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Chapter 1 

Introduction 

Solving logical inference problems with optimization methods may seem 
a bit like eating sauerkraut with chopsticks, because the two come from 
vastly different worlds. Logical inference comes from a "left brain" world 
of formal languages and symbolic manipulation. Optimization comes from 
a "right brain" world of spatial models and numerical calculation. Logical 
inference is associated with artificial intelligence and computer science, and 
optimization with operations research and engineering. 

But on second thought it should not be so surprising that optimization 
methods are useful in logic. It is the mathematical structure of a problem 
that determines whether an optimization model can help solve it, not the 
context in which the problem occurs. Tasks as different as routing soft 
drink trucks and manufacturing circuit boards, for instance, can pose the 
same optimization problem (in this case, the traveling salesman problem). 
We should therefore expect that logical inference might pose some familiar 
optimization problems. 

The thesis of this book is that many deductive inference problems do in 
fact have the sort of mathematical structure that optimization methods, or 
method» suggested by optimization, can exploit. These problems arise in 
logics that have important applications in artificial intelligence, computer 
science, decision support, and manufacturing: 

propositional logic 
first-order predicate logic 
probabilistic and related logics 
logics that combine evidence (e.g., Dempster-Shafer theory) 
rule systems with confidence factors 
constraint logic programming systems 

1 



2 CHAPTER 1 INTRODUCTION 

The last several years have already seen orders-of-magnitude improvements 
in inference algorithms for propositional and probabilistic logic, due in part 
to the techniques described in this book. 

A mathematical analysis of inference problems also reveals some inter-
esting parallels between logic and mathematics. These can lead to better al-
gorithms, both numeric and symbolic. For instance, the inference problem 
in propositional logic can be solved as an integer programming problem. 
Furthermore, a well-known inference procedure in logic (unit resolution) 
generates cutting planes that help solve the integer programming problem. 
The result is a kind of symbiosis: logic helps integer programming to solve 
logic problems. Similar insights can allow one to identify special cases of 
inference problems that are easy to solve. This is important to do because 
the general inference problem in most logics of interest can be very hard 
computationally. For example, inference is easy for the "Horn" propositions 
used in most expert systems because they are associated with polyhedra 
that have a least element property. Since the same property is shared by 
other polyhedra, this leads to the extension of Horn propositions to a much 
larger class for which inference is equally easy. 

Most of the pioneering work in the logic/optimization interface was done 
within the last three decades, notably by H. P. Williams [290, 291, 296], 
who showed some connections between inference in propositional logic and 
the projection of polyhedra, and R. Jeroslow [23, 165], who used integer 
programming to solve inference problems and introduced a number of other 
seminal ideas. In addition, T. Hailperin found in the work of George Boole 
the elements of a linear programming model for probabilistic logic [27, 28, 
124, 126]. Most of the research in the area is even more recent, having 
taken place within the last dozen years (that is, after [141]). 

It is therefore possible for a single book to describe a large fraction of 
what has been done, and this we undertake to do. We also present a number 
of new results of our own. 

Although the book is addressed to a technical audience, we are aware 
that our readers represent a large variety of backgrounds: operations re-
search, computer science, logic, artificial intelligence, and engineering. We 
therefore presuppose as little as possible. The entire book should be readily 
intelligible to an otherwise qualified reader with absolutely no background 
in logic. It is more difficult to make the same promise with respect to 
optimization, on which we draw more deeply. Some exposure to linear or 
integer programming would no doubt be helpful. But we try to explain 
everything we do and provide an appendix to cover basic concepts that we 
do not explain elsewhere. 

The book is organized by the types of logic to which optimization meth-
ods have been applied. Propositional logic, the most basic sort of logic, 
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has been the most thoroughly investigated from the point of view of op-
timization. It is allotted two long chapters. Chapter 2 deals with spe-
cialized methods for particular classes of propositional inference problems, 
and Chapter 3 with general methods. Probabilistic logics assign proposi-
tions probabilities rather than regarding them simply as true or false. The 
quantitative nature of probability naturally invites numerical methods, as 
witnessed by Boole's early contribution. Chapter 4 covers these as well as 
some applications to Dempster-Shafer theory (an approach to combining 
evidence) and rule systems with confidence factors. 

First-order predicate logic, which contains such expressions as "for all" 
and "there exists," is a powerful system and consequently much harder 
to completely solve inference in. Chapter 5 contains a description of par-
tial instantiation, a new methodology for inference in predicate logic, that 
was motivated by paradigms in large-scale optimization. Compactness and 
other structural properties of infinite-dimensional mathematical program-
ming are used to analyze inference in first-order logic in this penultimate 
chapter. Chapter 6 completes our description of how optimization methods 
can be used to address logical inference by presenting brief applications of 
mathematical programming in many valued logics and nonclassical logics 
such as nonmonotonic logics, modal logics, and constraint logic program-
ming. We have limited our discussion in this book to the use of optimization 
methods in deductive inference. 

The rest of this introductory chapter puts the research described here 
into context. The application of quantitative methods to logic is part of a 
larger movement toward the merger of the two worlds of logic and mathe-
matics. Moreover, logic has recently become a basic modeling tool along-
side mathematics, and the two styles of modeling are beginning to combine. 
Thus the need for logical inference methods, particularly those that involve 
quantitative methods, is growing. The need becomes particularly urgent 
as logic models become larger, because the difficulty of inference increases 
very rapidly with the size of the model. 

1.1 Logic and Mathematics: The Twain Shall 
Meet 

For more than two millennia, methods of formal reasoning have followed 
two largely separate lines of development. On the one hand is formal logic, 
which stretches from the Jains of ancient India, to Aristotle's systematic 
investigations, through the medieval logicians, to such mathematical logi-
cians as Gottlob Frege and Kurt Gödel, and finally to the large community 
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of researchers now applying logic to problems in computer science and arti-
ficial intelligence. On the other hand is mathematical computation, which 
began even earlier in Egypt and Mesopotamia and developed into today's 
highly advanced methods. 

Although largely parallel, these two paths have crossed on occasion, 
sometimes with spectacular results. This book aims to participate in what 
we believe is the latest crossing. But a proper appreciation of this phe-
nomenon requires some more background. 

The seventeenth century philosopher Gottfried Wilhelm von Leibniz 
brought about the first important synthesis of logical deduction and math-
ematical computation. His contribution was to point out that they are 
fundamentally the same. To follow the steps of a numeric algorithm is to 
perform a series of deductions. Conversely, a series of deductions in formal 
logic can be viewed as computation and can be automated just as long 
division can. Leibniz went so far as to envision a calculus of reasoning 
(calculus ratiocanator) in which all truths can in principle be obtained from 
self-evident premises by calculation. 

Leibniz did not have the technical wherewithal even to begin to realize 
his vision, but George Boole did. He showed how to compute inferences in 
prepositional logic with his famous algebra, and he did the same for proba-
bilistic logic using an idea that anticipates linear programming. He began a 
series of developments, too long to recount here, that culminated in the field 
of artificial intelligence, which aims in part to carry out Leibniz's project of 
automating the reasoning process. More relevant for our purposes, however, 
is what was not accomplished by this and subsequent encounters of logic 
and mathematics, until very recently. Although Boole saw that mathemat-
ical and logical calculation are of a piece, he did not bring them together 
into a single calculus. On the contrary, a major point of Boolean algebra 
was to show that computation can be purely nonnumeric, or "symbolic" as 
we now sometimes say. Boole used arithmetical symbols to denote logical 
operations, but this was only a notational convenience [185]. 

Other encounters grew out of Leibniz's work but likewise fell short of 
true fusion. Leibniz realized that logical computation would be possible 
only within a formal language (characteristica universalis). This idea even-
tually led to the development of such formal languages as predicate logic 
and set theory, within which Bertrand Russell, Alfred North Whitehead, 
and their successors attempted to formalize mathematics in a "logicist" 
manner. (It is no accident that Russell wrote his dissertation on Leibniz.) 
Alfred Tarski and others devised decision procedures for logics that contain 
arithmetic. In fact, the whole formalist paradigm of doing mathematics, 
which in its starkest form (due to D. Hilbert) regards mathematics as the 
study of how uninterpreted symbols may be manipulated in a formal Ian-
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guage, is largely inspired by the Leibnizian legacy. But through all these 
developments, it is hard to find an occasion on which someone actually 
introduced numerical methods into the logical deduction process, or logical 
methods into numerical computation. 

Perhaps the first marriage of logical and mathematical computation 
(with the interesting exception of Boole's probabilistic logic) occurred with 
the arrival of digital electronic computers, which use logic gates to imple-
ment arithmetic operations in a circuit. But it was a marriage without 
consummation, because the logical operations remain at the micro level 
and leave the higher-level numeric algorithms unaffected. 

The relationship was brought a bit closer when work in artificial intel-
ligence revived interest in decision procedures for logics, including logics 
of arithmetic. Some algorithms were devised that solve numeric problems 
by replacing key numeric procedures with symbolic ones. There is, for in-
stance, a partially symbolic algorithm for linear programming (the "SUP-
INF method" [261]). These algorithms had limited impact on methods for 
numeric problems, however, because symbolic procedures are often unable 
to exploit the special structure of these problems to the extent that purely 
numeric algorithms do. The SUP-INF method, for instance, is extremely 
inefficient (it has doubly exponential complexity). 

The latest mathematical/logical encounter is bidirectional. This book 
focuses on the application of numeric methods to logical deduction. The 
reverse influence is also underway. Logic programming and its successors 
are now used to solve problems that have long been attacked by the numer-
ical methods of operations research. The successors include constraint logic 
programming and constraint satisfaction techniques [207, 286], which not 
only apply discrete and logical methods but integrate linear programming 
as well, adding another layer of interaction. 

The work described in this book can therefore be seen as an episode in 
the cross-fertilization of logic and mathematics initiated by Leibniz. The 
word "optimization" appears in the title because most of the mathematical 
ideas applied to logical inference in the last few years have related to opti-
mization methods, which turn out to be particularly suited to computing 
inferences. It is perhaps pure coincidence that the concept of optimization 
played a key role in Leibniz's philosophy. 

Not all methods discussed herein are optimization methods, and not all 
are numeric. Yet all are inspired by such methods in one way or another, 
even if only in the sense that they result from a similar style of thinking. 
In fact, the main benefit of focusing on optimization may be simply that it 
encourages a research community rooted in the mathematical tradition to 
try its hand at inference problems. 
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1.2 Inference Methods for Logic Models 

As inference problems grow in size and importance, it is more important 
than ever to solve them efficiently. Some of these problems come from 
specific domains that pose problems of a logical nature. Electronic circuit 
design and testing, for instance, have presented hard logic problems for 
some decades, and these problems get harder as circuits get more complex. 
Research in automated theorem proving for mathematics yielded a number 
of new inference methods. But there is a more general phenomenon that has 
made inference problems a standard feature of the technological landscape. 
This is the rise of logic modela and, more recently, logico-mathematical 
models. 

Just as logical and mathematical computation are essentially the same, 
a logic model is essentially the same kind of structure as a mathematical 
model. Either kind of model describes a problem in a formal language that 
allows one to deduce facts about its solution. In a mathematical model, 
the formalism is a mathematical theory, and the deduction takes the form 
of algebraic manipulation or numeric calculation. 

The practice of logic modeling grew partly out of attempts to create 
artificial intelligence. An intelligent computer should not only be able to 
solve well-structured problems traditionally attacked with mathematical 
models, but it should be able to solve such "messier" problems as schedul-
ing operations in a factory, designing a building layout, guiding a robot 
over unfamiliar terrain, diagnosing an illness, or interpreting natural lan-
guage. The first two problems and perhaps the third may be formulable 
in mathematical terms but tend to be very hard to solve with mathemat-
ical methods. The remaining problems do not even admit a mathematical 
formulation. 

One response to this dilemma in the artificial intelligence community 
has been to describe problems in a general-purpose formalism that permits 
deductions but presupposes no mathematical structure. Thus we see the 
development of such "knowledge-based systems" as expert systems. An 
expert system for diagnosing failures in a piece of machinery, for instance, 
might contain a few hundred "rules" that look something like, "If indicator 
light A is red and noise B is audible, then circuit C is defective." The user 
adds his observations to the set of rules, whereupon an "inference engine" 
deduces what may be wrong with the machine. 

Another response has been the development of logic programs, normally 
written in PROLOG after a fashion initially advocated by Kowalski [188]. 
PROLOG accepts statements written in a restricted form of predicate logic 
and computes some of their implications. Inference is incomplete because 
of the lack of practical methods to solve the problem completely. 
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More recently, logic programming has been largely supplanted by con-
straint programming [207], which offers a number of specialized predicates 
that are useful for real-world problems, along with specialized algorithms 
to deal with them. They include both discrete predicates, such as "all-
different," and arithmetical predicates. 

Expert systems and other decision support systems are often designed to 
reason under uncertainty or incomplete information, the former most often 
captured by probabilities. The classical framework for reasoning with prob-
abilities is Bayesian inference, which is the basis for decision trees. More 
recent variations include influence diagrams, which are based on Bayesian 
networks rather than trees. 

Several logics are designed to account for uncertainty and incomplete 
information. Boole's original probabilistic logic does both, as do Dempster-
Shafer theory and other logics of belief. These form the basis for "belief 
nets," of which Bayesian networks are only one example. Their nodes 
represent propositions and their arcs dependencies among propositions that 
permit inferences. 

Data bases are important components of many decision support sys-
tems and can likewise be regarded as logic models in which predicate logic 
plays an important role. "Default logic" and "nonmonotonic logic" were 
developed partly to deal with logical problems they posed. Default logic 
allows one to make generalizations that are not strictly supported by data, 
and nonmonotonic logic allows one to retract an inference when additional 
information becomes available. Both types of reasoning (they are typically 
combined) now play a role in modeling systems other than data bases. 
Modal logics, including temporal logic, are also used to model knowledge 
acquisition as well as to verify computer programs, for example. 

In addition to all this is a vast literature on fuzzy logic systems, which 
were originally intended to account for vagueness but now seem to serve 
other purposes as well. 

1.3 Logic Modeling Meets Mathematical 
Modeling 

Not only are logic models proliferating, but a newer trend is underway: 
their merger with more traditional mathematical models. Inference proce-
dures that combine numeric and nonnumeric elements may be particularly 
appropriate for models that do the same. 

One impetus for the merger lies in the fact that, in many situations, 
neither type of modeling alone is true to reality. At one point in history, an 
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elegant mathematical reality seemed to underlie the world, and mathemat-
ical models sufficed. But the "modern" age of Newtonian simplicity has 
given way to a "postmodern" age of bewildering complexity that calls for a 
mixture of modeling styles. We want to understand and manage such com-
plex systems as the economy and the atmosphere and large manufacturing 
plants, but there are no elegant mathematical models from which we can 
deduce predictions, or prescriptions for action, with only second-order error. 
To get even a first approximation we must work with a system description 
that may be nearly as complex as the system itself. One attraction of chaos 
theory was that it seemed to bring complex, baffling phenomena once again 
under the purview of simple mathematical models. But if such writers as 
Freeman Dyson [90] are right, it may only be a momentary respite from an 
overwhelming trend toward messiness. 

We should therefore expect a postmodern model to be a mosaic of math-
ematical and nonmathematical elements. Some aspects of a problem may 
display mathematical structure, and a model would be remiss to neglect 
this—not only for the sake of verisimilitude, but to make deduction (i.e., 
computation) easier. A factory subsystem that admits a linear program-
ming submodel, for instance, should be so modeled, if only to get a correct 
solution quickly for that part of the system. But other aspects of the prob-
lem will likely not submit easily to mathematical modeling and may call 
for logic-based modeling. It has become commonplace to mix the two in 
constraint programming, and a similar mixture seems on the horizon in 
mathematical programming. 

It is hard to predict where logico-mathematical modeling will lead. Al-
ready, new formalisms are evolving that are classifiable as neither mathe-
matical nor logical but have some structural similarities with both. In the 
meantime, the research described in this book can play a role in its de-
velopment. One obvious contribution derives from its use of mathematical 
programming models to compute the implications of a logic model. But 
more generally, a persistent theme of the research is the discovery of struc-
tural and algorithmic commonality between logic and mathematics. One 
can expect this sort of discovery to hasten the fusion of logical models and 
methods with those of mathematics. 

1.4 The Difficulty of Inference 

Logical inference can be a very hard combinatorial problem. It is perhaps 
curious that one of the fundamental tasks of information science—deducing 
the implications of what we already know—could be so hard. It is hard in 
the sense that the amount of computation required to check whether a 
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knowledge base implies a given proposition grows very rapidly with the 
size of the knowledge base. Thus as logic models grow larger, we face a 
need for continuing breakthroughs in the speed of inference algorithms, or 
else new ways to structure models so as to make inference easier. 

The difficulty of inference in several logics can be stated quite pre-
cisely. In propositional logic, the most basic we consider, no known algo-
rithm always solves the inference problem in better than exponential time 
(i.e., the solution time increases exponentially with the size of the knowl-
edge base in the worst case). Technically, the problem is "NP-complete" 
[66, 108]). Robinson's well-known resolution algorithm [244], when spe-
cialized to propositional logic, requires exponential time in the worst case 
when applied to propositional logic [128]. Computational experience [139] 
indicates that the running time rapidly explodes in the typical case as well. 
We prove in Chapter 3 that a tree search algorithm (the Davis-Putnam-
Loveland algorithm) is also exponential in the worst case. Franco and Paul 
[97] showed that it requires exponential time with probability approaching 
one when large random problems are chosen from a reasonable distribution. 

The situation is even worse in first-order predicate logic. In this case the 
problem is not only hard but insoluble in general. There are procedures, 
such as the resolution procedure, that verify that any given implication in 
fact follows from the premises. But Alonzo Church proved in 1936 (and 
Alan Turing shortly thereafter) that there is no procedure that can always 
verify in finite time that a given nonimplication does not follow [57, 279]. 
To have a finite decision procedure one must restrict oneself to a frag-
ment of predicate logic, and even then inference is very hard. One such 
fragment consists of formulas in Schönfinkel-Bernays form, in which all ex-
istential quantifiers ("there exists") precede all universal quantifiers ("for 
all"). Checking the satisfiability of Horn formulas in Schönfinkel-Bernays 
form, which comprise a very limited fragment, requires exponential time in 
the worst case [235]. Doing the same for an arbitrary formula in Schönfinkel-
Bernays form requires "nondeterministic exponential" time and is therefore 
even harder [195]. 

Because propositional logic is a subset of probabilistic logic, inference 
in the latter is likewise hard and is easily shown to be an NP-complete 
problem [113]. 

The proper reaction to these observations is not to despair of solving 
large inference problems. Clever algorithms can overcome their difficulty in 
many cases, and analysis can identify subsets of logics for which inference 
is easier. 
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Chapter 2 

Proposit ional Logic: 
Special Cases 

We begin with propositional logic, the simplest sort of logic. Propositional 
logic, sometimes called sentential logic, may be viewed as a grammar for ex-
ploring the construction of complex sentences (propositions) from "atomic 
statements" using the logical connectives such as "and," "or," and "not." 
The fundamental problem of inference in logic is to ascertain if the truth of 
one formula (proposition) implies the truth of another. Even for elementary 
propositional logic, the inference problem is not entirely well-solved. 

The problem of testing the satisfiability of a propositional formula is the 
core problem of inference. This satisfiability problem is simply stated as the 
problem of finding a set of truth assignments for the atomic propositions 
that renders the formula true. An obvious algorithm for this problem is 
to enumerate all possible truth assignments and evaluate the formula until 
it is satisfied or proved unsatisfiable. This would entail an unacceptable 
amount of work for all but small and uninteresting formulas. Our focus in 
this chapter will be on special formulas for which satisfiability can be tested 
extremely rapidly by algorithms whose run times are, typically, within a 
constant factor of the time it takes a computer to read the formula. 

Quadratic and Horn formulas represent two classical examples of struc-
tured propositions that admit highly efficient (linear-time) inference algo-
rithms. We shall explore these and related structures in this chapter using 
a quantitative or optimization-based perspective. This approach has two 
advantages. The first is that it leads to an understanding of the mathe-
matical structure of these formulas which the purely syntactic approach of 
symbolic computation misses altogether. We will also demonstrate that this 

11 
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perspective has been very useful in identifying rich new classes of formulas 
which, like the Quadratic and Horn classes, admit fast inference algorithms. 
These developments, many qf which are quite recent, have the potential for 
substantively increasing the expressive power of highly tractable fragments 
of propositional logic. 

The main optimization-based perspective of satisfiability is developed 
on an (0-1) integer programming formulation. This formulation is a mani-
festation of a well-known reduction of satisfiability to testing the solubility 
of a system of linear inequalities defined on variables that are restricted to 
binary values of 0 or 1. Since solvability and optimization in integer pro-
gramming are closely related we can view satisfiability as an optimization 
problem. A central idea in integer programming is to relax the integrality 
of the variables by treating the 0-1 variables as continuous variables tak-
ing values in the range [0,1] to obtain the linear programming relaxation. 
Linear programming problems are far easier to handle, both mathemati-
cally and computationally, than integer programming problems. The linear 
programming relaxations of satisfiability problems are particularly easy to 
solve because unit resolution can be adapted to design a complete solution 
method for these special linear programs. 

The linear programming relaxation of a Horn formula turns out to have 
a remarkable property. The linear program has an integral least element 
that corresponds to the unique minimal model of the Horn formula. We 
will see that this least element property can be generalized in a very natural 
way to realize a class of Extended Horn Formulas [44]. The least element 
property of Horn formulas also permits a rich theory of proof signatures for 
these formulas based on the duality theorem of linear programming. 

We will also study a class of "Q-Horn" formulas [34] that simultane-
ously generalizes Quadratic and Horn formulas. The class is characterized 
by a special property of a related linear programming problem. Another 
paradigm from optimization that we will find useful in studying special 
propositional formulas is that of forbidden minor characterizations of spe-
cial structures. This paradigm will help in the study of Q-Horn formulas 
as well as some recursive structures built on Horn formulas that still yield 
tractable formulas that are called Generalized Horn Formulas [5, 106, 302]. 

We will start with a quick review of some of the basic concepts of propo-
sitional logic. This will lead us to the (0-1) integer programming formula-
tion of satisfiability and on to the study of special structures in propositional 
logic. 
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2.1 Basic Concepts of Propositional Logic 
In propositional logic we consider formulas (sentences, propositions) that 
are built up from atomic propositions (χχ, x2, ..., xn) that are unanalyzed. 
In a specific application, the meaning of these atomic propositions will be 
known from the context. The traditional (symbolic) approach to proposi-
tional logic is based on a clear separation of the syntactical and semantical 
functions. The syntactics deals with the laws that govern the construction 
of logical formulas from the atomic propositions and with the structure of 
proofs. Semantics, on the other hand, is concerned with the interpretation 
and meaning associated with the syntactical objects. Propositional calcu-
lus is based on purely syntactic and mechanical transformations of formulas 
leading to inference. The "principle of resolution" is the most important 
transformation rule for this purpose. We will maintain this traditional ap-
proach to propositional logic in this section. However, it should be noted 
that the quantitative or optimization perspective that will be introduced 
in the next section is not beholden to this doctrine of separating syntactics 
and semantics. In fact, much of its power derives from the integration of 
the two functions. 

We will first review the syntactics of forming propositional logic formu-
las. The assignment of truth values (true/false) to atomic propositions and 
the evaluation of truth/falsehood of formulas is the essence of the semantics 
of this logic. The central problem of inference in propositional logic is the 
satisfiability problem. This is the problem of determining whether a given 
formula is true (is satisfied) for some assignment of truth values to the 
atomic propositions. Two formulas are (semantically) equivalent if their 
satisfying truth assignments are equivalent under some mapping. We will 
discuss rewriting "well-formed formulas" in equivalent canonical represen-
tations called "normal forms." A particular normal form, the "conjunctive 
normal form" (CNF), is the canonical representation of propositions that 
we use in the ensuing discussion of propositional logic. The artificial intel-
ligence (AI) literature often describes the calculus of propositional logic in 
the syntax of "if-then" rules, which are sometimes called "inference rules." 
We shall see that this is just an alternate schema for CNF formulas. 

2.1.1 Formulas 

Propositional logic formulas are built up from atomic propositions using 
various logical connectives. The primary connectives are Λ, V, -i which are 
understood to represent the semantics of and, or, not, respectively. An 
inductive definition of well-formed formulas (wffs) using these connectives 
is given by: 
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(a) Atomic propositions are wffs. 

(b) If S is a wff so is -.5. 

(c) If Si and 52 are wffs, so are Si V S2 and S\ Λ S2. 

It is customary to use parentheses "(" and ")" to distinguish the start 
and end of the field of a connective operation. Consider the formula 

((-«i V (xi Λ x3)) Λ ( H * 2 Λ -xi)) V x3)) (2.1) 

We notice that since -i is a unary operator, the field on which it oper-
ates follows immediately. The subformula ->χχ has -> applied to the atomic 
proposition χχ and so no parentheses are required. Whereas the subfor-
mula (->(x2 Λ ->xi)) has -i applied to the nonatomic proposition x2 Λ ->xi 
and parentheses are required to delineate the field. The binary operators V 
and Λ have their field to the left and right of them and the parentheses de-
lineate them. For example, the first open parenthesis "(" and the last close 
parenthesis ")" delineate the field of the Λ connective that appears in the 
middle of the formula. A formula is a wff if and only if there is no conflict 
in the definition of the fields of the connectives. Thus a string of atomic 
propositions and primitive connectives, punctuated with parentheses, can 
be recognized as a well-formed formula by a simple linear-time algorithm. 
We scan the string from left to right while checking to ensure that the paren-
theses are nested and that each field is associated with a single connective. 
Incidentally, in order to avoid the use of the awkward abbreviation "wffs," 
we will henceforth just call them propositions or formulas and assume they 
are well formed unless otherwise noted. 

The calculus of propositional logic can be developed using only the three 
primary connectives {-ι,ν,Λ}. However, it is often convenient to permit 
the use of certain additional connectives. Three such connectives that we 
will find occasion to use are -», Vi axi^ Λ· They are, respectively, the 
connective "implies," "p-ary disjunction," and the "p-ary conjunction." 
They are essentially abbreviations that have equivalent formulas using only 
the primary connectives. The equivalences are detailed below. 

(Si -> S2) is equivalent to (->Si V S2) 
p 

(\f Si) is equivalent to (· ■ · (Si V S2) V S3) · · · Sp) 
t = l 

P 

(f\ Si) is equivalent to (· · · (Si Λ S2) Λ S3) · · · Sp) 
i = l 
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The truth or falsehood of a formula is a semantic interpretation that 
depends on the values of the atomic propositions and the structure of the 
formula. The elements of the set {T,F} are called truth values with "T" 
denoting "true" and "F" denoting "false." A truth assignment is simply 
the assignment of values T or F to all the atomic propositions. To evaluate 
a formula we interpret the connectives ->, V, and Λ with the appropriate 
meaning of "not," "or," and "and." As an illustration, consider the formula 
(2.1). Let us start with an assignment of true (T) for all three atomic 
propositions x\, x2, and X3. At the next level, of subformulas, we have 
->xi evaluates to false (F), (xi Λ X3) evaluates to T, (x2 Λ ->xi) evaluates 
to F, and X3 is T. The third level has (->xi V (xi Λ X3)) evaluating to T 
since it is the "or" of two subformulas one of which is false and the other 
true. Eventually ((->(x2 Λ -«i)) V X3)) also evaluates to T. The entire 
formula is the "and" of two propositions both of which are true, leading to 
the conclusion that the formula evaluates to T. This process is simply the 
inductive application of the rules: 

(a) 5 is T if and only if ->S is F. 

(b) (Si V S2) is F if and only if both Si and S2 are F. 

(c) (Si Λ S2) is T if and only if both Si and S2 are T. 

We now introduce a variety of inference questions related to the truth 
or falsehood of propositions. The satisfiability problem is the problem of 
determining whether a given formula is "satisfied" (evaluates to T) for 
some assignment of truth values to the atomic propositions. We showed 
that the formula (2.1) is indeed satisfiable, since it is satisfied by the truth 
assignment (xi,x2,X3) = (Τ,Τ,Τ). A satisfying truth assignment is called 
a model. A formula with no model is called unsatisfiable. A formula for 
which every truth assignment is a model is called a tautology. The formula 
(xi V -Ίχ) is a tautology. A formula Si is said to imply another formula 
S2, defined on the same set of atomic propositions as Si, if every model 
of the former is also a model of the latter. Two formulas are said to be 
equivalent if they share the same set of models. We now have three basic 
inference problems in propositional logic. 

• Is a given formula satisfiable? 

• Is a given formula a tautology? 

• Does one formula imply another? 
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Notice that all three problems can be solved by enumeration. We simply 
list all possible truth assignments (there are 2" of them on n atomic propo-
sitions). By evaluating the formula on each of them we could certainly 
answer all three questions. In many textbooks on logic, this technique 
would be called the method of "truth tables." The method is, of course, 
not a serious contender since the size 2" is unmanageable. However, the 
fact that one method solved all three problems is indicative of a possible 
relationship between these problems. Indeed there is a simple equivalence 
between all three problems. 

Proposition 1 The following statements are equivalent: 

1. S implies S. 

2. (S V ->S) is a tautology. 

3. (S Λ ->S) is unsatisfiable. 

The proposition substantiates the earlier claim that satisfiability is the 
central problem of inference in propositional logic. In the next section we 
will study syntactic transformation rules that modify a formula without 
affecting its models. We will use these rules to obtain special representa-
tions called normal forms of formulas. These normal forms are particularly 
suitable for devising solution strategies for the satisfiability problem and 
for developing the optimization-based perspective of inference. 

2.1.2 Normal Forms 

The normal forms of formulas are special representations that make evident 
the duality of the binary connectives: "conjunction" Λ and "disjunction" 
V. To begin with, we need to get rid of the unary "negation" operator " - · . " 
This is done by expanding the set of atomic propositions {x\,X2,... ,x„} 
into the set of literals {ii, 12,...,xn;->Xi,~>X2,■■·,~'Xn}· Given any for-
mula, our task will be to absorb the negation connective "-1" into the liter-
als. This is achieved by repeated application of the familiar De Morgan's 
laws, 

-i(Si V S2) is equivalent to (->Si Λ ->S2) (2.2) 
->(Si Λ 52) is equivalent to (->5i V ->S2) (2.3) 

along with the involutory property of negation, 

—5 = 5 (2.4) 
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A moment's reflection will convince the reader that given any subfor-
mula operated on by ->, there is a linear-time algorithm to get rid of -i 
as an operator. We apply (2.3, 2.4) recursively until -> operates only on 
atomic propositions. Thus we only have formulas with literals connected by 
disjunctions V and conjunctions Λ. A subformula that is a pure disjunction 
of literals is called a clause. A formula is said to be in conjunctive normal 
form or CNF if it is the pure conjunction of a set of clauses. Such a formula 
would have the appearance 

m 

S = /\d 
«=i 

d = \J ±Xj for i = 1,2,..., m 
jeJi 

The notation +Xj denotes the "positive literal" or atomic proposition x¡, 
while —Xj denotes the "negative literal" -ix¿. A formula is said to be in 
disjunctive normal form or DNF if it is the pure disjunction of terms, each of 
which is a pure conjunction of literals. Such formulas have the appearance 

m 

s = Vr« 
«=i 

Ti = f\ ±XJ for i = 1,2,..., m 

The two normal forms CNF and DNF are dual representations with sym-
metric properties. Although there are some applications of propositional 
logic for which the DNF may be the more accepted normal form, we will 
stay with CNF as the standard form for propositions in this book. The 
traditional technique of transforming a given formula of literals connected 
by V and Λ connectives into an equivalent CNF formula is by repeated 
application of the "distributive law": 

Si V (52 Λ 53) is equivalent to (Si V S2) Λ (Si V S3) (2.5) 

We now have a complete procedure for transforming a given formula into 
CNF. 

Procedure 1: Reduction to CNF 

Step 1. Use the transformation rules of De Morgan's laws (2.3) and invo-
lution of negation (2.4) to absorb all -> into the literals. 

Step 2. Use the distributive law (2.5) to move the conjunctions out of the 
subformulas until each subformula is a clause of pure disjunctions. 



18 CHAPTER 2 PROPOSITIONAL LOGIC: SPECIAL CASES 

As an illustration of Procedure 1, let us consider the formula (2.1). The 
step by step transformations on this sample are depicted below. 

( - H I V (xi Λ χ3)) Λ ( ( - i ( i 2 A - i i i ) ) V i 3 ) 
( ι χ ι V (xi Λ x3)) Λ ((-.x2 Vxi) Vx3) (2 ß , 

(-ιχι Vxi) Λ (-ixi VX3) Λ (xiV->x2Vx3) * ' ' 
(-1x1 V X3) Λ (xi V ->X2 V X3) 

In the last step we removed the clause (xi Λ-ιχι) since this is a tautology 
whose truth is invariant. In general, however, this simple procedure for 
reducing formulas to CNF runs into trouble. The main difficulty is that 
there may be an explosive growth in the length of the formula. The length 
of a formula is measured by the total number of literals in the description 
of the formula. Consider the action of Procedure 1 on the family of DNF 
formulas 

(xi Λ x2) V (x3 Λ x4) V · · · V (x2„-i Λ x2„) (2.7) 

It is not difficult to see that the CNF formula produced, by Procedure 1, 
is made up of the 2n clauses 

(xp(i),Xp(2),■ ■ ·,ΧΡ(η)) where xp{j) 6 {x2j_i,x2j·} (j = 1,2, . . . ,n) (2.8) 

These arguments prove that, in the worst case, Procedure 1 is an exponential-
time algorithm. 

Theo rem 1 ([23]) In the worst case, Procedure I may generate a CNF 
formula whose length is exponentially related to the length of the input for-
mula. 

One may the tempted to argue that the exponential growth in the for-
mula is caused by "redundant" clauses. Let us pursue this suspicion and 
convince ourselves that it is unfounded. A clause, in a CNF formula, is 
called redundant if it is implied by the remaining clauses. A single clause 
C absorbs clause D if every literal in C appears in D. Further, a clause 
D is logically implied by a single clause C if and only if C absorbs D at if 
D is a tautology. In a CNF formula therefore a clause will be redundant 
if it is absorbed by another. What makes inference, in propositional logic, 
so complex is the fact that redundancy can be deeply embedded. Fortu-
nately, there is a simple principle that, on repeated application, reveals the 
embedded structure. This is the principle of resolution. 
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In any CNF formula, suppose there are two clauses C and 
D with exactly one atomic proposition x¿ appearing negated in 
C and posited in D. It is then possible to resolve C and D on 
Xj. We call C and D the parents of the resolvent clause, which 
is formed by the disjunction of literals in C and D, excluding Xj 
and ->Xj. The resolvent is an implication of the parent clauses. 

As an illustration of this principle consider the last line of formula (2.6). 

C = (-iXiVar3) 
D = (xi V ->ΐ2 V X3) 

(->X2 V X3) 

The resolvent of C and D is the clause below the line. The resolution 
principle is a manifestation of case analysis, since if C and D have to be 
satisfied and (case 1) x\ is true, then X3 must be true; or if (case 2) xi is 
false then (->X2 V X3) must be true. Hence every model for C and D is also 
a model for the resolvent. A prime implication of a CNF formula S, is a 
clause that is an implication of S that is not absorbed by any clause that 
is an implication of 5, except by itself. In the above example, the prime 
implications are 

{(-.χι Vx3),(-<X2 Vx3)} 

A simple procedure for deriving all prime implications of S is to repeatedly 
apply the resolution principle while deleting all absorbed clauses. If we are 
left with an empty clause, the formula S has no model. Otherwise, we will 
be left with all the prime implications. The correctness of this procedure 
will be established in Section 3.1.1, as will its computational complexity. 
This elegant principle of resolution therefore provides a complete inference 
mechanism for propositional logic based on purely syntactic techniques. 
However, akin to "truth tables", the principle of resolution is not a compu-
tationally viable inference method for all but small examples, in the general 
case. In the section, and indeed for much of this chapter, we will work with 
a weakened form of resolution, called "unit resolution", in which one of the 
parent clauses is always taken to be a clause with exactly one literal. This 
weaker principle is complete only on special classes of propositions that we 
will define. 

Returning to the class of formulas (2.8) that proved Theorem 1, we see 
that no further resolution is possible and none of the clauses absorb each 
other. Therefore they are prime implications. This debunks the notion that 
"succinct" CNF representations of any formula can be guaranteed by' the 
"distributive law" approach of Procedure 1. In order to obtain such "suc-
cinct" representations, we will have to resort to a "rewriting" technique 
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that introduces additional atomic propositions corresponding to subformu-
las of the given formula. The two formulas will be equivalent in that every 
model for the original formula can be extended to a model for the rewrit-
ten one (with appropriate truth values for the new atomic propositions). 
Conversely, every model of the rewritten formula, when restricted to the 
original atomic propositions (projected), corresponds to a model of the 
original formula. Extended formulations have been the subject of study in 
integer programming for at least two decades now. The central theme of the 
monograph by Jeroslow [168] is on this interplay between reformulations in 
logic and their counterparts in integer programming. 

That these rewriting techniques lead to CNF representations that are 
polynomially bounded in length was first noted by Tseitin [278] in a re-
markable paper written in 1968. This rewriting technique was improved 
in later papers by several authors [23, 66, 297]. We wiH use the most re-
cently published, and most efficient technique due to Wilson [297]. We will 
first illustrate the technique on an example and then state the general idea. 
Consider a small instance of the formulas that were the ruin of Procedure 1. 

(xi A x2) V (x3 Λ x4) V (xB Λ x6) V (x7 Λ x8) (2.9) 

Let us introduce new propositions Χΐ2>£34>£5β,£78 that represent the four 
parenthetic conjunct subformulas. For each X2j_j,2¿ (j = 1,2,3,4) we write 
the clauses 

(->X2j-i,2j Vx2j-i) and (-ix2¿-i,2¿ V x2j) (2.10) 

We also need a clause to knit the four subformulas together. 

(Xl2Vx 3 4VX 5 eVX78) (2.11) 

Putting these clauses together we have rewritten the formula (2.9) in CNF 
using 12 atomic propositions and 9 constraints. Procedure 1 would have 
produced a CNF using only the original 8 atomic propositions but 16 
clauses. The numbers are more dramatic for the general case (2.7). Proce-
dure 1 obtained a CNF formula with 2n atomic propositions and 2n clauses. 
The obvious extension of the rewriting technique introduced above would 
result in a CNF formula with Zn atomic propositions and 2n + 1 clauses. 
Thus rewriting has brought the size down from exponential to linear for 
this class of examples. This result can be generalized for all formulas in 
prepositional logic with a general rewriting technique described below. 

Procedure 2: Rewriting to CNF 

Input. A well-formed formula F with subformulas {.Ft}. 


