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PREFACE 

This book is about the algebraic notion of "structure". In mathemat-
ical thinking, a structure crystallizes whenever attention is focused 
either on combining elementary objects of some kind to form other 
objects of a similar kind, such as adding numbers to form new num-
bers, or on relating objects to each other, such as comparing num-
bers by magnitude. Instead of numbers, two points in space may be 
combined to define a line, a point and a line may be combined to 
define a plane, and these geometric objects may also be linked by 
relations such as inclusion and parallelism. Numbers represent a sig-
nificant abstraction from whatever is being weighed or enumerated, 
and straight lines miss much of the reality of land surveying. How-
ever, algebra involves a second shift in interest, from the things com-
bined to the ways of combination. 

Numbers with addition constitute the historical archetype of al-
gebraic structure. If negatives are included, we have a group; if not, 
we have a semigroup. If multiplication is taken into consideration as 
well as addition, then a more complex structure called a ring arises. 
There is the ring of integer numbers, and the ring of rational num-
bers, and so on. Most important for the algebraist is the realization 
that there are rings consisting of objects that are not numbers at all; 
objects that can be added and multiplied and that obey rules such as 
a(b + c) = ab + ac. 

This volume presents a basic theory of groups and rings and other 
algebraic structures. Like most algebra texts, it has a chapter on 

xiii 
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fields and one on vector spaces. Like some more recent texts, it in-
cludes lattices and universal algebras. The classical number systems 
Z, Q, R and C find their raison d'etre in abstract algebra, and not the 
other way round. 

The machinery is based on sets, order relations, and closure op-
erators. All mathematical objects are defined in terms of sets. The 
entire theory is derived from nine set-theoretical axioms. Sets can 
also be viewed as the simplest kind of all structures. They are the 
subject of Chapter I. 

There are two reasons to study order relations in algebra. First, 
more or less obvious order relations present in various algebraic 
structures provide simple explanations of what is going on. Second, 
the study of ordered sets, as a kind of structure, can be undertaken in 
the same spirit as the study of structures with a law of composition. 
To a lesser extent the same is true for graphs. 

Binary operations more general than those of groups are needed 
to discuss ring multiplication, lattices, and word concatenation. Par-
tial binary operations are needed for categories. However, in the last 
chapter on categories we do not enter into any generalization that is 
not directly relevant to the material in the preceding chapters, de-
spite (or rather because of) all the new algebra that could be thus 
presented. 

The fundamental role that closure operators play in algebra led 
us to view matroids and topological spaces as structures of an al-
gebraic nature. This is why we devoted a separate chapter to each, 
rather than confining them to subsidiary treatment under "geometric 
lattices" and "filters in Boolean lattices." 

Students of algebra and researchers in other areas will find in 
this book an introduction to, or a clarification of, the basic theories 
of the twelve kinds of structures. A comprehensive exposition of 
each particular theory is not the aim of this text. Rather, we seek to 
identify essentials and to describe interrelationships between par-
ticular theories. We hope that the specialist of commutative algebra 
will find matroids worth the reading and that the student of dis-
crete mathematics will find special relativity close to his or her own 
field. 

The material is self-contained. The reader need not know any 
mathematical definitions, results, or methods. However, the pace and 
density of exposition corresponds to those of graduate texts. 
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Selected advanced results are derived from weak rather than 
strong hypotheses, whenever this is compatible with the objective of 
simplicity. Also, several classical concepts are introduced relatively 
late, in order to demonstrate the simplicity of certain results estab-
lished without the use of these concepts. Thus, Zermelo's Theorem 
is proved before set intersections are introduced, elementary group 
theory (including Lagrange's Theorem) is developed before the the-
ory of integers, and a simple Galois theory is presented without call-
ing on vector space dimensions. And if some major algebraic con-
cept fails to appear altogether, the reader may conclude that it is not 
required for any of the theorems included in this short volume. 

Throughout the text the student is frequently prompted to per-
form exercises of verification and to explore examples. These inte-
grated exercises are indispensable for any reader not yet familiar 
with the theory. At the end of each section, there are additional 
numbered exercises from which to select. Many of these are open-
ended questions in the sense that while a satisfactory answer can be 
given without much difficulty, there is ample room for better and 
more complete answers. (An exact science mathematics may well be, 
but mathematical research is not more deterministic than any other 
intellectual endeavor.) 

Each chapter builds on key notions introduced in previous chap-
ters. However, if you are already conversant with some of the struc-
tures, then you may go directly to selected chapters or even sections 
and use the index whenever you suspect a divergence between your 
definitions and ours. 

In a course or seminar, the book should be used as reading ma-
terial before or after verbal presentations. If the syllabus is limited 
to certain chapters only, the instructor should summarize for the stu-
dents the definitions needed from the excluded chapters. In a sem-
inar, we recommend the use of a Socratic approach, with analysis 
of examples and blackboard exercises, to probe the students' under-
standing of how constructs relate to theorems and structures to each 
other. The ultimate object of probing, however, is not progress in 
learning a science, but the tools and concepts of science itself. It is 
in the spirit of such questioning that the book was written. 
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CHAPTER I 

SETS 

1. ELEMENTARY CONSTRUCTIONS AND AXIOMS 

The ability to think about collections of objects with precision and 
without ambiguity is indispensable in mathematics. Indeed, this is 
so in any exact science. Students of the physical world care about 
and count the collection of atoms in a given portion of matter, and 
chemists concern themselves with the collection of atoms forming a 
molecule, distinguishing various compounds according to what kind 
of molecules they contain and in what proportions. Biology in turn 
makes use of physics and chemistry and describes aggregates of mil-
lions of cells forming a tissue. Living and extinct creatures are clas-
sified into collections called species and their subcollections called 
varieties, and resembling species are grouped into families and kinds. 
Economists conceptualize and measure physical quantities of edible 
or otherwise useful goods, taking stock of grain, cattle, and money 
supply, distinguishing raw materials from work-in-process invento-
ries, and discussing such issues as whether home-baked cakes should 
be included in or excluded from the gross national product. Lin-
guists divide the collection of all words into subcollections such as 
nouns, pronouns, verbs, and adverbs, and they study small groups of 
words called sentences as they relate to the former subcollections. 

1 



2 SETS 

No other science, however, relies as much on the conceptual manip-
ulation of collections as mathematics. 

It was already realized by the reflective Greeks of pre-Christian 
times that some restraint must be exercised in talking about collec-
tions. The liar's paradox of Crete goes as follows. Let collection T 
be the collection of all true sentences uttered on the island of Crete, 
and let F be the collection of untrue (false) sentences. Then let a 
mathematician take a boat to Crete and upon disembarking declare: 
"This very sentence I am pronouncing at this moment belongs to 
F." Despite the apparent rigor employed in defining T and F, the 
rules of logic seem to break down. If the mathematician's declara-
tion is true, then the sentence being pronounced does indeed belong 
to F, and therefore it is false by definition of F. But if the declara-
tion is false, then it must belong to F by definition, and it therefore 
becomes a true statement. Modern mathematics deals with the para-
dox by imposing very stringent rules on how collections should be 
defined. Requiring a precise definition of any mathematical object 
before making statements about that object is what lends mathemat-
ics its reliability. (Look at the contractual text of an insurance policy 
for an analogy.) Although very restrictive, the rules of definition still 
allow all usual mathematical objects to be defined in terms of col-
lections. Indeed, the space of three-dimensional geometry will be a 
collection of vectors, of which points, lines, and planes will be sub-
collections. Moreover, the vectors themselves will be defined as col-
lections, and the numbers 0, 1, 2, etc., will be formally defined as 
collections of a most particular kind. 

The entire body of mathematical science can be viewed as a the-
ory about collections called sets. By using the technical word "set," 
mathematicians simply indicate that they are talking about a collec-
tion and that they strongly believe that they know what they are talk-
ing about. Accordingly, the mathematician may wish to avoid the un-
regulated word "collection." To what extent this suffices to exempt 
mathematics from the fundamental uncertainty that affects human 
knowledge is open to debate. First, every mathematical discourse has 
a small number of primitive concepts that are not defined rigorously 
but are used in the formal definition of more elaborate concepts. 
Second, a few simple mathematical propositions are based on belief 
and observation rather than proof, yet they serve as the very founda-
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tion of all further theory. Having disclosed these risk factors, let us 
proceed. 

An object x belonging to a set S is termed an element, or member, 
of 5, in symbols x € 5. If the object x does not belong to 5, we write 
x £ S. Sets are completely determined by their elements, i.e., if two 
sets A and B have the same elements, then the two sets are the 
same. In this case we write A = B. If A and B are not the same, 
then we write A f- B. If all elements of A are also elements of B, 
then A is called a subset of B, in symbols A C B. We also say that B 
is a superset of A and write B D A. The negation of A C B is written 
A g 5. Trivially, every set 5 has at least one subset, for B C B. A 
subset ,4 of 5 is a proper subset if A £ B, and we then write y4 c 
5. The following axiomatic propositions are adopted, without proof, 
entirely on the basis of their intuitive plausibility. 

(Al) Empty Set Axiom. There is a set 0 which has no element. 

The set 0 is called the empty set (or null or void set). Clearly 0 C A 
for every set A. 

(A2) Subset Axiom. / / A is any set, then those elements x of A that 
satisfy some given condition or possess a given property form a set. 

To designate "the set of those elements x of A that satisfy a certain 
condition," we usually write {x e A : x satisfies a certain condition}. 
This is of course a subset of A. In practice, the original superset 
specification "x e A" is often indicated in other, less explicit ways. 

(A3) Power Set Axiom. For any set A, there is a set V(A), whose 
elements are all the subsets of A 

The set V(A) is called the power set of A. Occasionally we write 
simply VA instead of V(A). 

Since A C A, we have A e V(A), and it follows from (A2) that 
V(A) has a subset containing A as unique element. This subset of 
V(A) will be denoted by {A} and called a singleton set. We have 
{A} = {xeV(A) :x = A}. 

(A4) Pair Axiom. / / A and B are sets, then there is a set {A,B} that 
has both A and B as elements but has no other elements. 
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The set {A,B} is called a pair. Note that {A,B} = {B,A}- UA = B, 
then the pair is a singleton, {A, B} = {A} = {B}. 

(AS) Union Axiom. Given any set A whose members are sets, there is 
a set \JA whose elements are the elements of the members of A 

The set U/l is called the union of A (or of the members of A), and 
it is also denoted by {JXZAX- The union of a pair {A,B} is usually 
denoted by A U B and called the union of A and B. Thus if we let 
/ = {A,B}, then 

AUB = 1)1 = (J X 
xa 

These few axioms immediately allow us to ask and answer a mean-
ingful question that is quintessentially algebraic. Suppose we have 
sets A, B, and C. Taking the union of A U B and C we get some 
set (A U B) U C. Proceeding differently, taking the union of A with 
Bl)C, we get some set ,4u(flUC). But are not (AUB)UC and 
y4 U (B U C) the same? Yes indeed, because it is easy to verify that 
they have the same elements. It is time to state the first theorem of 
algebra: 

Proposition 1 Let A, B, and C be sets. 

(i) (A U B) U C = A U (B U C) {associative law) 
(ii) A U B = B U A {commutative law) 

(iii) A U A = A {idempotent law) 

Proof. Associativity has just been observed. Commutativity follows 
from the earlier made observation that {A,B} = {B,A}, which is 
often referred to by saying that the pair {A, B} is "not ordered." 
Finally, idempotence is obvious by definition of the union. • 

Using axioms (Al) to (A5), we can define a great variety of sets. 
The reader should verify which particular axioms need to be called 
upon to construct the following specific examples: 

The empty set 0. 
The singleton {0}. 
The pair {0,{0}}. 
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The power set V({0,{0}}). 
The power set of the above, VV{{0,{0}}). 
The power set of the above. 

And so forth without end. What is remarkable here is that each of 
these examples is a set of sets, a set whose elements are themselves 
sets. Indeed we shall only consider sets of sets in this volume. It is 
the author's view, adopted in this book at least, that in mathematics 
we need not and should not speak about sets of atoms, molecules, 
animals, or true or false sentences unless these various objects can 
be precisely defined as sets themselves. In some cases this may be 
done meaningfully, such as in theoretical physics, or in mathematical 
logic where sentences can be defined as proper mathematical objects 
themselves, i.e., as sets. Neither should we speak about the set of 
even or odd numbers until these numbers have been defined as sets: 
this will be done in a while. 

It was pointed out that the elements of a pair {a,b} are "not 
ordered," {a, b} = {b,a}. The ordered pair (a,b) is defined by 

(a,b) = {{a},{a,b}} 

and it has the desired property that 

(a,b) = (c,d) if and only if both a = c and b = d 

Thus {a, b) = {b,a) if and only if a = b. The reader should verify that 
(a,b) is a subset of W{a U b). If a and b are elements of sets A and 
B, respectively, then 

aUb C (U/4)U(UB) 

and thus (a,b) is also a subset of 

VV((UA)U(UB)) 

Therefore those ordered pairs (x,y) for which x e A and y £ B form 
a subset A x B of 

VVP((UA)U(UB)) 

called a Cartesian product. A function, map, or mapping from A to 
B is then any subset / of Ax B such that for every x £ A there is a 
unique y £ B with 

(*.y)ef 
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The set A is called the domain, B a codomain of / . (A function 
can have many different codomains, for if B C B', then A x B C 
Ax B', and thus every function from A to B is also a function from 
A to 5'.) We use the shorthand / : A —> B for "a function / from 4̂ 
to 5." For x £ A, the unique element y of 5 such that (x,y) G / is 
called the /'mage o/x fey / , or the value of f on x, and it is denoted by 
f{x). It is also said that / associates f(x) with x, f maps x to f(x), 
or /(x) is obtained by applying f to x. The set of all functions from 
A to B is denoted by BA; it is a subset of V(A x B). For reasons 
to be seen later, we say that BA is obtained from B and A by set 
exponentiation. For f £ BA and 5 C /4 the function 

{{x,f(x)) :xeS} 

is called the restriction of / to 5. It is a function from S to 5, and 
it is denoted by f\S. We also say that / is an extension of g = f\S to 
/I, or that / extends g. 

Observe that two functions f,gEBA are identical if 

f(*) = S(x) f ° r every x £ A 

A function is thus completely determined by its values on the var-
ious elements of its domain, and usually that is how functions are 
specified. 

Informally, a function A —• B is often thought of as a "rule," "pro-
cedure," or "machine" that, given any input x e A, "allows us to 
find" or "produces" an element /(x) e B. Many functions seen in 
mathematics appear in fact to fit this notion. However, many other 
functions, perhaps not "seen" but existing nevertheless, have noth-
ing to do with computational procedures. (This issue is of great 
importance in mathematical philosophy and logic and of practical 
relevance in computer science. The interested reader is referred to 
the theory of recursive functions and to the theory of computational 
complexity.) 

For every set A the function i : A—> A defined by 

/ = {(x,x) 6 A x A : x £ A} 

[or equivalently by i(x) = x for x £ A] is called the identity function 
on A, often denoted by idA. In a nonempty set B let b e B. As-
sume also that A f- 0. The function c = A x {b} from A to B is said 
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to be constant because 

c(x) = b for all x £ A 

An arbitrary map / : A —• B is said to be constant on a subset S of 
its domain A if the restriction f\S is constant. 

The image of a set S C A by a function / : /I —• B is the set 

{y £ B : _y = f(x) for some £ 5} 

It is denoted by f[S]. The inverse image of a set T C B is 

{ * € / ! : / ( * ) €7-} 

It is denoted by ftm[T]. The /mage, or range, of the function / : 
A —c 5 is /L4]; it is denoted by Im/ . If I m / = B, then / is said to 
be surjective to B (or a function onto B). All identity functions are 
surjective onto their own domains. On the other hand, the image of a 
constant function is a singleton, and therefore a constant function c : 
A —• B is not surjective onto 5 unless the codomain B is a singleton. 

A function / : A —• B is infective (or an injection) if there are no 
distinct elements x ^ x1 of A with f(x) = f (*'). All identity func-
tions are injective. On the other hand, a constant function is not 
injective unless its domain is a singleton. (The reader should verify 
this.) 

An injective function surjective onto a codomain B is called bijec-
tive (or a bijection) to B. All identity functions are bijective to their 
own domains. For a nontrivial example, let 5 be any set and let the 
complementation function f : V(S) —> V(S) be defined by 

f(A) = {x £ S : x i A} for every A £ V(S) 

This complementation function is bijective from V(S) to V(S). 
There are two facts that we should take note of at this juncture. 

First, for any set 5 there is an injection / : S —* V(S). Indeed, / can 
be defined by f(x) = {x} for all x £ S, i.e., 

f = {(x,{x}) :x£S} 

Second, let us prove that there is no injection g : V(S) —• S from the 
power set of S into 5. Suppose that such a g exists: we shall derive 
a contradiction. Consider those subsets A of S for which g(A) 0 A. 
Let F be the set of the corresponding elements g{A), 

F = {x £ S : x = g(A) for some ACS such that g(A) g A) 
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If we had g(F) £ F, then by letting A = F, it follows from the defi-
nition of F that g(A) belongs to F, i.e., g{F) e F. And if g(F) e F, 
then g(F) = g(̂ 4) for some ACS such that g(A) $ A, again refer-
ring to the definition of F verbatim. Since g is supposed to be injec-
tive, g(F) =g(A) implies F = A. But then g(F) € F and J /4 
are contradictory, proving the absurdity of the alleged existence of 
an injective g. This argument is inspired by the liar's paradox. How-
ever, what is reduced to absurdity here is not the universal dichotomy 
of truth and falsehood but merely the possibility of injecting V(S) 
into S. The argument is indeed a domesticated variety of the liar's 
paradox of Crete. 

If / : A -> B and g : B —• C are functions, then the composition 
gofis the function from A to C defined by 

fe°/)(*)=*(/(*)) ^ all x€A 

i.e., g o / is the set of all ordered pairs (x,z) such that for some 
yeB, 

f(x) = y and g(y) = z 

Occasionally we shall write simply gf instead of g o f. The reader 
can see that the composition of two injective functions is injective 
and the composition of surjective functions is surjective. Hence, the 
composition of bijections is bijective. Observe further that a function 
/ : A —• B is bijective to B if and only if the set 

{(y,x)€BxA: (x,y) G f] 

is itself a function from B to A. Denoting this new function by /*, 
we have /* o / = idA and / o /* = ids, and /* is called the inverse 
of / . The reader should verify that /* itself is a bijection from B to 
A, having in turn / as its inverse. Moreover, a function / : A—> B 
is bijective if and only if there is a function g : B —> A such that 

gof = idA and f°g = idB 

and in that case g must coincide with /*. For all T C B we have 

f*[T] = fim[T] 

Note, however, that f*[T] is only defined for bijective / , while 
fim[T) is always defined. 

The following proposition, of constant use in mathematics, antici-
pates the subject of the last chapter on category theory: 
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Proposition 2 Let f : A —> B, g : B —• C, and h : C —• D be func-
tions. 

(i) h o (g o / ) = (/i o g ) o / (associative law) 

(ii) I '^A of=f and f o /a1^ = / (neutrality of the identities) 

Proof. Let x 6 A The image of x by /i o (g o / ) is given by applied 
to 

(W)00 = *(/(*)) 
i.e., it is «[g( / (x))] . But the image of x by (hog)of is hog ap-
plied to f(x), i.e., n[g(/(x))] again. Thus (hog)of and ho(gof) 

take the same value on every x e and therefore they are identi-
cal functions. The neutrality of the identities can be verified by the 
reader. • 

Here is now an early result in equational algebra: 

Proposition 3 Let f be a bijection of a set A into itself. Then for any 
function g : A —> A there is a unique function x : A —> A satisfying 
the equation 

g = fox (1) 

There is also a unique function y satisfying 

g = y°f (2) 

Proof. Since /* is the inverse of / , x - f* og is a solution of (1), 
because 

f°(f*°g) = if °D°g = idAog =g 

Also, if x is any function satisfying g = f ° x, then 

/ * o g = / * o(fox) = (f* of)o x = idAo x = x 

This proves that x must be equal to f* og and cannot be any other 
function. The unique solvability of (2) is shown similarly. • 

A set A is said to be equipotent to B if there is a bijection from 
A to B. We shall then write A ~ B. 

Proposition 4 Let A, B, and C be sets. 
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(i) A ~ A 
(ii) if A~B, then B~A 

(reflexivity) 
(symmetry) 

(iii) ifA~B and B ~ C, then A~C (transitivity) 

Proof Reflexivity results from the fact that the identity id A is a In-
jection. Symmetry follows from the observation, made earlier, that 
the inverse of any bijection is a bijection. Finally, since the composi-
tion of two bijections is again a bijection, we have transitivity. • 

A bijection / from a set A to a set B establishes what is often 
called a one-to-one correspondence between the elements of A and 
those of B. The elements of A and B are matched into ordered 
pairs (a,b) G / , with each element a of A being matched to a unique 
be B, and each b € B corresponding to a unique element of A. It 
is then tempting to say that A and B have the same number of el-
ements. While we must refrain from using the word "number" until 
it is defined, this is actually what the term "equipotent" is meant 
to convey. The following result on set exponentiation may then be 
thought of as the first theorem of arithmetic: 

Proposition 5 For any sets A, B, and C we have 

Proof Define a function F from (CB)A to CBxA as follows. If / G 
(CB)A, then for every element a £ A, f(a) is a function from B to 
C. Let then J be a function from B x A to C defined by 

Let F(f) be defined as / . The function F is injective for if F(f) = 
F(g), then 

f(a)(b)=g(a)(b) for all (b,a) G B x A 

i.e., for a G A fixed the functions f(a) and g(a) from B to C are the 
same function, f(a) = g(a). This being true for all a G A, f and g 
are one and the same function from A to CB. 

To prove surjectivity, let h G CBxA. Let hA : A C B be defined 
as follows. For a E A, hA(a) is the function from 5 to C specified by 

(CB)A ~ C 

f((b,a)) = f(a)(b) 

hA(a)(b) = h((b,a)) for all fcGfl 
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It can now be verified that F(hA) = h. Thus every h£CBxA belongs 
to Im F, and F is surjective onto CBxA. Since it was also shown to be 
injective, it must be bijective to CBxA, establishing the equipotence 
of its domain (CB)A and the codomain CBxA. • 

EXERCISES 

1. For any sets A, B, C verify that 

(a) ACB is equivalent to AUB = B, 

(b) A x (B U C) = (A x B) U {A x C), 

(c) Ax 0 = 0, 
(d) if / is a singleton, then A x I ~ A, 

(e) A x B ~ B x A, 

(f) Ax(B xC)~(Ax B)xC, 

(g) (A x Bf ~ (Ac) x (Bc), 

(h) A^ is a singleton, 

(i) 0^ = 0 unless A = 0, 

(j) if / is a singleton, then A1 ~ A and Z"4 is a singleton, 
(k) if A f- 0, then the set of constant functions A —• B is equipo-

tent to 5, 
(I) for Af<&, a function / : /I -> 5 is injective if and only if 

there is a function g : B —» A with go f = idA. 

2. Write and run a computer program that produces a complete list 
of members of the set WPVVV(0). Introduce any notation you 
wish to make the printout readable. 

2. CARDINAL AND ORDINAL NUMBERS 

An ordinal (or ordinal number) is a set a satisfying the following 
conditions: 

(i) every element of a is a subset of a, a C V(a), 

(ii) for b, c £ a, c c b if and only if c 6 b, 
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(iii) every nonvoid subset S of a, 0 C S C a, has a member /? £ 5 
that is a subset of all members s £ S, p C s; p is then called 
the first element of 5. 

Examples. The null set 0 , the singleton {0}, and the pair {0,{0}} 
are ordinals. There will be many more. 

Condition (i) tells us that for an ordinal a, if b £ a and c £ b, 
then c £ a. The reader can see that every element b of an ordinal a 
is again an ordinal. 

Condition (ii) implies that an ordinal never belongs to itself, be-
cause no set can be a proper subset of itself. Similarly, an ordinal 
never belongs to any of its own elements. 

From these facts it easily follows that for every ordinal a, the set 
a' = a U { a } is again an ordinal, called the successor of a. This al-
lows us to construct some very important ordinals. We define: 

0 = 0 "zero" 
1 = 0 ' = {0} "one" 
2 = 1 ' = {0,{0}} "two" 
3 = 2' "three" 
4 = 3' "four" 
5 = 4' "five" 
6 = 5' "six" 
7 = 6' "seven" 
8 = 7' "eight" 
9 = 8' "nine" 

Proposition 6 For any ordinals a and (5, we have a C P if and only 
ifaep. 

Proof. If a £ p, then a C f3 by the definition of an ordinal applied to 
(3. Also a.ffi because f3 £ p. Thus a c p. 

If a C p, then let y> be the first element of 

5 = {x £ j3 : JC i a} 

For any a e a, the first element of {a,<p} cannot be <p, for that would 
imply <p £ a, so it is a, and thus a £ y>. Hence a C y>. If we had the 
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strict inclusion a C <p, then tp being a subset of the ordinal p, it would 
have as a member some element x of S, x e <p. But by definition of 
S and <p we would also have <p £ x, which is impossible because an 
ordinal never belongs to any of it own elements. Thus a = ip and 
therefore a 6 P, which proves the proposition. • 

In view of this proposition, instead of writing a C P or a G p when 
such is the case, it is customary to write a < /? and to say that a is 
less than p, or that p is greater than a. We write a < p to mean that 
"a < p or a = /3" and we say that a is //ww or equal to p, or p is 
greater than or equal to a. For example, every ordinal a is less than 
its successor a', but neither a' <a nor a' < a is true. The inequality 
a < p is equivalent to a C /3. 

A key property of the relation < is that it permits the comparison 
of any two ordinals. For assume that neither a < p nor p < a holds. 
The set a of common elements of a and p is easily seen to be an 
ordinal. By assumption, a is distinct both from a and p. But then, by 
Proposition 6, a belongs to both a and p, i.e., a belongs to a, which 
is impossible. This proves that at least one of a < p or p < a must 
hold. Combining with earlier remarks, we obtain: 

Proposition 7 Let a, p, and 7 be ordinals. 

(i) a < a (reflexivity) 

(ii) if at < P and p < a, then a = p (antisymmetry) 

(iii) if a < p and p < 7, then a < 7 (transitivity) 

(iv) at least one of a < p or p < a holds (total comparability) 

Indeed a property stronger than total comparability holds: 

Proposition 8 Every nonempty set S of ordinals has an element ip 
that is less than any other element of S. 

Proof. Take any a G S. Let Sa be the set of those elements of S that 
are less than a. If Sa = 0, then let tp = a. Otherwise Sa is a nonvoid 
subset of a, and we let tp be the first element of Sa. • 

Corollary. The union of any set of ordinals is an ordinal. 
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The ordinal p e 5 whose existence was established by Proposition 
8 is called the first element of 5, which is in accordance with the 
earlier use of this term. 

Every ordinal number a is a set, namely the set of ordinals less 
than a. The union Ua is always an ordinal and Ua < a. Now, either 
Ua < a or Ua = a. If Ua < a, then let p be an element of a that 
does not belong to Ua. We have Ua < p. But since pea, also p C 
Ua. Thus p = Ua, and the only element of a not in Ua is p = Ua, 
i.e., 

a = (Ua)U{Ua} 

which means that a is the successor of Ua. Can a be at the same 
time the successor of some other ordinal /3? The answer is no, be-
cause from a = f3 U {/?} it follows that 

Ua = (U/3)U/3 = /3 

This argument also shows that a is not the successor of any ordi-
nal (3 if Ua = a. There are two kinds of nonzero ordinals a. On the 
one hand, there are those for which Ua < a. Then a is the successor 
of Ua, and Ua is termed the predecessor of a. On the other hand, 
there are those ordinals a for which Ua = a. These have no prede-
cessor, and they are called limit ordinals. Every limit ordinal is the 
union of lesser ordinals. An ordinal a that is either 0 or such that 
Ua < a is said to be of the first kind, while nonzero limit ordinals 
are sometimes said to be of the second kind. We now arrive at a 
most important concept: an ordinal is called finite if it is of the first 
kind and all its elements are also of the first kind. An ordinal that 
is not finite is called infinite. Finite ordinals are also called natural 
numbers. 

Examples. The ordinals 0,1,2,...,9 defined earlier are natural num-
bers. The successor of any natural number is again a natural number. 

But does there exist any infinite ordinal? We are unable to prove 
it. We have seen how to make "one" out of "zero," "two" out of 
"one," and so on to trillions. However, even a megaquadrillion is 
just finite dust. It is time to postulate three new axioms. 

(A6) Axiom of Existential Infinity. There is a set to which all finite 
ordinals belong. 
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(A7) Axiom of Limited Infinity. There is no set having among its 
members sets equipotent to every ordinal. 

Otherwise stated, for every set 5, there is an ordinal a such that no 
set belonging to S is equipotent to a. 

(A8) Axiom of Choice. For every set of nonvoid sets S, there exists a 
function c : S —> US such that c(A) £ A for every A(E S. 

The function c is called a choice function; for each A £ S it is said 
to choose the element c(A) in the set A. 

An immediate consequence of the Axiom of Existential Infinity is 
that there is a set whose elements are precisely the natural numbers. 
In view of the paramount importance that it claims in the spiritual 
life of mathematicians, the set of all natural numbers is denoted by the 
Greek letter w. The Axiom of Limited Infinity, on the other hand, 
implies that the "set of all ordinals" is nonexistent. 

With the intention of using ordinal numbers for enumeration, we 
now further develop the theory of equipotence, in particular as re-
garding ordinals. For any sets 5 and R the difference S\R is defined 
by 

S\R = {x £ S : x £ R} 

Counting Lemma. If a set S is equipotent to a set T, and if s and 
t are elements of S and T, respectively, then S\{s} and T\{t} are 
equipotent. 

Proof. If / : S —• T is a bijection, and if f(s) = t, then 

g = {(x,y)£f : xjts, y + t) 

is a bijection from S\{s} toT\ {/}. If /(s) f t, then let r £ S such 
that f(r) = t. Now 

g = {(x,y)£f :x?s, y?t}u{(r,f(s))} 

is a bijection from S \ {s} toT\ {/}. • 

It is now easy to show that no natural number is equipotent to 
any other natural number. (If this is not true, let n be the first nat-
ural number equipotent to some natural number distinct from itself, 
say to m n. As no bijection can exist between the empty set and a 
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nonempty set, neither of n or m is 0. Then by the Counting Lemma, 
the predecessors of n and m are equipotent, contradicting the def-
inition of n.) Thus a natural number is not equipotent to any of its 
own elements. This is not true for ordinal numbers in general. For 
example, the successor of u>, the ordinal w ' = w U {u;}, is equipotent 
to w. A bijection / can be defined by 

f(n) = n for all n e w ' , n±u, and f(w) = 0 

This observation motivates the following definition. A cardinal (or 
cardinal number) is an ordinal that is not equipotent to any of its 
own elements (i.e., not equipotent to any ordinal less than itself). 
Thus natural numbers are cardinal numbers. Let us verify that so is 
w. Were this not so, there would be a smallest n e w equipotent to w. 
Obviously n f- 0, so let m be the predecessor of n. By the Counting 
Lemma, the sets 

m = n\{m} and w = u)\{0} 

would be equipotent. But ui is also equipotent to w, via the bijection 

/ = {(n,n) : n £ w } 

so by transitivity (Proposition 4) m would be equipotent to w, con-
tradicting the minimal choice of n. 

Zermelo's Theorem (First Formulation). Every set is equipotent to a 
cardinal. 

Proof. Observe first that it will be enough to prove that every set 5 
is equipotent to some ordinal a. For if a is not a cardinal, then let 
P be the first element of a that is equipotent to a. Obviously /9 is a 
cardinal equipotent to S. 

To prove that every set S is equipotent to an ordinal, we use the 
Axiom of Choice, which assures us of the existence of a choice func-
tion c from the set V*(S) of nonempty subsets of S into UP* (S) = S. 
With a fixed choice function c in mind, we call ordinal function into 
S any injection / : a —> S from some ordinal a into 5, such that for 
every p e a 

f(P) = c(S\f[p}) 

In particular, if a f- 0, then /(0) = c(S) for every ordinal function / : 
a —* S. Further, we claim that if / : a —> 5 and g : p —> S are ordinal 
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functions and a < p, then /(8) = g(8) for every 8 £ a. For if 8 were 
the first element of a for which / (8) f g(8), then /(7) = g(j) for all 
7 £ /3 and the sets 

S/ = S\/[/3] 

would be the same, hence c(Sf) = c(Sg). But f(8) = c(Sf) and g(8) 
= c(Sg), and then f(B)=g(8), proving our claim. This implies in 
particular that, with respect to a fixed choice function c, there can 
be at most one ordinal function a —> 5 for any ordinal a. 

Ordinal functions are injective. Therefore, their images are equi-
potent to their ordinal domains. Hence, by the Axiom of Limited 
Infinity, there is an ordinal a without ordinal function / : a —• 5. 
Then define the ordinal 8 as follows. If for every ordinal p < a there 
are ordinal functions from p to S, then let 8 = a. Otherwise let 8 be 
the first element of p for which no ordinal function exists from 8 to 
5. In either case, 8 has the following properties: there is no ordinal 
function 8 —> 5; and for every p< 8 there is an ordinal function p -* 
S. Observe that 8 cannot be a limit ordinal, for in that case we could 
define an ordinal function 8 —• S as the union of all ordinal functions 
with domains less than 8. Also, 8 cannot be 0 for the empty set is 
surely an ordinal function 0 —• S. Thus 8 has a predecessor a, and 
there is an ordinal function / from a to S. Is / surjective onto 5? If 
it were not, then letting 

a = c(S \ I m / ) 

we could define an ordinal function g by g = fu{(a,a)} on the 
domain 8, which is impossible. Thus / must be surjective, and since 
ordinal functions are injective, this implies that / is a bijection from 
a to 5. The proof is finished. • 

Since by definition no cardinal is equipotent to any other cardinal, 
it follows from Zermelo's Theorem that every set S is equipotent 
to a unique cardinal, called the cardinal (or cardinality) of S and 
denoted by Card 5. We also say that Card 5 is the number of elements 
of S. Note that AC B implies Card 5 < Card B. Sets are called finite 
or infinite according to whether their cardinal is finite or infinite. 
The following is now elementary: 
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Proposition 9 Two sets are equipotent if and only if they have the 
same cardinal. 

As, by an earlier remark, there is no injection, and therefore no 
bijection, from V(u>) to w, CardP(w) is distinct from w. Thus there 
are infinite cardinals other than u. 

We now introduce a terminological redundancy. A family is simply 
a function / : A —• B. The domain A is called the index set of the 
family, and / is said to be a family (of elements of B) indexed by (the 
elements of) A. For / £ A, the element f(i) of B is denoted by 6,-, 
while the family / itself is often denoted by (&,• : i £ A) or (bj)ieA. 
For example, for any set S, the identity function ids is nothing else 
but the family (x : x G 5). The image set of a family (fe, : /' G A) is 
denoted by {bj : / G A}. Families generalize the set concept. For ex-
ample, we define the union of a family of sets (bi)jEA, in symbols 
\JieA bt, as the set 

U{b G B : b = 6, for some / G A} 

It is important to notice that in a family (bj)i^A we may have 6, = 
bj even if the indices / and are distinct. A family indexed by an 
ordinal is usually called a sequence. A sequence indexed by a natural 
number n is called an n-tuple (couple, triple, quadruple, quintuple for 
n = 2,3,4,5) and it is usually written as a string of n elements of 
B, possibly in brackets and separated by commas, such as (u), (uv), 
(uvw), (uvwt) for n = 1,2,3,4 and 

in general. The position i of «,-, 0 < / < n, in the string indicates that 
the sequence in question, as a function from n to B, maps i to UJ. 
The image set of the sequence can be written accordingly as 

or explicitly as {u,v, w}, {u,v,w,t} for n = 3,4, etc. 
Let (Aj)iei be a family of sets indexed by a set /. The product 

n,e/ Aj of the family is the set of all functions / : / —• \Jiel A, such 
that 

/ ( / ) G Aj for every i G / 

For each j e I the function pr, : n A —• Aj defined on the product 
set by pr •(/) = /(j) is called the y'th projection. 


