall that a symmetric n x n matrix A is said to be positive definite if 

vTAv > 0 for all 0 # w E Iw" 

and positive semidefinite if 

v1 Aw 2 0 for all 'u E R". 

Analogously one defines negative definite and negative semidefinite matrices by turning the 
inequalities. Matrices which do not belong to any of these types are said to be indefinite. 

Definition 1.1 (Elliptic, parabolic and hyperbolic equations) Consider a second-order 
PDE of the,form (1.1) with a symmetric coefficient matrix A ( z )  = { u , ~ } : ~ = ~ .  

1. The equation is said to be elliptic ut z E U i fA ( z )  is positive dejnite. 

2. The equation is said to be parabolic at z E U $ A ( z )  is positive sernidejnite, but not 
positive dejnite, and the rank o f ( A ( z ) ,  b ( z ) .  c(z ) )  is equal t o n .  
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3. The equation is said to be hyperbolic at z E c3 f A ( z )  has one negative and n - 1 
positive eigenvalues. 

An equation is culled elliptic, parabolic, or hyperbolic in the set c3 f i t  is elliptic, parabolic, 
or hyperbolic everywhere in 0, respectively. 

Remark 1.1 (Temporal variable t )  In practice we distinguish between time-dependent 
and time-independent PDEs. I f  the equation is time-independent, we put n = d and 
z = x, where d is the spatial dimension and x the spatial variable. This often is the case 
with elliptic equations. Ifthe quantities in the equation depend on time, which often is the 
case with parabolic and hyperbolic equations, we put n = d + 1 and z = (2, t ) ,  where t 
is the temporal variable. In such case the set c3 represents some space-time domain. I f  the 
spatial part of the space-time domain 0 does not change in time, we talk about a space-time 
cylinder R x (0, T ) ,  where R c Rd and (0 ,  T )  is the corresponding time interval. 

Notice that, strictly speaking, the type of the PDE in Definition 1. I is not invariant under 
multiplication by -1. For example, the equation 

-Au = f 
(where A = 5 3 & in R3) 

is elliptic everywhere in R3 since its coefficient matrix A is positive definite, 

1 0 0  

However, the type of the equation 

A u =  -f 

cannot be determined since its coefficient matrix 

is negative definite. In such cases it is customary to multiply the equation by (-1) so 
that Definition 1 .1  can be applied. Moreover, notice that Definition 1.1 only applies to 
second-order PDEs. Later in this text we will discuss two important cases outside of 
this classification: hyperbolic first-order systems in Section 1.5 and elliptic fourth-order 
problems in Chapter 6. 

Remark 1.2 Sometimes, linear second-order PDEs are fiiund in a slightly different form 

(1.3) 

usually with a symmetric coeflcient matrix A ( z )  = { n , J } ~ ~ J = l .  When transforming (1.3) 

into the,form (1.11, it is easy to see that the matrices A ( z )  and A(z)  are identical, and 



4 PARTIAL DIFFERENTIAL EQUATIONS 

thus either one can be  used t o  determine the ellipticit-y, purabolicit.y, o r  hyperbolicity ofthe 
problem. Moreover, if the coeficients and b, m e  suflciently smooth, the two forms are 
equivalent. 

Operator notation It is customary to write elliptic PDEs in a compact form 

L u =  f:  

where L defined by 

is a second-order elliptic differential operator. The part of L with the highest derivatives, 

is called the principal (leading) part of L. Most parabolic and hyperbolic equations are 
motivated in physics, and therefore one of the independent variables usually is the time t .  
The typical operator form of parabolic equations is 

a71 
- + Lu = f .  
at 

where L is an elliptic differential operator. Typical second-order hyperbolic equation can 
be seen in the form 

where again L is an elliptic differential operator. The following examples show simple 
elliptic, parabolic, and hyperbolic equations. 

W EXAMPLE 1.1 (Elliptic PDE: Potential equation of electrostatics) 

Let the function p E C ( 2 )  represent the electric charge density in some open bounded 
set 0 C Rd. If the permittivity f is constant in  12, the distribution of the electric 
potential 9 in 12 is governed by the Poisson equation 

Notice that (1.8) does not possess a unique solution, since for any solution p the 
function 9 + G, where C is an arbitrary constant, also is a solution. In  order to 
yield a well-posed problem, every elliptic equation has to be endowed with suitable 
boundary conditions. This will be discussed in Section I .2. 
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W EXAMPLE 1.2 (Parabolic PDE: Heat transfer equation) 

Let 0 C Rd be an open bounded set and q E C ( 2 )  the volume density of heat sources 
in R. If the thermal conductivity k ,  material density e. and specific heat care constant 
in 0, the parabolic equation 

describes the evolution of the temperature Q(z,t) in R. The steady state 
temperature (38/3t = 0) is described by the corresponding elliptic equation 

- k A Q  = q. 

(1.9) 

of the 

Similarly to the previous case, the solution Q is not determined by (1.9) uniquely. 
Parabolic equations have to be endowed with both boundary and initial conditions in 
order to yield a well-posed problem. This will be discussed in Section I .3. 

EXAMPLE 1.3 (Hyperbolic PDE: Wave equation) 

Let (2 c Rd be an open bounded set. The speed of sound a can be considered constant 
in I? if the motion of the air is sufficiently slow. Then the hyperbolic equation 

(1.10) 

describes the propagation of sound waves in 12. Here the unknown function p ( z .  t )  
represents the pressure, or its fluctuations around some arbitrary constant equilibrium 
pressure. Again the function p is not determined by ( 1  .lo) uniquely. Hyperbolic 
equations have to be endowed with both boundary and initial conditions in order 
to yield a well-posed problem. Definition of boundary conditions for hyperbolic 
problems is more difficult compared to the elliptic or parabolic case, since generally 
they depend on the choice of the initial data and on the solution itself. We will return 
to this issue in Example 1.4 and in more detail in Section 1.5. 

1.1.2 Hadamard’s well-posedness 

The notion of well-posedness of boundary-value problems for partial differential equations 
was established around 1932 by Jacques Salomon Hadamard. 

J.S. Hadamard was a French mathematician who contributed significantly to the analysis 
of Taylor series and analytic functions of the complex variable, prime number theory, study 
of matrices and determinants, boundary value problems for partial differential equations, 
probability theory, Markov chains, several areas of mathematical physics, and education of 
mathematics. 

Definition 1.2 (Hadamard’s well-posedness) A prohlein is said to he well-posed If 

I .  it has CI uiiiqiie solution, 

2. the solution depends corztinuoirsly 011 the given clcrta 

Otherwise the prohleni is ill-posed. 
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Figure 1.1 Jacques Salomon Hadamard (1865-1963). 

As the reader may expect, well-posed problems are more pleasant to deal with than the ill- 
posed ones. The requirement of existence and uniqueness of solution is obvious. The other 
condition in Definition 1.2 denies well-posedness to problems with unstable solutions. From 
the point of view of numerical solution of PDEs, the computational domain Q boundary and 
initial conditions, and other parameters are not represented exactly in the computer model. 
Additional source of error is the finite computer arithmetics. If a problem is well-posed, 
one has a chance to compute a reasonable approximation of the unique exact solution as 
long as the data to the problem are approximated reasonably. Such expectation may not be 
realistic at all if the problem is ill-posed. 

The concept of well-posedness deserves to be discussed in more detail. First let us  
show in Example 1.4 that well-posedness may be violated by endowing a PDE with wrong 
boundary conditions. 

W EXAMPLE 1.4 (Ill-posedness due to wrong boundary conditions) 

Consider an interval R = ( -a.  a ) ,  (1 > 0, and the (inviscid) Burgers' equation 

(1.1 1 )  

This equation is endowed with the initial condition 

u(x .0 )  = f L ( ) ( . I ' )  = .I'. .r E 12. (1.12) 

where uo is a function continuous in (-o.a) such that i i0(+o) = +a, and the 
boundary conditions 

7L(+fI.  f )  = fo. f > 0. (1.13) 

The (inviscid) Burgers' equation is an important representant of the class of first-order 
hyperbolic problems that will be studied in more detail in  Section 1.5. In particular, 
after reading Paragraph 1 S.5 the reader will know that every function u(D.. t )  that 
satisfies both equation ( I .  1 1 ) and initial condition ( 1.12) is constant along the lines 
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x,,,(t) = zo(t + l),  zo E a, (1.14) 

depicted in Figure 1.2. 

Figure 1.2 Isolines of the solution u(z ,  t )  of Burgers’ equation. 

It is easy to check the constantness of the solution u along the lines (1.14) by 
performing the derivative 

d 
dt 
-lL(zz()(t). t ) .  

From this fact i t  follows that the solution to (1 .1  l) ,  (1.12) cannot be constant in time 
at the endpoints of 0. Hence the problem ( 1.1 1 ), ( 1.12), ( 1.13) has no solution. 

Some problems are ill-posed because of their very nature, despite their initial and bound- 
ary conditions are defined appropriately. This is illustrated in Example 1.5. 

H EXAMPLE 1.5 (Ill-posed problem with unstable solution) 

Consider the one-dimensional version of the heat transfer equation (1.9) with nor- 
malized coefficients, 

(1.15) 

describing the temperature distribution within a thin slab 0 = ( 0 , ~ )  in the time 
interval (0,T).  We choose an initial temperature distribution u(x ,  0) = uo(x) such 
that uo(0) = uo(r )  = 0, fix the temperature at the endpoints to u(0) = a(.) = 0 
and ask about the solution u(x ,  t )  of (1.15) for t  E (0. T ) .  The initial condition ug(z) 

can be expressed by means of the Fourier expansion 

(1.16) 

Thus it  is easy to verify that the exact solution u(z ,  t )  has the form 
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(1.17) 

and hence that 

is the solution corresponding to the time t = T. Notice that the coefficients c, ,c-~")'  
converge to zero very fast as the time grows, and therefore after a sufficiently long 
time T the solution will be very close to zero in 12. Hence, the heat transfer problem 
evidently is a well-posed in the sense of Hadamard. 

Now let us reverse the time by defining a new temporal variable s = T - t .  The 
backward heat transfer equation has the form 

36 32il 
- + ~ = 0. 
3 s  3.9 

We consider an initial condition Co(.r) corresponding to s = 0, i.e., to t = T. Again, 
i L g ( z )  can be expressed as 

(1.19) 

and the exact solution C(x. s )  has the form 

Notice that now the coefficients d,,e"-" are amplified exponentially as the backward 
temporal variable s grows. This means that the solution of the backward heat transfer 
equation does not depend continuously on the initial data i l l l(. i :), i.e., that the backward 
problem is ill-posed. 

Suppose that we calculate some numerical approximation of the solution u(.r. T) 
for some sufficiently large time T and then use it  as the initial condition iL(l(.r) for the 
backward problem. What we will observe when solving the backward problem is that 
the solution C(z: s) begins to oscillate immediately and the computation ends with 
a floating point overflow or similar error very soon. Because of the ill-posedness of 
the backward problem, chances are slim that one can get close to the original initial 
condition l l ~ i l ( : ~ )  at s = T. 

Remark 1.3 (Inverse problems) The ill-posed bcickl.veird heat trmwfer equntion,from Ex- 
ample 1.5 was an inverse problem. Tlwrc cire vcrrious types of ill-posed inverse problems: 
For example, it is ail inverse problem to identify suitcible initial state and/or p~irc'meter.s,for 
some physical process to obtain a desircd,fincil state. Usircilly, the better-posed the,forwiird 
problem, the worse the posedness of the iriverse problem. 
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1 .I .3 General existence and uniqueness results 

Prior to discussing various aspects of the elliptic, parabolic, and hyperbolic PDEs in Sections 
1.2-1.5, we find it useful to mention a few important abstract existence and uniqueness 
results for general operator equations. Since this paragraph uses some abstract functional 
analysis, readers who find its contents too difficult may skip it in the first reading and 
continue with Section 1.2. 

In the following we consider a pair of Hilbert spaces V and W ,  and an equation of the 
form 

L u =  f .  (1.20) 

where L : D ( L )  c V + W- is a linear operator and f E W .  The existence of solution to 
(1.20) for any right-hand side f E W is equivalent to the condition R(L)  = W ,  while the 
uniqueness of solution is equivalent to the condition N ( L )  = (0). 

Theorem 1.1 (Hahn-Banach) Let U be a subspnce of a (real or complex) normed space 
V, and f E U’ a linear,form over U .  Then there exists an extension 9 E V’ off such that 
g ( u )  = , f(u),forall  TL E U ,  moreover satisfying I l g l l ~ I  = Ilfilul. 

Proof: 
134,651 and [ 1001. rn 

The proof can be found in standard functional-analytic textbooks. See, e.g., 

Theorem 1 .1  has important consequences: If uug E V and f(v0)  = 0 for all f E V’, 
then 1 1 ~ )  = 0. Further, for any vug E V there exists f E V’ such that I /  filv = 1 and 
f (210)  = lluugllv. The following result is used in the proof of the basic existence theorem: 
For any two disjoint subsets A, B C V, where A is compact and B convex, there exists 
f E V‘ and y E R such that f ( n )  < y < f ( b )  for all n E A and b E B. 

Theorem 1.2 (Basic existence result) Let V. W be Hilbert spaces and L : D ( L )  c V + 

W a bounded linear operator. Then R ( L )  = W ifand on1.y ifboth R ( L )  is closed and 

Proof: If R ( L )  = TI / ,  then obviously R(L) is closed and R(L)’ = ( 0 ) .  Conversely, 
assume that R ( L )  is closed, R(L)’ = (0) but R ( L )  # W .  The linearity and boundedness 
of L implies that R ( L )  is a closed subspace of 14’. Let U J  E W \ R(L). The set {.I} is 
compact and the closed set R ( L )  obviously is convex. By the Hahn-Banach theorem there 
exists a w *  E I&’’ such that ( w * . u I )  > 0 and (.(I)*. L ~ J )  = 0 for all 2) E D ( L ) .  Therefore 

In order to see under what conditions R ( L )  is closed, let us generalize the notion of 

R ( L ) l  = ( 0 ) .  

0 # ( I ! *  E R(L)’, which is a contradiction. 

continuity by introducing closed operators: 

Definition 1.3 (Closed operator) An operator T : D ( T )  c V ---f W, where V and W 
are Bnnach spaces, is said to be closed iffor any sequence {?I,, c D ( T ) ,  u,, i 71 and 
T (  u l L )  + w imply that u E D ( T )  and 211 = T.P. 

It is an easy exercise to show that every continuous operator is closed. However, there 
are closed operators which are not continuous: 

rn EXAMPLE 1.6 (Closed operator which is not continuous) 

Consider the interval 12 = ( 0 , l )  C R, the Hilbert space V = L‘((I2) and the Laplace 
operator L : V + V .  Lu  = -Au = -u”. This operator is not continuous, since, 
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e.g., Lv @ V for v = z-'/:~ E V .  We know that the space C r ( 0 )  is dense in L 2 ( 0 )  
(see Paragraph A.2.10). To show that L is closed in V ,  for an element v E V consider 
some sequence {v,},",~ C CF(0) such that v, + v, and such that the sequence 
{-AV,}?=~ converges to some w E V .  Passing to the limit n i co in the relation 

we obtain 

l w ' p d x  = - vA'pdx for all 'p E CT(b2). 

Therefore w = - Av and the operator L is closed. 

Theorem 1.3 (Basic existence and uniqueness result) Let V, W be Hilbert spaces and 
L : D( L )  c V + W a closed linear operator. Assume that there exists a constant C > 0 
such that 

(this inequality sometimes is called the .stability or coercivity estimate). If R(L)' = {0} ,  
then the operator equation Lu = f has a unique solution. 

Proof: First let us verify that R(L)  is closed. Let {w~,}?=~ c R ( L )  such that w, + w. 
Then there is a sequence {v,}~=.=, C D ( L )  such that w,, = Lv,. The stability estimate 
(1.21)impliesthatCllvn-v,,IIv 5 I I W , ~  -wTnllw, whichmeansthat { v 7 z } ~ = l  isaCauchy 
sequence in V .  Completeness of the Hilbert space V yields existence of a 71 E V such that 
v, + v. Since L is closed, we obtain v E D ( L )  and w = Lv E R(L).  Theorem 1.2 yields 
the existence of a solution. The uniqueness of the solution follows immediately from the 

Now let us introduce the notion of monotonicity and show that strongly monotone linear 

stability estimate (1.21). 

operators satisfy the stability estimate ( I  .21): 

Definition 1.4 (Monotonicity) Let V be a Hilbert space and L E C ( V ,  V ' ) .  The operator 
L is said to be monotone i f  

(L71,v) 2 0 f o ra l l  ti E V, (1.22) 

it is strictly monotone if 

(Lv ,  v) > 0 for  all 0 # v E V, (1.23) 

and it is strongly monotone ifthere exists a constunt CL > 0 such that 

For every u E V the element Lu E V' is a linear,form. The symbol (Lv ,  v). which mean.7 
the application of Lu to v E V ,  is called duality pairing. 


