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PREFACE 

The purpose of this book is to bring the fundamental ideas on discrete 
dynamical systems and chaos at the level of those undergraduates, usually in their 
junior year, who have completed the standard Calculus sequence, with the inclusion 
of functions of several variables and linear algebra. At this stage, students are in the 
best position for being exposed, during their college training, to the new ideas and 
developments generated in the last thirty years by the theory of discrete dynamical 
systems and chaos. The students' degree of sophistication permits the presentation of 
a broad range of topics and a fairly deep analysis of some nontrivial and historically 
interesting models. The importance and relevance of this exposure can hardly be 
described with better words than the ones used by R. Devaney (see [Devaney, 1989]). 
He writes: "The field of dynamical systems and especially the study of chaotic 
systems has been hailed as one of the important breakthroughs in science in this 
century." 

The book is divided into seven chapters and three appendices. Its content can 
be comfortably covered during a one-semester course, particularly if the teacher is 
satisfied with providing detailed proofs of only some fundamental results. As the title 
itself suggests, the topics of the book are limited to discrete dynamical systems. 
Several reasons have dictated this choice. The inclusion of both continuous and 
discrete systems would have created too large a body of material, with an inevitable 
loss of any in depth analysis. Moreover, a good understanding of continuous systems 
is hard to achieve without proper training in ordinary differential equations. Thus, 
their inclusion would have increased the prerequisites for the course. Another 
consideration that played an important role in the choice is the difficulty of 
establishing on theoretical grounds that a continuous system is chaotic. Chaos is one 
feature of dynamical systems that the book wants to present and analyze. It was 
considered awkward not to be in a position to prove that any continuous system is 
chaotic. A brief description of all chapters follows. 

In Chapter 1 we present definitions and general ideas about discrete 
dynamical systems, together with some examples of significant interest derived from 
the recent research literature. In Section 1 we start with some examples of discrete 
dynamical systems and discuss the definition of discrete dynamical systems and the 
goals of the book. In Section 2 we introduce the standard definitions of fixed points, 
periodic orbits, and stability. In Section 3 we talk about limit points and aperiodic 
orbits, and we present a preliminary description of chaotic behavior. In Section 4 we 
give examples of systems, such as the system proposed by E.N. Lorenz to model 
atmospheric changes and the system proposed by J.J. Hopfield to model neural 
networks, which are later (Chapter 7) studied using the theory developed in the 
course. 

Chapter 2 contains an extensive analysis of one-dimensional dynamical 
systems depending on one parameter. In the first section we introduce the cobweb 
method and the idea of conjugacy. In the second section we study the stability and 
instability of fixed points and periodic orbits. In Section 3 we present a result on 
global stability of fixed points. In Section 4 we introduce bifurcation, and we analyze 
this phenomenon both through examples and theoretically. The last section explores 

xi 
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the implications of conjugacy and Li-Yorke chaos. The purpose of this chapter is to 
give the students some material to work on at the outset. Its only prerequisites are a 
few results from calculus of one variable, which are listed whenever needed, without 
proofs. 

Chapter 3 contains an overview of those results of linear algebra and calcu-
lus of several variables which are likely to receive less attention during standard 
undergraduate courses. In the first section one finds something about the topology of 
IW and of its structure as a normed vector space, the definition of continuity, and the 
equivalence of all norms. Section 2 deals with the operator norm of a matrix, the 
differentiability, first order-approximation, and the mean value inequality. The topics 
of this chapter are needed in Chapters 4 and 5. 

In Chapter 4 we analyze discrete linear dynamical systems. Our study is 
based on three fundamental tools: the spectrum, a fundamental property of the 
spectral radius with respect to the operator norm of a linear map, and the spectral 
decomposition theorem. The first section explores the idea of representing the orbits 
of a linear system using eigenvectors. In Section 2 we study the case when the 
spectral radius is smaller than 1, and the case when all eigenvalues have modulus 
larger than 1. In Section 3 we present the spectral decomposition theorem, dividing 
the treatment into three cases: (1) when all eigenvalues are real and semisimple, (2) 
real but not semisimple, and (3) possibly complex. In Section 4 we investigate the 
saddle case, namely the case when some eigenvalues have modulus smaller than 1 and 
the others have modulus larger than 1. In Section 5 we analyze the case when at 
least one of the eigenvalues has modulus 1. Finally, in Section 6 we study affine 
systems, both in the case when 1 is not an eigenvalue and when it is. 

With Chapter 5 we enter into the more challenging part of the book: the 
study of nonlinear systems in dimension higher than 1. In the first section we 
analyze systems having bounded invariant sets. Three types of maps are studied: 
contractive, dissipative, and quasi-bounded. We show here that the map proposed by 
Lorenz to model atmospheric behavior is dissipative and the one used by Hopfield to 
describe neural networks is quasi-bounded. Section 2 is devoted to maps having a 
unique fixed point that is a global attractor. Three classes of such maps are presented: 
contractions, triangular maps, and gradient maps. The third section deals with fixed 
points and periodic orbits that are sinks. In the fourth section we present repellers and 
saddles, with a brief excursion on stable and unstable manifolds. In Section 5 we 
discuss two fundamental results on bifurcation, including the Hopf case. 

Chapter 6 is devoted to chaotic behavior. The first section opens the chapter 
with the definition of attractor and with a discussion of its relation to stability. In 
Section 2 we present a definition of chaotic dynamical systems based on the presence 
of a dense orbit and of its instability. Sensitivity with respect to initial conditions 
and other alternative definitions of chaos are also presented. In Section 3 we analyze 
the attractors of a chaotic system from the point of view of their dimension. Two 
types of dimension are discussed, the capacity and the correlation dimension. In the 
last section Lyapunov exponents are discussed together with their relation to stability 
and sensitivity with respect to initial conditions. 

In Chapter 7 we present an extensive, although not complete analysis of the 
models introduced in Section 4 of Chapter 1, namely a blood-cell population model, 
predator-prey models for competition between two species, the model proposed by 
Lorenz as an approximation to the dynamics of atmospheric changes, and the 
Hopfield model of a neural network. 
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Appendix 1 contains an extensive collection of Mathematica programs that 
can be used to study discrete dynamical systems. They are referred to frequently 
throughout the book. The students and the teacher are free to use other symbolic 
manipulators such as Maple, or others. The ones presented here are simply for 
illustration purposes. An extensive analysis of a dynamical system is rarely possible 
without the significant help that can be provided by a computer, particularly when 
combined with at least a working knowledge of a powerful symbolic manipulator. It 
is hard, and perhaps even impossible, to get hands-on experience without using the 
enormous computing capability of a machine. Students are urged to learn how to use 
at least one of the many programs available. Some are designed strictly for the study 
of dynamical systems. Others address a much broader range of topics, and have quite 
a few features that can be exploited for a successful numerical study of discrete 
dynamical systems. 

Appendix 2 has a list of references and possible team projects. 
In Appendix 3 the reader finds short answers to selected problems. Many of 

the assigned problems can be solved without using a computing device. The answers 
to others are simpler to find with the aid of a symbolic manipulator. A few cannot be 
done without a computer, or a programmable calculator. A manual with detailed 
solutions of all problems is available from Wiley upon request. 

The starred sections can be omitted without compromising the continuity of 
the presentation. They are clearly marked in the table of contents. The starred 
problems are easier to solve using the Mathematica programs listed in Appendix 1. 

Wiley is providing a web site with some Mathematica programs which can 
be dowloaded and used in the investigation di dynamical systems, particularly in 
dimensions one and two. Please go to 

ftp://ftp.wiley.com/public/sci_tech_med/dynamical_systems 

Many scientists have written extensively about the importance of the topics 
presented in this book. It is hard to add something new to the things they have said 
so beautifully and appropriately. In particular, I believe that the number of mathe-
maticians who feel that these topics should be made accessible to undergraduates 
largely exceeds the number of those who are still reluctant to "follow the trend." I 
belong to the first group, and this book is my attempt to provide one more tool for 
reaching the goal. Many friends have helped me in different ways. I am thankful to 
all of them. In particular I would like to mention Alfonso Albano, the late Stavros 
Busenberg, Courtney Coleman, Annalisa Crannell, Massimo Furi, and William 
Gearhart. When I was uncertain about the presentation of certain topics, or the most 
appropriate examples for clarifying definitions and theorems, they provided invaluable 
help. I am indebted to my students, to my daughter Monica, and to my son Teddy for 
finding numerous errors and misprints. I am thankful to my department, particularly 
to the chairman Dr. Jim Friel, for encouraging me in this enterprise by making a 
course on discrete dynamical systems and chaos mandatory for all math majors at 
CSUF. 

Last, but not least, I would like to express my appreciation to the publisher 
for making the results of my effort available to the community of scientists and 
teachers. I sincerely hope that they will find this book useful. 

Mario Martelli 
Claremont, May 1999 
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CHAPTER 1 

DISCRETE DYNAMICAL SYSTEMS 

SUMMARY 

The chapter opens with some simple examples of discrete dynamical systems and 
continues with a formal definition of discrete dynamical systems and an outline of the 
goals of our study. Definitions of stationary state, periodic orbit, and the concept of 
stability are introduced in Section 2. The third section provides an informal 
description of chaotic behavior by means of aperiodic and unstable orbits. Some 
interesting examples of discrete dynamical systems derived from the current literature 
are presented in Section 4. A detailed analysis of these systems is provided in Chapter 
7 using the theory developed in the previous chapters. 

1 



2 Discrete Dynamical Systems 

Section 1. DISCRETE DYNAMICAL SYSTEMS: DEFINITION 

1. Examples of Discrete Dynamical Systems 

We start our study of discrete dynamical systems with three simple 
examples. 

Example 1.1.1 After searching the interest rates offered by several banks and 
savings and loans in our area, we have decided to invest $5,000 with Everest 
Savings, which offers a 6.5% interest rate compounded monthly. The teller explains 
that at the end of every month the new principal P n e w will be equal to the principal 
of the preceding month multiplied by l+(.065/12). In other words, 

Pnew = U + - J p P o l d . 

Denoting by Po our original investment of $5,000, we obtain that after l,2,...,n 
months Po has grown to 

Pl = U + - [ 2 ~ ) P 0 . P 2 = ( l + l I ~ ) P l = ' 1 + ~ r 2 ~ ) P ° ' - ' 

P n = U + - j p P n - l = U +~Ï2~) P ° -

The formula for Pn above can be generalized to every interest i and to every 
compounding period. For example, we learned that Mercury Savings is offering an 
interest rate of 6.8% compounded every 4 months. After m periods of 4 months, our 
investment has grown to 

P m = U + — ) P m - l = ( 1 + — ) Po-

Hence, 5 years with Everest Savings give a balance of P60=( 1+065/12) Po= 

$6914.09, while with Mercury Savings the balance is Pi5=(l+.068/3)15Po= 
$6998.12. After 5 years we are slightly better off with Mercury Savings. 

Let us use XQ, i, and m to indicate the initial investment, the interest and 
the number of compounding periods in a year, respectively. After n + 1 compounding 
periods, the amount Jtn+i available to us is given by 

jtn+i = (1 + i/m)xn= (1 + i/m)n+1jc0. (1.1.1) 

We have here a simple example of a discrete dynamical system. Let F(JC) be the 
function 

F(JC) = ( 1 +i/m)jt. 

The system is governed by F and (1.1.1) can be rewritten in the form 
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*n+l=F(*n) = F n + W 0-1-2) 

where Fn+1(jc) represents the (n+l)th iterate of F. For example, 

F2(x) = F(F(JC)) = (1 + i/m)F(jc) = (1 + i/m)(l + i/m)jc = (1 + i/m)2jc. 

In other words, F2(JC) is evaluated by replacing x with F(JC) in the formula that 
defines F. To be more accurate we should write F(i,m,jt)=(l+i/m);t, since both i and 
m play a role in the growth of the investment. However, we are interested mainly in 
the growth of x once i and m are fixed. Hence, we can still write F(*)=(l+i/m)*. The 
principal x is the state variable of the system. The interest i and the number m of 
compounding periods in a year are the control parameters. 

The goals we are pursuing can be summarized as follows: 

• Find the growth of any initial investment XQ> given i and m. In other 
words, look at the evolution of the state variable once the control 
parameters are fixed. 
• Investigate how changing the control parameters (either i or m or both) 
affects the growth of the investment. 

Frequently, both aspects are considered simultaneously. 
We list some of the problems the reader may like to study: 

• Given an interest i and a length m of the compounding periods, find how 
long it will take for an investment to double its original value. 
• Find how much the interest should be for the investment to double in a 
certain period of time, assuming that the length of the compounding periods 
is known. 
• Compare the combination of different interest rates and different com-
pounding periods to see which bank offers the best deal. 

Example 1.1.2 Our friend Ann, who is a biology major, is investigating the 
evolution of a colony of bacteria in the laboratory. In discussing the experiment we 
learn that it would be nice to have a formula that gives week by week the number N 
of bacteria per square inch. Ann tells us that in recent weeks there appears to be some 
kind of periodic behavior in the number of bacteria. One week their total appears to 
be higher than the number that can be supported by the laboratory environment 
(approximately 2.5xl06 bacteria per square inch), and the week after the number 
appears to be lower. 

To avoid dealing with very large numbers we let ;t=N/106 and we tell Ann 
that the proposed problem can be solved if we find the form of dn and pn in the 
discrete dynamical system: 

*n+l = * n - d n + pn. (1.1.3) 

We explain that xn+\ represents the number of bacteria (divided by 106) at the be-
ginning of the (n+l)th week of the experiment, xn represents the same number the 
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week before, and dn, pn are respectively the bacteria that died and were produced 
during the nth week. Ann tells us that experimental observations made so far suggest 
that about two-thirds of the bacteria die in any given week. Consequently, we suggest 
that dn=.7jcn. Finding the form of pn proves to be more challenging. She informs us 
that the growth of the colony was slow but steady at the beginning, and the periodic 
oscillations have been observed in the last few weeks. After some discussion and 
computer investigation we find that an acceptable form for pn is pn=12*n/(l+;tn

4). 
We rewrite (1.1.3) in the form 

12x \2x 
*n+l=*n-.7*n + 7—-JL4 = »3*n + - " 4 - (1-1.4) 

1 + xn l + * n 

We explain to Ann that this is a discrete dynamical system governed by the function 
F(jc)=.3jt+12jt/(l+Jt4), where x is the state variable of our system. Using F, we write 
(1.1.4) in the more compact form 

*n+l=F(Jtn). (1.1.5) 

We also remark that a more general version of ( 1.1.4) could be 

- n + l - n - a x n + 7 ^ = ( . - a ) , n + r ^ - F . (1.1.6) 

where a, b, c, d, and p are control parameters whose values can be adjusted to 
accommodate different experimental data. Then F becomes 

F(a,b,c,d,p^) = (1 - a)x + 3—, or F(a,x) = ( 1 - a)x + 3 — > 
c + dxP c + djcP 

with a=(a,b,c,d,p)e R5 (since a has five components). Hence, (1.1.6) can be written 
in the form 

*n+l = F(a,*n). (1.1.7) 

However, since the evolution of the colony is usually studied with a, b, c, d, and p 
fixed, we may simply write F(jt)=(l-a);t +b*/(c+dxP). Ann is very impressed by our 
analysis and is curious to see how our proposed model works. We go together to the 
computer lab, and open Mathematica. We use model (1.1.4). We ask her to suggest 
an initial value for the number of bacteria and she says that jto=1.5(xl06) is a good 
estimate of the number with which the experiment started. Using a suitable 
Mathematica program (see Appendix 1, Section 2) and (1.1.4), we construct the first 
60 states of the population of bacteria; namely, we compute jq=F(1.5), *2=F(jq ),..., 
jcgo=F(jC59) and we plot the points (0,xo), (l,;q),..., (60,JC6O)- To make more 
evident how the population of bacteria is evolving, we connect all pairs (i-l,jq.i), 
(i,jtj), i=l,2,...,60 with segments (see Fig. 1.1.1). The graph shows clearly that after 
an initial period of adjustment, the number of bacteria in the colony oscillates 
between one state above and one below 2.5x10*\ which, according to Ann, represents 
how many bacteria per square inch can be sustained by the laboratory environment. 
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Fig. 1.1.1 It is evident that after an initial period of adjustment ("transient") the popu-
lation of bacteria is oscillating periodically (with period 2). 

We observe that the period of adjustment does not reflect the growth pattern 
observed by Ann at the beginning of the experiment. Different values of the 
parameters are needed to model this feature. For example, we could use a=.4, b=c=4, 
and p=2. We mention to Ann that the parameters cannot be expected to remain 
constant during an experiment. We also point out that a different choice of a, b, c, 
d, and p in (1.1.6) can model a behavior of the colony more complex than the steady 
growth or the periodic oscillations. For example, leaving a, b, c, and d as in (1.1.4) 
and selecting p=5 gives the system 

*n+l - -3*n + 
l+*n5 

(1.1.8) 

With the same initial condition JCO=1.5, we obtain a graph which suggests that the 
number of bacteria in the colony is evolving in an erratic manner (see Fig. 1.1.2). 

Ann now believes that mathematics can be very useful in biology! She is 
curious to know if there is a model in which the three patterns of steady growth, 
periodic oscillations, and erratic evolution can be produced by changing only the 
death rate a. We tell her that the question is very interesting and we promise to 
investigate it. 

Example 1.1.3 After a few days, Ann returns with another problem. Producing 
some newspaper clippings she points out that the ash whitefly (Siphoninus 
phillyreae) was introduced in Southern California around August 18, 1988 and 
multiplied so quickly that 48 of the 56 California counties were literally invaded by 
these pests. 

About three years later the entomologists from UC Riverside imported, 
mass reared and released the ash whitefly's natural enemy, a tiny black wasp (Encarsia 
inaron). The summer infestation density of the ash whitefly before the mass release 
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of E. inaron averaged 8 to 21 whiteflies/cm2 of infested leaf. Within two years of E. 
inaron release the infestation density dropped to .32 to 2.18 whiteflies/cm2 leaf (see 
[Pickett et al., 1996]). Ann would like to know if we can design a mathematical 
model of this situation. 

Fig. 1.1.2 It appears that when the evolution of the colony of bacteria is governed by 
(1.1.8) the number of bacteria follows an erratic pattern. 

After giving the problem some serious consideration, we feel that the 
populations of whiteflies and tiny wasps should undergo periodic one-year 
oscillations, with possible different levels of density for both populations during the 
different seasons. At the outset we are inclined to adopt a model for the whiteflies 
similar to the one proposed before for the colony of bacteria, possibly with different 
constants and with an extra term to account for the whiteflies destroyed by the E. 
inaron. However, after some research in the library, we realize that this dynamical 
process belongs to the class of predator-prey problems, which have been studied 
extensively since 1920 (see Section 4 of this chapter for details). Guided by the 
literature in this area, and after some computer experiments we choose the form 

xn+\ = \.0\xn- .00%xnyn 

vn+l = -9yn+ .04yn(1.01xn- .065xnyn) . 
(1.1.9) 

We show (1.1.9) to Ann and we explain that the state variable x represents the 
whiteflies (JC=2 means an average of 2 whiteflies/cm2 of infested leaf) and the state 
variable y the wasps (y=3 means an average of 3 black wasps/cm2 of whiteflies 
infested leaf). We point out that in the absence of wasps, the population of whiteflies 
grows exponentially (see Fig. 1.1.3), since 

jq = 1.01*0, *2= 1-Oljq = (1.01)2Jto,..., JCn = (1.01)nJCQ,... 
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and (1.01)n-»°o as n-»«>. This is not very realistic in the long run, but it was 
certainly true for the first few months after the infestation began. In the absence of 
whiteflies the wasps become extinct since 

y\ = -tyo. yi = -9yi = (.9)2yo..». yn = (9)nyo,.-

and (.9)n-»0 as n-»«>. The function governing the system is 

F(x) = F(jt,y) = (1.01JC-.008JC)', .9y+.04jcy(1.01-.065j)). (1.1.10) 

F is a function from R2 into R2, although for obvious reasons we are interested 
only in the first quadrant of R2, namely x>0 and y>0. The component functions of F 
are 

Fi(x) = Fi(jt,y) = I.OIJC - .008ry, F2(x) = F2(*j) = .9y + .04JCJ(1.01 - .065y). 

System (1.1.9) can be rewritten in the form 

xn + l = F(xn). (1.1.11) 

8 / 

6 y / 

5 ^ ^ 

4 ^ ^ ^ 

3 ^ ^ ^ ^ ^ 

20 40 60 80 100 120 140 

Fig. 1.1.3 The number of whiteflies/cm2 of infested leaf grows exponentially in the ab-
sence of a natural enemy. 

We assume that in agreement with the available data, the average number of white-
flies/cm2 of infested leaf was JCO=14 at the mass release of black wasps, and let jo=2. 
Hence, the initial state is xo=(14,2). We compute the first 400 states of the 
populations of both species and plot in one graph (i,jq), and in another (i,yj) for 
i=0,l,...,400. We superimpose the two graphs (Mathematica uses the Show 
command: see Section 2 of Appendix 1) to obtain Fig. 1.1.4, in which the larger 
dots represent the whiteflies. We see that their population decreases dramatically. We 
do not see in the graph the convergence of both populations to the steady state 
(2.15,1.25), which appears to be a reasonable long-term outcome and is in good 
agreement with the data provided. 
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Ann is truly amazed by the proposed model, but we feel that it is not perfect 
and that further adjustments are needed. For example, we can make the model more 
general by introducing some parameters, as we did in the case of the colony of bacte-
ria. A starting point could be 

F(x) = F(x,y) = (a* - .008jry, cy + .04;ry(a - .065y)). (1.1.12) 

In (1.1.12) a and c are two control parameters, a>l and ce (0,1), which can be ad-
justed to fit experimental data and to better represent the behavior of the two popula-
tions. Then, to be more accurate, we should write 

F(a,x) = (ar - .008ry, cy + .04xy(a - .065y)) (1.1.13) 

where x=(jt,y) is the vector in R2 which represents the two state variables of the 
system (number of whiteflies and number of black wasps) and a=(a,c) is a vector in 
R2 which represents the (positive) control parameters of the system. The dynamical 
system becomes 

xn + 1 = F(a,xn). (1.1.14) 

However, when parameters a and c are regarded as fixed numbers, we may prefer the 
symbol F(x) to F(a,x) and write (1.1.14) in the simpler form 

xn+l = F(xn). (1.1.15) 

Fig. 1.1.4 The population of whiteflies (larger dots) decreases dramatically after the in-
troduction of black wasps. The two populations converge to the state (2.15, 
1.25), in agreement with the information provided. 

Problems 
Throughout the book, problems with a * have questions whose numerical 

and/or graphical solution may require a computer or a calculator. The Mathematica 
programs that can be used in the numerical investigation of these problems are 
contained in Appendix 1. When the problem requires you to find the time or find the 
fixed point or similar quantities, you should find the exact value whenever possible. 
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1. * An investor makes a deposit of $50,000 at 7% compounded monthly. 
Find the time needed for the principal to double, namely to reach $100,000. 

2. * An investor makes a deposit of $5,000 at 6% compounded monthly. After 
30 months the investor adds $3,000. At that time the bank changes the 
compounding period to a trimester. Find the balance after 45 months. 

3. * A colony of bacteria starts with XQ=2A(X\0^) bacteria/inch2. It is as-
sumed that the growth of the colony is governed by F(jc)=.6^+4x^e"^ -$x 

where JC(XIO^) represents the number of bacteria/inch2. The time interval 
between the nth and the (n+l)th generation is one week. Write the 
dynamical system that governs the evolution of the colony and find out how 
many bacteria/inch2 there are after 10 weeks (for a suitable Mathematica 
program to find x\o, see Section 2 of Appendix 1). 

4. * Examine the same situation of Problem 3 assuming that XQ is the same 
but that F(jc)=.4jc+4jc6e-L5jc. 

5. * Find those values of JC such that JC=.3JC+12JC/(1+J:4) (see Example 1.1.2). 
These are the stationary states (or fixed points) of the system (you can use 
the programs of Appendix 1, Section 4). 

6. * Assume that the growth of a colony of bacteria is governed by F(jt)=.6;t 
+4jt6e"l-5*. Find those values of x such that JC=F(JC) (see Appendix 1, 
Section 4). Generalize F with the introduction of control parameters. 

7. In Example 1.1.3 [see (1.1.10)] there are two different state vectors x in the 
first quadrant such that x=F(x). One of them is x=0. Find the other one. 

8. * Explore the consequences of changing the values of parameters a and c in 
the system of Example 1.1.3 [see equality (1.1.12)]. Introduce other 
parameters and investigate how the evolution of the system is affected by 
changes in these new parameters. 

9. * Use the Orbit program (Appendix 1, Section 2) to illustrate the growth of 
the investment in Problem 1. Compare the outcomes with Everest Savings 
and Mercury Savings. Make some comments. 

10 . * Explore the possibility of solving the problem proposed by Ann in 
connection with Example 1.1.2. 

2. Definition of Discrete Dynamical Systems 

After looking at the previous examples, we see that a discrete dynamical 
system is a relation of the form 

x n + i = F(xn). (1.1.16) 
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The function F(x) of (1.1.16) may contain a number of control parameters a= 
(a,b,c,...). In this case the function should be written F(a,x). However, as mentioned 
before, when the parameters are considered fixed, we may prefer the notation F(x) to 
F(a,x). How to arrive at (1.1.16), its meaning, use, and limitations are described 
briefly below. We assume that a given real dynamical process has to be studied, as in 
the three examples presented before. 

• We identify the state variables of the system. For example, in the 
biological process involving the two competing species of whiteflies and black 
wasps, we are interested in knowing how each species affects the evolution of the 
other. Hence, two state variables are needed. We used the coordinates of the two-
dimensional state vector X=(JCVV) to represent the average number of whiteflies and 
black wasps per infested leaf. In general, the state vector x is q-dimensional, i.e., 
xeRÇ. 

• We identify possible control parameters of the system. In this step we 
look for those parameters that affect the evolution of the state variables. In the first 
example we found two: the interest rate i and the number m of compounding periods 
per year. Hence the parameter vector a had two components, a=(i,m), ae R2. In the 
second example we proposed five parameters: a,b,c,d, and p. Hence, a had five 
components, a=(a,b,c,d,p), ae R5. In general, a has m components, i.e., a€ Rm, 
with m and q usually different. 

• The next step is to determine the mathematical relations that translate the 
laws governing the evolution of the process. As suggested by (1.1.16) and as we 
have seen in the three examples, these relations are embodied by a function F which 
depends on the state vector x and on the parameter vector a, although we have agreed 
to consider a constant. The range of F is in the same space where the state vector x 
lives. In fact, in the first two examples the state variable was simply JC, and F was a 
function from R into R, although in both cases we were interested only in JC>0. In 
the second example the state variables were two: JC and y. Thus we considered the 
vector x=(jc,y) and F was a function from R2 into R2, although once more we were 
interested only in JC>0 and y>0. 

In Examples 1.1.2 and 1.1.3 we have seen that determining the exact form 
of F might be a nontrivial task. The situation analyzed in Example 1.1.3 was 
particularly challenging and we may still have doubts that our model is the best for 
the problem proposed. In general, F is defined on some subsets UcRm and VcR^ 
with range in R9. We can write F : UxV—»RÇ, where UxV is the standard Cartesian 
product of the two sets U and V. Notice that F is identified by its q component 
functions ¥\ : UxV—>R. For example, in (1.1.13) we have Fi(a,x)=ajc-.008xy, 
F2(a,x) =cy+.04jcy(a-.065y). 

Determining the proper form of the function F is a central part of the 
modeling process. It is not an easy task. As a rule of thumb, one can say that there is 
an optimal range for the level of complexity of any model. Below this range, the 
model is biased toward the theoretical side, and above this range the model loses its 
synthetic advantage. Large areas of uncertainty remain between these two extremes, 
and it may be difficult, or even impossible, to design an "optimal model," namely, a 
model in which all advantages and key features are incorporated. 
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• We are now ready to write the dynamical system (1.1.16), which tells us 
how the (n+l)th state of the vector x, denoted by xn + i , is obtained once the nth state 
xn is known. The 0-state, xo, is called the initial state. It can be any vector x in 
the domain of F. The evolution of the system starting from xo is given by the 
sequence 

xo, xi = F(x0), x2 = F(xi) = F(F(x0)), x3 = F(x2) = F(F(F(x0))), ... . 

We usually write F2(x), F3(x), ... in place of F(F(x)), F(F(F(x))) Hence, we 
have 

xn + l = F(xn)=Fn+1(x0). (1.1.17) 

Equality (1.1.17) will be used repeatedly throughout the book. 

Definition 1.1.1 
The sequence {xo, X],..., xn,...} is denoted by O(xo) and is called the orbit or 
trajectory of the system starting from XQ. 

As remarked previously, we shall always assume that as an orbit O(xo) 
evolves, the control parameters are kept constant, although we realize that this 
limitation may be unrealistic in real processes (see Example 1.1.2). 

• The time interval between two successive states of an orbit is usually 
suggested by the real process itself. For example, xn+i could be separated from xn 

by one hour, one day, one week, one month, etc. In the examples presented before, 
the time interval was the compounding period (in Example 1.1.1) and one week (in 
Example 1.1.2). No time interval was provided for Example 1.1.3. 

The reader is probably thinking that in real processes the time variable 
evolves in a continuous rather than a discrete manner. Our approach does not follow 
this continuous evolution. We sample the state of the system at fixed time inter-
vals. This strategy can be better understood if the reader thinks about the standard 
practice of measuring body temperature every 6 to 8 hours, even though the tempera-
ture undergoes continuous changes. With proper choice of the time step, the tech-
nique provides very useful information on the behavior of the real process. The time 
intervals are always assumed to be equally spaced and are denoted by 0, 1,..., n,.. . . 

The following additional examples should make the reader more familiar and 
comfortable with the topics discussed so far. 

Example 1.1.4 Assume that the value xn+\ of the state variable x at time n+1 
depends on the value ;cn at time n according to the relation 

*n+l = axn(l -*n) . 

The function that governs the system is F(*)=ajt(l-;c), and q=m=l. Once more, we 
should really consider F as depending on the variable x and on the parameter a, 
namely F(a,jt)=ajt(l-;c). This dynamical system is called logistic. For modeling 
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reasons it is normally required that xe [0,1] and ae [0,4]. Hence U=[0,4] and V=[0,1]. 
The time step is left open. 

Given an initial state JCO, we have 

*1 = F(xo) = aro(l -*o) .*2= F(*l) = a*lO -x\). 

Since jq=ajco(l-Jco), we obtain 

X2 = a(aro(l -*o))0 - a*o0 - *o)) = a2*o0 ~ *0) - a V t 1 - *0)2 = F2(JCO). 

Hence, X2 is computed by replacing JCO with F(JCO) in the definition of F. Similarly, 
X3, *4, ... are obtained by replacing JCO with F2(JCO), F3(JCO),... in the definition of F 
(for the numerical aspect of this process, see Appendix 1, Section 2, Subsection 1). 

Example 1.1.5 Assume that in a two-species population the size of each species 
at time n+1 depends on the size at time n according to the relations 

f*n+l = a*nO -Xn-yn) 

Lvn+1 = b.rnyn. 

Then x=(jt,y)e R2 and a=(a,b)€ R2. The function governing the system is 

F(x) = F(jc,y) = (ajc(l - JC - y), bjcy), (1.1.18) 

with component functions Fi(x)=ajc(l-jc-y) and F2(x)=bjry. 
Technically, we should regard F as a function of x=(jc,y) and a=(a,b) and 

write 

F(a,x) = F((a,b), (*,y)) = (Fi(a,x), F2(a,x)), 

where Fi(a,x)=a*(l-jc-y) and F2(a,x)=bjcy. However, we can still use form (1.1.18) 
when we study the evolution of the two species. In fact, in this case, the parameters a 
and b are considered constant, although their exact value may not be specified. 

The state variable and the parameters are assumed to be positive. Hence, 
U={(a,b): a>0, b>0}, V={(jc,y): JC>0, y>0}. The time interval between two successive 
states is left open. 

Goals of this book 
In this book we do not study the strategies and methods used to derive 

(1.1.16) from a real dynamical process. This topic belongs to a book on 
mathematical modeling and is not addressed here. Also, we do not normally 
investigate and discuss the length of the time step between successive states. The 
starting point of our study are relations of the form (1.1.16). We plan to achieve the 
following distinct but strictly related goals: 

1. Analyze the behavior of ( 1.1.16) for different values of xo, considering 
the parameters fixed. 
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2. Study the changes in this behavior as the parameters are changed. 

We provide now a more detailed description of the two goals and illustrate, with a 
simple example, how they can be achieved. 

• The first task is to determine the behavior of the orbits of (1.1.16) (we 
also say "the orbits of FM) for different choices of the initial condition xo. We focus 
on the long-term behavior of the orbits. In other words, we look at what an orbit 
does for n very large, or more rigorously, as n—>«>. We do not intend to neglect the 
"transient behavior," namely, what is happening at the beginning of an orbit, i.e., for 
small values of n. In fact, frequently we will be looking at an entire orbit O(xo). Our 
main interest, however, is to determine the fate of xn as n-*». We call this part state 
space analysis of the dynamical system. 

• The second task is to study the changes in the characteristics and behavior 
of (1.1.16) brought to bear by changes in the parameters. We call this part parameter 
space analysis of the dynamical system. During this stage of our investigation we 
should use, for obvious reasons, F(a,x) rather than F(x). 

When a is a scalar (denoted by a, ae I, I cR , I an interval) the set of 
functions {F(a,x) : ae 1} is called a one-parameter family of maps. We shall pay 
particular attention to the properties of such families. 

The following simple example illustrates how both tasks can be accom-
plished. 

Example 1.1.6 Let F(jt)=ajt+2. This is a one-parameter family of maps and we can 
write {F(a,jt)=a*+2, ae R}. To illustrate the two types of investigations mentioned 
above, first consider the parameter a fixed, for example, a=3/4. Hence, F(jt)=(3/4)jt+2. 
Notice that if we select JCQ=8 we have x\ =(3/4)8+2=8. Thus, X\=XQ. We call this 
value of x a fixed point of F since 8=F(8), and we denote it by xs. 

Let us study the orbits of the system Jtn+i=(3/4)jtn+2. Using the fixed point 
8 we can write 

jcn+l = (3/4)(*n-8) + 8. (1.1.19) 

Given JCQ, we have 

x\ = (3/4)(JC0 - 8) + 8, x2 = (3/4)(jq - 8) + 8 = (3/4)2(JC0 - 8) + 8, ... . 

In the expression for X2 we have replaced x\ with (3/4)(JCQ~8)+8. After n+1 steps we 
arrive at 

*n+l = (3/4)n+1(*0-8) + 8. (1.1.20) 

Since (3/4)n+1->0 as n-><» we obtain that jtn+i->8 as n-»oo. In other words, every 
orbit converges to the fixed point *s=8 no matter what the initial condition Jtfje R 
might be. 
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Let us investigate what changes the system goes through as the parameter a 
is changed. First, the fixed point is now the solution of jc=ajc+2. We see that there is 
no fixed point when a=l, and there is only one, jcs(a)=2/(l-a), when a*l. We have 
written *s(a) since the fixed point "changes" with a. When a*l we can use (1.1.19) 
with 3/4 replaced by a and 8 replaced by jcs(a). By writing xs instead of *s(a), the 
relation (1.1.19) assumes the form 

*n+l = a(jrn - xs) + *s, (1.1.21) 

and (1.1.20) becomes 

* n + l = an+1(;co-*s) + *s. (1.1.22) 

With lakl every orbit converges to jcs=2/(l-a) since an+1 —»0 as n—»<*>. With lal>l 
the orbit of every initial state JCO**S goes to infinity. For a=-l the fixed point is 
JCS=1, and given Jto^l, we have ;q=-jto+2, jt2=-*i+2=-(-jto+2)+2=jco, JC3=-jt2+2=-
jto+2=jq. Hence the orbit is XQ, jq=-Jto+2, XQ, -*o+2, jt(), ... . We say that O(JCO) 

is periodic of period 2. For a=l we have X\=XQ+2, jc2=jq+2=jco+4, JC3=JC2+2= 

xo+8,... . Every orbit goes to +<». 
We have completed the parameter space analysis of our system by 

specifying how the system jtn+i=ajcn+2 behaves for all possible values of the 
parameter ae R. 

Example 1.1.6 gives a little taste of how the two goals can be achieved. It 
also shows that the two tasks, although different, are strictly related. In many cases 
we will not make an effort to identify which task we are pursuing. 

Sometimes (1.1.16) is replaced by slightly more general forms, like 

xn + i = F(xn, xn_i). (1.1.23) 

Equation (1.1.23) tells us that the state of the orbit at time n+1 depends directly from 
its states at time n and n-1. We call (1.1.23) a discrete dynamical system with a 
delay of a one-time unit. We can eliminate the delay by increasing the dimension of 
the system. We set yn+l=xn and rewrite (1.1.23) as follows: 

xn+l = F(xn> yn) 
(1.1.24) 

yn+i = xn . 

By setting G(x, y)=(F(x,y),x) and z=(x,y) we arrive at 

zn+i = G(zn), (1.1.25) 

which is of the same form as (1.1.16). More complicated cases are also possible, and 
they are solved analogously, as the following examples show. 
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Example 1.1.7 Let Jtn+i=ajtn_i(l-jtn). This one-dimensional dynamical system, 
containing a delay of a one-time unit, can be replaced by a two-dimensional system 
with no delay by setting yn+l=*n- We obtain the system 

J*n+1 = ayn(l - * n ) 

Ui+1 = *n-

In vector form we get xn+i=G(xn) where x=(jc,y) and G(x)=(ay(l-*),*). 

Example 1.1.8 Let *n+l=a*n(l-;cn_2). The dynamical system contains a delay of 
two-time units. We can replace it with a three-dimensional system with no delay. Set 
yn+\=Xn and Zn+l^n- We obtain 

f*n+l = axn(l -Zn) 

hn+\ = *n 
Ui+1 = Jn-

In vector form we have xn+i=G(xn), x=(*,y,z), G(x)=(ajc(l-z),x,;y). 

Example 1.1.9 Assume that xn+i=F(xn,xn.i,xn_2). Let yn+l=xn and wn+i=yn . 
We obtain the system 

xn+l = F ( x n , yn. w n ) 

yn+1 = xn 

wn+l = yn-

Setting z=(x,y,w), G(x,y,w)=(F(x,y,w),x,y), we can write zn+i=G(zn) which is of 
the form (1.1.16). 

In this book we always assume that x n + i depends directly only on xn. 
Systems with delay, i.e., when xn + j depends directly on one or more states of the 
form Xn-k, k>l, are replaced by higher-dimensional systems with no delay. 

Problems 
1. Let F(a,jt)=jc(ax-b). The dynamical system governed by F is xn+\=xn(axn-

b). Identify the state variables and the control parameters. 

2 . Let xn+i=F(a,xn), where F(a,x)=(ajc(l-jt-y),bjry). Write the dynamical sys-
tem explicitly (namely, Jtn+i=...»)>n+l=—). pointing out its state variables, 
its parameters, and its component functions. 

3 . Let F(a,x)=(2L(x-y),bx-y-xz,xy-cz). Write explicitly the discrete dynamical 
system governed by F. Identify the state variables, the control parameters, 
and the component functions. 

4 . Let F(a,jc)=-ajt2+l. Write explicitly F(a,F(a,Jc)), usually denoted by F2(a,jc) 
(you can use the programs of Appendix 1, Section 2). 
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5 . Let F(a,jt)=jt(a-bjt). Write explicitly F(a,F(a,jt))=F2(a,jt). 

6 . Let F(a,jc) =-a;c2+l. What is the degree in x of the polynomial F3(a,;t)? 
What about the degree in a? Generalize to Fn, the nth iterate of F. 

7 . Let *n+i=jtn+jtn-i. This is the Fibonacci sequence and it can be regarded as 
a one-dimensional discrete dynamical system with a delay of one-time unit. 
Replace it with a two-dimensional system with no delay. 

8 . Let jcn+i=ajcn.i(l-*n-2)- Replace this one-dimensional system with a three-
dimensional system with no delay. 

9 . Let 

fxn+i = 2 x n - . 2 * n - i y n - l 

W M = yn+ .l-Kn-l^n-l-

Replace the two-dimensional system having a delay of a one-time unit with 
a four-dimensional system with no delay. 

10 . Let xn+i=F(xn) with F given by (1.1.12). Assume that at certain point in 
time the y species becomes extinct. Denote by XQ the size of x at that time. 
Verify that x will grow exponentially from that point on (recall that a>l). Is 
this unrestricted growth reasonable? 

1 1 . Let xn+i=F(xn) with F given by (1.1.12). Assume that at a certain point in 
time the JC species becomes extinct. Denote by yo the size of y at that time. 
Verify that y will become extinct (recall that 0<c<l). Is this outcome 
reasonable? 

Section 2. STATIONARY STATES AND PERIODIC ORBITS 

1. Stationary States 

Definition 1.2.1 
A point XQ is called a stationary state of (1.1.16) if 

X1 = F(xo) = x0. (1.2.1) 

The symbol xs will be used to denote a stationary state. Each xs can be regarded 
either as a state of the dynamical system xn+j=F(xn) satisfying (1.2.1) or as a vector 
x satisfying the system of equations x=F(x). For this reason we shall also call xs a 
fixed point of F. 

Example 1.2.1 Every stationary state of the system ;cn+i=ajcn(l-xn) must satisfy 
the equation jc=ax(l-jc). We see that xs=0 is a stationary state regardless of the value 
of a. Assuming that JC*0, we obtain 
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1 = a( 1 - x) or ajc = a - 1. (1.2.2) 

Therefore, a second stationary state is jcs(a)=(a-l)/a. We have written jcs(a) since the 
point changes with a. For every a we can visualize the fixed points of F(x)=ax(\-x) 
since they are given by the intersection of the graph of F with the line y=x (see Fig. 
1.2.1 for a=3). 

Example 1.2.2 The stationary states of (Jcn+i,yn+i)=(ajcn-bjcn>'n,cjn+d^rLyn) are 
the solutions of the system 

x = ajc - bjcy 

y = cy + dxy. 

The point (0,0) is a solution regardless of the values of a,b,c, and d. Assume 
that 0<c<l and a>l. It follows that JC=0 if and only if y=0. Thus, additional 
stationary states satisfy the inequality jry^O. Dividing the first equation by x and the 
second by v, we obtain the system 

fl = a - bv 

Ll = c + djc. 

Hence, x = (l-c)/d, y =(a-l)/b or xs(a)=((l-c)/d,(a-l)/b). 

(1.2.3) 

0.8 

0.6 

Fig. 1.2.1 The fixed points of the dynamical system governed by the function 
F(*)=3.*(1-J0 are the intersections of the graph of F with the line y=x. 
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Notice that any orbit starting from a stationary state xs will not move away 
from it. This situation is possible in theory, but not in practice, since every process 
undergoes small fluctuations which are normally not accounted for in a model. These 
fluctuations will force the system out of xs. This observation, together with others 
which will be discussed later, motivates the introduction of the idea of stability. 
Some fundamental definitions are presented in this chapter. Other concepts related to 
stability will be discussed in later chapters. 

Stable stationary states 

Definition 1.2.2 
A stationary state xs is stable if for every r>0 there exists ô>0 such that 

llxo - xsll < Ô implies that llxn - xsll < r for all n > 1. (1.2.4) 

In other words, once we have chosen how close we want to remain to xs in the future 
(choice of r), we can find how close we must start at the beginning (existence of 8). 

The symbol llxll denotes the "Euclidean norm" of x, defined by 

llxll = ll(jq, ..., jcq) II = (x\2 + ... + xq
2)-5 . (1.2.5) 

In R the Euclidean norm is the usual absolute value. 

Example 1.2.3 Let F(JC)=1-JC. The point xs=.5 is the only fixed point of F. For 
every other initial state JCQ we have jq=F(jco)=l-.*o , F(F(jto))=F(l-xo)=JC0- Thus, 
|jtn-.5l=ljco-.5l for all n=l,2,... . The fixed point JCS=.5 is stable (see Fig. 1.2.2). In 
the definition of stability the number Ô can be selected equal to r. 

Fig. 1.2.2 This graph shows the fixed point .5 and graphically illustrates its stability 
(see Example 1.2.3). 


