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Preface 

Over the years a not inconsiderable body of literature has accumulated on dis- 
criminant analysis, with its usefulness demonstrated over many diverse fields, 
including the physical, biological and social sciences, engineering, and medi- 
cine. The purpose of this book is to provide a modem, comprehensive, and 
systematic account of discriminant analysis, with the focus on the more re- 
cent advances in the field. Discriminant analysis or (statistical) discrimination 
is used here to include problems associated with the statistical separation be- 
tween distinct classes or groups and with the allocation of entities to groups 
(finite in number), where the existence of the groups is known a pion' and 
where typically there are feature data on entities of known origin available 
from the underlying groups. It thus includes a wide range of problems in sta- 
tistical pattern recognition, where a pattern is considered as a single entity and 
is represented by a fmite dimensional vector of features of the pattern. 

In recent times, there have been many new advances made in discrimi- 
nant analysis. Most of them, for example those based on the powerful but 
computer-intensive bootstrap methodology, are now computationally feasible 
with the relatively easy access to high-speed computers. The new advances are 
reported against the background of the extensive literature already existing in 
the field. Both theoretical and practical issues are addressed in some depth, 
although the overall presentation is biased toward practical considerations. 

Some of the new advances that are highlighted are regularized discriminant 
analysis and bootstrapbased assessment of the performance of a sample-based 
discriminant rule. In the exposition of regularized discriminant analysis, it is 
noted how some of the sample-based discriminant rules that have been pro- 
posed over the years may be viewed as regularized versions of the normal- 
based quadratic discriminant rule. Recently, there has been proposed a more 
sophisticated regularized version, known as regularized discriminant analysis. 
This approach, which is a sample-based compromise between normal-based 
linear and quadratic discriminant analyses, is considered in some detail, given 
the highly encouraging results that have been reported for its performance in 
such difficult circumstances, as when the groupsample sizes are small relative 
to the number of feature variables. On the role of the bootstrap in estimation 

xiii 
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problems in discriminant analysis, particular attention is given to its usefulness 
in providing improved nonparametric estimates of the error rates of sample- 
based discriminant rules in their applications to unclassified entities. 

With the computer revolution, data are increasingly being collected in the 
form of images, as in remote sensing. As part of the heavy emphasis on recent 
advances in the literature, an account is provided of extensions of discriminant 
analysis motivated by problems in statistical image analysis. 

The book is a monograph, not a textbook. It should appeal to both applied 
and theoretical statisticians, as well as to investigators working in the many 
diverse areas in which relevant use can be made of discriminant techniques. It 
is assumed that the reader has a fair mathematical or statistical background. 

The book can be used as a source of reference on work of either a practical 
or theoretical nature on discriminant analysis and statistical pattern recogni- 
tion. 'Ib this end, an attempt has been made to provide a broad coverage of 
the results in these fields. Over 1200 references are given. 

Concerning the coverage of the individual chapters, Chapter 1 provides a 
general introduction of discriminant analysis. In Chapter 2, likelihood-based 
approaches to discrimination are considered in a general context. This chapter 
also provides an account of the use of the EM algorithm in those situations 
where maximum likelihood estimation of the groupconditional distributions 
is to be carried out using unclassified feature data in conjunction with the 
training feature data of known group origin. 

As with other multivariate statistical techniques, the assumption of multi- 
variate normality provides a convenient way of specifying a parametric group 
structure. Chapter 3 concentrates on discrimination via normal theory-based 
models. In the latter part of this chapter, consideration is given also to reduc- 
ing the dimension of the feature vector by appropriate linear projections. This 
process is referred to in the pattern recognition literature as linear feature 
selection. Chapter 4 reports available distributional results for normal-based 
discriminant rules. Readers interested primarily in practical applications of 
discriminant analysis may wish to proceed directly to Chapter 5, which dis- 
cusses practical aspects and variants of normal-based discriminant rules. The 
aforementioned approach of regularized discriminant analysis is emphasized 
there. 

Chapter 6 is concerned primarily with data analytic considerations with 
normal-based discriminant analysis. With a parametric formulation of prob- 
lems in discriminant analysis, there is a number of preliminary items to be 
addressed. They include the detection of apparent outliers among the train- 
ing sample, the question of model fit for the group-conditional distributions, 
the use of data-based transformations to achieve approximate normality, the 
assessment of typicality of the feature vector on an unclassified entity to be 
allocated to one of the specifed groups, and low-dimensional graphical repre- 
sentations of the feature data for highlighting and/or revealing the underlying 
group structure. Chapter 7 is devoted to parametric discrimination via non- 
normal models for feature variables that are either ail discrete, all continuous, 
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or that are mixed in that they consist of both types of variables. A semipara- 
metric approach is adopted in Chapter 8 with a study of the widely used lo- 
gistic model for discrimination. Nonparametric approaches to discrimination 
are presented in Chapter 9. Particular attention in this chapter is given to 
kernel discriminant analysis, where the nonparametric kernel method is used 
to estimate the group-conditional densities in the formation of the posterior 
probabilities of group membership and the consequent discriminant rule. 

Chapter 10 is devoted fully to the important but difficult problem of assess- 
ing the various error rates of a sample-based discriminant rule on the basis of 
the same data used in its construction. The error rates are useful in summa- 
rizing the global performance of a discriminant rule. Of course, for a specific 
case as, for example, in medical diagnosis, it is more appropriate to concen- 
trate on the estimation of the posterior probabilities of group membership. 
Accordingly, a separate chapter (Chapter 11) is devoted to this problem. 

Chapter 12 is on the selection of suitable feature variables using a variety 
of criteria. This is a fundamental problem in discriminant analysis, as there are 
many practical and theoretical reasons for not using all of the available feature 
variables. Finally, Chapter 13 is devoted to the statistical analysis of image 
data. Here the focus is on how to form contextual allocation rules that offer 
improved performance over the classical noncontextual rules, which ignore the 
spatial dependence between neighboring images. 

Thanks are due to the authors and owners of copyrighted material for per- 
mission to reproduce published tables and figures. The author also wishes to 
thank lbyet-Trinh Do for her assistance with the preparation of the typescript. 

GEOFFREY J. MCLACHLAN 

lirisbtme, Queensland 
January, 1991 
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C H A P T E R  1 

General Introduction 

1.1 INTRODUCTION 

Discriminant analysis as a whole is concerned with the relationship between a 
categorical variable and a set of interrelated variables. More precisely, suppose 
there is a finite number, say, g,  of distinct populations, categories, classes, or 
groups, which we shall denote here by GI, ..., Gg. We will henceforth refer 
to the Gi as groups. Note that in discriminant analysis, the existence of the 
groups is known a priori. An entity of interest is assumed to belong to one 
(and only one) of the groups. We let the categorical variable t denote the 
group membership of the entity, where t = i implies that it belongs to group 
Gi (i = 1,. ..,g). Also, we let the p-dimensional vector x = (XI,. . . ,xp)’ contain 
the measurements on p available features of the entity. 

In this framework, the topic of discriminant analysis is concerned with the 
relationship between the group-membership label z and the feature vector x. 
Within this broad topic there is a spectrum of problems, which corresponds 
to the inference-decision spectrum in statistical methodology. At the decision 
end of the scde, the group membership of the entity is unknown and the 
intent is to make an outright assignment of the entity to one of the g possible 
groups on the basis of its associated measurements. That is, in terms of our 
present notation, the problem is to estimate z solely on the basis of x. In 
this situation, the general framework of decision theory can be invoked. An 
example in which an outright assignment is required concerns the selection 
of students for a special course, where the final decision to admit students is 
based on their answers to a questionnaire. For this decision problem, there 
are two group with, say, GI, referring to students who complete the course 
successfully, and G2 to those who do not. The feature vector x for a student 
contains hisher answers to the questionnaire. A rule based on x for allocating 
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2 GENERAL INTRODUCTION 

a student to either GI or G2 (that is, either accepting or rejecting the student 
into the course) can be formed from an analysis of the feature vectors of past 
students from each of the two groups. The construction of suitable allocation 
rules is to be pursued in the subsequent sections of this chapter. 

At the other extreme end of the spectrum, no assignment or allocation of 
the entity to one of the possible groups is intended. Rather the problem is to 
draw inferences about the relationship between z and the feature variables in 
x. An experiment might be designed with the specific aim to provide insight 
and understanding into the predictive structure of the feature variables. For 
example, a political scientist may wish to determine the socio-economic factors 
that have the most influence on the voting patterns of a population of voters. 

Between these extremes lie most of the everyday situations in which dis- 
criminant analysis is applied. %ically, the problem is to make a prediction 
or tentative allocation for an unclassified entity. For example, concerning pre- 
diction, an economist may wish to forecast on the basis of his or her most 
recent accounting information, those members of the corporate sector that 
might be expected to suffer financial losses leading to failure. For this pur- 
pose, a discriminant rule may be formed from accounting data collected on 
failed and surviving companies over many past years. An example where allo- 
cation, tentative or otherwise, is required is with the discrimination between 
an earthquake and an underground nuclear explosion on the basis of signals 
recorded at a seismological station (Elvers, 1977). An allocation rule is formed 
from signals recorded on past seismic events of known classification. 

Examples where prediction or tentative allocation is to be made for an un- 
classified entity occur frequently in medical prognosis and diagnosis. A source 
for applications of discriminant analysis to medical diagnosis is the bibliogra- 
phy of Wagner, Tautu and Wolbler (1978) on problems in medical diagnosis. 
In medical diagnosis, the definitive classification of a patient often can be 
made only after exhaustive physical and clinical assessments or perhaps even 
surgery. In some instances, the true classification can be made only on evi- 
dence that emerges after the passage of time, for instance, an autopsy. Hence, 
frequent use is made of diagnostic tests. Where possible, the tests are based on 
clinical and laboratory-type observations that can be made without too much 
inconvenience to the patient. The financial cost of the test is also sometimes 
another consideration, particularly in mass screening programs. Suppose that 
the feature vector x contains the observations taken on a patient for his or her 
diagnosis with respect to one of g possible disease groups GI,. . . , Gg. Then 
the relative plausibilities of these groups for a patient with feature vector x 
as provided by a discriminant analysis may be of assistance to the clinician 
in making a diagnosis. This is particularly so with the diagnosis of Conn’s 
syndrome in patients with high blood pressure, as reported in Aitchison and 
Dunsmore (1975, Chapter 1). The two possible groups represent the cause, 
which is either a benign tumor in one adrenal gland, curable by surgical re- 
moval (GI), or a more diffuse condition affecting both adrenal glands, with 
the possibility of control of blood pressure by drugs (G2). The actual cause 
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can be confirmed only by microscopic examination of adrenal tissue removed 
at an operation. However, because surgery is inadvisable for patients in 6, 
a clinician is faced with a difficult treatment decision. Thus, a realistic preop 
erative assessment that a patient with a particular feature vector belongs to 
either GI or G2 would be most valuable to the clinician. The available fea- 
ture variables on a patient relate to age, plasma concentrations of sodium, 
potassium, bicarbonate, renin, and aldosterone, and systolic and diastolic 
blood pressures. 

The relative plausibilities of group membership for a patient with an as- 
sociated feature vector are also useful in medical prognosis. Here the vector 
is measured after the onset of some medical condition, say, an injury, and 
the group represent the possible outcomes of the injury. There are several 
reasons why an initial prediction of the eventual outcome of the injury may 
be needed. For instance, in situations where the management of the patient is 
closely linked to the outcome, it provides a guide to the clinician as to whether 
his or her particular course of management is appropriate. It also provides a 
firmer basis for advice to relatives of an injured patient on the chances of 
recovery. These and other reasons are discussed by Titterington et al. (1981) 
and Murray et al. (1986) in the context of the prognosis for patients with se- 
vere head injuries. For these patients, the three possible outcomes were dead 
or vegetative, severe disability, and moderate or good recovery. The feature 
vector for a patient included background information such as age and cause 
of injury and four clinical variables (eye opening, motor response, motor re- 
sponse pattern, and pupil reaction). 

Situations in medical diagnosis where outright rather than tentative alloca- 
tions to groups are made occur in mass screening programs. Suppose that 
in the detection of a disease, G1 consists of those individuals without the 
disease and G2 of those with the disease. Then in a screening program for 
this disease, a patient is assigned outright to either GI or G2, according to 
whether the diagnostic test is negative or positive. Usually, with a positive re 
sult, further testing is done before a final assignment is made. For example, 
with the enzyme-linked immunosorbent assay (ELISA) test used to screen do- 
nated blood for antibodies to the AIDS virus, a positive test would result in 
a more definitive test such as the Western blot being performed (Gastwirth, 
1987). J. A. Anderson (1982) has given an example on patient care where 
an irrevocable outright assignment has to be made. It concerns the decision 
on whether to administer a preoperative anticoagulant therapy to a patient to 
reduce the risk of postoperative deep vein thrombosis. 

Discriminant analysis is widely used also in the field of pattern recognition, 
which is concerned mainly with images. The aim of pattern recognition is to 
automate processes performed by humans. For example, automatic analysis 
and recognition of photomicrographs of tissue cells can be used in blood tests, 
cancer tests, and brain-tissue studies. Another example of much current inter- 
est concerns the automatic recognition of images remotely sensed from earth 
satellites. It is considered in Chapter 13. 
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The branch of pattern recognition known as statistical pattern recognition 
has close ties with statistical decision theory and areas of multivariate analy- 
sis, in particular discriminant analysis. In statistical pattern recognition, each 
pattern is considered as a single entity and is represented by a finite dimen- 
sional vector of features of the pattern. Hence, the recognition of patterns 
with respect to a finite number of predefined groups of patterns can be form- 
ulated within the framework of discriminant analysis. The number of fea- 
tures required for recognition of a pattern may become very large if the pat- 
terns under study are very complex or if, as in fingerprint identification, the 
number of possible pattern groups is very large. Consequently, the above 
approach may have to be modified; see, for example, Fu (1986) and Mantas 
(1987). 

By now, there is an enormous literature on discriminant analysis, and so it is 
not possible to provide an exhaustive bibliography here. However, we have at- 
tempted to cover the main results, in particular the more recent developments. 
Additional references on the earlier work may be found in the books devoted 
to the topic as a whole or in part by Lachenbruch (1975a), Goldstein and Dil- 
lon (1978), Klecka (1980), and Hand (1981a, 1982). They have been supple- 
mented recently by the volume edited by s. C. Choi (1986), the notes of Hjort 
(1986a), and the report by a panel of the Committee on Applied and Theoret- 
ical Statistics of the Board on Mathematical Sciences of the National Research 
Council, chaired by Professor R. Gnanadesikan (Panel on Discriminant Anal- 
ysis, Classification and Clustering, 1989). Further references may be found in 
the symposium proceedings edited by Cacoullos (1973) and Van Ryzin (1977), 
the review article by Lachenbruch and Goldstein (1979), and in the encyclope- 
dia entry by Lachenbruch (1982). There are also the relevant chapters in the 
rapidly growing list of textbooks on multivariate analysis. Another source of 
references is the pattern recognition literature. Fukunaga (1972, 1990), Patrick 
(1972), Duda and Hart (1973), Young and Calvert (1974), and Devijver and 
Kittler (1982) are examples of texts on statistical pattern recognition. A sin- 
gle source of references in discriminant and cluster analyses and in pattern 
recognition is the book edited by Krishnaiah and Kana1 (1982). 

1.2 BASIC NOTATION 

We let X denote the p-dimensional random feature vector corresponding to 
the realization x as measured on the entity under consideration. The associ- 
ated variable z denoting the group of origin of the entity is henceforth re- 
placed by a g-dimensional vector z of zero-one indicator variables. The ith 
component of z is defined to be one or zero according as x (really the entity) 
belongs or does not belong to the ith group Gi (i = 1,. . .,g); that is, 

Zi = 1, x E Gi, 

= 0, x 4 Gi, 
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for i = 1,. . .,g. Where possible, random variables are distinguished from their 
realizations by the use of the corresponding uppercase letters. 

The probability density function (p.d.f.) of X in group Gi is denoted by fi(x) 
for i = 1, ...,g. These groupconditional densities are with respect to arbitrary 
measure on RP, so that fi(x) can be a mass function by the adoption of count- 
ing measure. Under the mixture model approach to discriminant analysis, it 
is assumed that the entity has been drawn from a mixture G of the g groups 
GI,. . ., G, in proportions XI,. . .,?rg, respectively, where 

P 

The p.d.f. of X in G can therefore be represented in the finite mixture form 

8 

fx(x) Crifi(x). (1.2.1) 
i = l  

An equivalent assumption is that the random vector Z of zero-one group 
indicator variables with z as its realization is distributed according to a multi- 
nomial distribution consisting of one draw on g categories with probabilities 
XI,. . . , r,, respectively; that is, 

We write 
Z N Mult,( 1, A), 

(1.2.2) 

(1.2.3) 

where A = (rl,...,~,)’. Note that with a deterministic approach to the prob- 
lem, z is taken to be a parameter rather than a random variable as here. 
The distribution function of Y = (X’,Z’)’ is denoted by F&), where the prime 
denotes vector transpose. We let Fi(x) and Fx(x) denote the distribution func- 
tions corresponding to the densities fi(x) and f x  (x), respectively. 

The ith mixing proportion Ti can be viewed as the prior probability that 
the entity belongs to Gi (i = 1, ...,g). With X having been observed as x, the 
posterior probability that the entity belongs to Gi is given by 

T i ( X )  = pr{entity E Gi I x} 

= pr{Zi = 1 I X} 

= rifi(x)/fx(x) (i = L..-,g)- (1.2.4) 

In the next section, we consider the formation of an optimal rule of allocation 
in terms of these posterior probabilities of group membership Ti(X). 

The term “classification” is used broadly in the literature on discriminant 
and cluster analyses. Ib avoid any possible confusion, throughout this mono- 
graph, we reserve the use of classification to describe the original definition of 
the underlying groups. Hence, by a classified entity, we mean an entity whose 
group of origin is known. A rule for the assignment of an unclassified entity 
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to one of the groups will be referred to as a discriminant or allocation rule. In 
the situation where the intention is limited to making an outright assignment 
of the entity to one of the possible groups, it is perhaps more appropriate to 
use the term allocation rather than discriminant to describe the rule. However, 
we will use either nomenclature regardless of the underlying situation. In the 
pattern recognition jargon, such a rule is referred to as a classifier. 

1.3 ALLOCATION RULES 

At this preliminary stage of formulating discriminant analysis, we consider the 
pure decision case, where the intent is to make an outright assignment of an 
entity with feature vector x to one of the g possible groups. Let r ( x )  denote 
an allocation rule formed for this purpqse, where r ( x )  = i implies that an en- 
tity with feature vector x is to be assigned to the ith group Gi (i = 1,. . .,g). In 
effect, the rule divides the feature space into g mutually exclusive and exhaus- 
tive regions R1,. . . , R,, where, if x falls in Ri, then the entity is allocated to 
group Gi (i = 1, . . . ,g).  

The allocation rates associated with this rule r(x) are denoted by eij(r), 
where 

eij(r) = pr{r(X) = j I X E Ci} 

is the probability that a randomly chosen entity from Gi is allocated to Gj (i,j 
= 1,. . .,g). It can be expressed as 

r 

where v denotes the underlying measure on RP appropriate for fx(x) .  The 
probability that a randomly chosen member of Gi is misallocated can be ex- 
pressed as 

where Ri denotes the complement of Ri (i = 1, ...,g). 
For a diagnostic test using the rule r(x) in the context where GI denotes 

the absence of a disease and Gz its presence, the error rate elz(r) corresponds 
to the probability of a false positive, and ezl(r) is the probability of a false 
negative. The correct allocation rates 

and 

are known as the sensitivity and specificity, respectively, of the diagnostic test. 

eu(r )  = 1 - e21(r) e l l (r)  = 1 - elz(r) 
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1.4 DECISION-THEOREI’IC APPROACH 

Decision theory provides a convenient framework for the construction of dis- 
criminant rules in the situation where an outright allocation of an unclassified 
entity is required. The present situation where the prior probabilities of the 
groups and the group-conditional densities are taken to be known is relatively 
straightforward. 

Let cij denote the cost of allocation when an entity from Gi is allocated 
to group Gj, where Ci j  = 0 for i = j = 1, ...,g; that is, there is zero cost for a 
correct allocation. We assume for the present that the costs of misallocation 
are all the same. We can then take the common value of the Cij  (i # j )  to be 
unity, because it is only their ratios that are important. 

For given x, the loss for allocation performed on the basis of the rule r (x )  
is 

(1.4.1) 

where, for any u and v ,  Q[u,v] = 0 for u = v and 1 for u # v .  The expected 
loss or risk, conditional on x, is given by 

(1.4.2) 
i =l 

since from (1.2.4), 
E(Zi I X) = T j ( X ) .  

An optimal rule of allocation can be defined by taking it to be the one that 
minimizes the conditional risk (1.4.2) at each value x of the feature vector. In 
decision-theory language, any rule that so minimizes (1.4.2) for some TI,.  ..,xg 
is said to be a Bayes rule. It can be seen from (1.4.2) that the conditional risk 
is a linear combination of the posterior probabilities, where all coefficients are 
zero except for one, which is unity. Hence, it is minimized by taking r(x)  to 
be the label of the group to which the entity has the highest posterior prob- 
ability of belonging. Note that this is the “intuitive solution” to the allocation 
problem. 

If we let ro(x) denote this optimal rule of allocation, then 

To(X) = i if Q(X) 2 T j ( X )  (i = 1 ,..., g; j # i). (1.4.3) 

The rule ro(x) is not uniquely defined at x if the maxim& of the posterior 
probabilities of group membership is achieved with respect to more than one 
group. In this case the entity can be assigned arbitrarily to one of the groups 
for which the corresponding posterior probabilities are equal to the maximum 
value. If 

pT{Ti(X) = Tj(x)} = 0 (i # = 1,. . .,g), 
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then the optimal rule is unique for almost all x relative to the underlying mea- 
sure Y on RP appropriate for fx (x ) .  
As the posterior probabilities of group membership q(x) have the same 

common denominator f x ( x ) ,  ro(x) can be defined in terms of the relative 
sizes of the groupconditional densities weighted according to the groupprior 
probabilities; that is, 

ro(x)  = i if n;.fi(x) 2 ~ j f j ( x )  ( j  = 1, ...,g; j # i ) .  (1.4.4) 

Note that as the optimal or Bayes rule of allocation minimizes the condi- 
tional risk (1.4.2) over all rules r ,  it also minimizes the unconditional risk 

g 

e ( r )  = CE{7i(X)Q[i,r(X)]} 
i = l  

i=l 

which is the overall error rate associated with r .  
Discriminant analysis in its modem guise was founded by Fisher (1936). 

His pioneering paper, which did not take the group-conditional distributions 
to be known, is to be discussed later in this chapter in the context of sample- 
based allocation rules. Concerning initial work in the case of known group 
conditional distributions, Welch (1939) showed for g = 2 groups that a rule of 
the form (1.4.4) is deducible either from Bayes theorem if prior probabilities 
are specified for the groups or by the use of the Neyman-Pearson lemma if 
the two groupspecific errors of allocation are to be minimized in any given 
ratio. Wald (1939, 1949) developed a general theory of decision functions, and 
von Mises (1945) obtained the solution to the problem of minimizing the max- 
imum of the errors of allocation for a finite number of groups, which was in 
the general theme of Wald’s work. Rao (1948) discussed explicit solutions of 
the form (1.4.4) and also the use of a doubtful region of allocation. In a subse- 
quent series of papers, he pursued related problems and extensions; see Rao 
(1952, 1954) for an account. There is an extensive literature on the develop 
ment of allocation rules. The reader is referred to Das Gupta (1973) for a 
comprehensive review. 

Up to now, we have taken the costs of misallocation to be the same. For 
unequal costs of misallocation Cij, the conditional risk of the rule r ( x )  is 

(1.4.5) 
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Let ro(x) be the optimal or Bayes rule that minimizes (1.4.5). Then it follows 
that ro(x) = i if 

8 8 

c r h ( X ) c h i  5 C 7 h ( x ) ~ h j  (i = lY.-.,g; i + i). (1.4.6) 
h#i hlzj 

For g = 2 groups, (1.4.6) reduces to the definition (1.4.3) or (1.4.4) for ro(x) 
in the case of equal costs of misallocation, except that 7r1 is replaced now by 
XICIZ and 7r2 by 7rzczl. As it is only the ratio of c12 and c21 that is relevant to 
the definition of the Bayes rule, these costs can be scaled so that 

R1C12 + 7rZCZl = 1. 

Hence, we can assume without loss of generality that c1z = cz1 = 1, provided 
7r1 and 7rz are now interpreted as the groupprior probabilities adjusted by the 
relative importance of the costs of misallocation. Due to the rather arbitrary 
nature of assigning costs of misallocation in practice, they are often taken 
to be the same in real problems. Further, the groupprior probabilities are 
often specified as equal. This is not as arbitrary as it may appear at first 
sight. For example, consider the two-group situation, where GI denotes a 
group of individuals with a rare disease and GZ those without it. Then, al- 
though 111 and 7r2 are disparate, the cost of misallocating an individual with 
this rare disease may well be much greater than the cost of misallocating 
a healthy individual. If this is so, then 7rlclz and 7r2c21 may be comparable 
in magnitude and, as a consequence, the assumption of equal groupprior 
probabilities with unit costs of misallocation in the formation of the Bayes 
rule ro(x) is apt. Also, it would avoid in this example the occurrence of high- 
ly unbalanced groupspecific error rates. The latter are obtained if ro(x) is 
formed with extremely disparate prior probabilities Ti and equal costs of mis- 
allocation. This imbalance between the groupspecific error rates is a con- 
sequence of ro(x) being the rule that minimizes the overall error rate. In 
the next section, we consider the construction of rules that are optimal with 
respect to other criteria. In particular, it will be seen that by specifying the 
prior probabilities Xi in ro(x) so that its consequent error rates are equal, 
we obtain the rule that minimizes the maximum of the groupspecific error 
rates. 

1.5 UNAVAILABILITY OF GROUP-PRIOR PROBABILITIES 

In some instances in practice, the prior probabilities Tj of the groups Gj are 
able to be assigned or reasonable estimates are available. For example, in the 
context of medical diagnosis where the groups represent the possible disease 
categories to which an individual is to be allocated, the prior probabilities can 
be taken to be the prevalence rates of these diseases in the population from 
which the individual has come. However, as to be discussed further in Section 
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2.3, in some instances, the very purpose of forming an allocation rule for the 
basis of a screening test is to estimate the prevalence rates of diseases. Also, 
with a deterministic approach to the construction of an allocation rule, prior 
probabilities are not relevant to the formulation of the problem. 

We now consider the selection of suitable allocation rules where the prior 
probabilities of the groups are not available. We will only give a brief cov- 
erage of available results. For further details, the reader is referred to T. W. 
Anderson (1984, Chapter 6), who has given a comprehensive account of the 
decision-theoretic approach to discriminant analysis. 

In the absence of prior probabilities of the groups, we cannot define the 
risk either unconditional or conditional on the feature vector x. Hence, some 
other criterion must be used. Various other criteria have been discussed by 
Raiffa (1961). One approach is to focus on the groupspecific unconditional 
losses and to look for the class of admissible rules; that is, the set of rules that 
cannot be improved upon. For an entity from Gj, the unconditional loss for a 
rule r(x) is 

g 

i # i  

Zj(r) = Ccijpr{r(X) sz j I x E Gj} 

A rule r*(x) is at least as good as r (x)  if 

li(r*) 5 l j (r)  (i = 1, ...,g), (1.5.1) 

If at least one inequality in (1.5.1) is strict, then r*(x) is better than r(x).  
The rule r (x)  is said to be admissible if there is no other rule r*(x) that is 
better. 

It can be shown that if Ti > 0 (i = 1,. ..,g), then a Bayes rule is admissible. 
Also, if C i i  = 1 (i # j ) ,  and 

pr{fi(X) = O l X c  Gj} = 0 ( i , j  = 1 ,..., g) ,  

then a Bayes rule is admissible. The converse is true without conditions (ex- 
cept that the parameter space is finite). The proofs of these and other related 
results can be found in T. W. Anderson (1984, Chapter 6) and in the refer- 
ences therein. 

A principle that usually leads to the selection of a unique rule is the mini- 
max principle. A rule is minimax if the maximum unconditional loss is a mini- 
mum. In the present context, the rule r (x )  is minimax if the maximum of Zi(r) 
over i = 1,. . . ,g is a minimum over all allocation rules. The minimax rule is 
the Bayes procedure for which the unconditional losses are equal (von Mises, 
1945). 
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1.6 TRAINING DATA 

We have seen in the previous section that the absence of prior pbabilities for 
the groups introduces a complication into the process of obtaining a suitable 
allocation rule. A much more serious issue arises when the groupconditional 
densities are either partially or completely unknown. 

A basic assumption in discriminant analysis is that in order to estimate the 
unknown groupconditional densities, there are entities of known origin on 
which the feature vector X has been recorded for each. We let XI, .. .,x,, denote 
these recorded feature vectors and 21, .. .,Zn the corresponding vectors of zero- 
one indicator variables defining the known group of origin of each. We let 

The collection of data in the matrix t defined by 

t' = O.1,.*.,Yn) (1.6.1) 

is referred to in the literature as either the initial, reference, design, training, 
or learning data. The last two have arisen from their extensive use in the 
context of pattern recognition. Also in the latter field, the formation of an 
allocation rule from training data of known origin is referred to as supervised 
learning. 

There are two major sampling designs under which the training data T may 
be realized, joint or mixture sampling and z-conditional or separate sampling. 
They correspond, respectively, to sampling from the joint distribution of Y = 
(X',Z')' and to sampling from the distribution of X conditional on z. The first 
design applies to the situation where the feature vector and group of origin are 
recorded on each of n entities drawn from a mixture of the possible group. 
Mixture sampling is common in prospective studies and diagnostic situations. 
In a prospective study design, a sample of individuals is followed and their 
responses recorded. 

With most applications in discriminant analysis, it is assumed that the train- 
ing data are independently distributed. For a mixture sampling scheme with 
this assumption, XI,. ..,& are the realized values of n independent and identi- 
cally distributed (i.i.d.) random variables XI,. . .,Xn with common distribution 
function Fx(x). We write 

iid Xl,...,Xn Fx. 

The associated group indicator vectors 21,. . .,z, are the realized values of the 
random variables 21,. . . ,Zn distributed unconditionally as 

Z1,. . .,Z,zMulte( 1 ,~ ) .  (1.6.2) 

The assumption of independence of the training data is to be relaxed in Chap 
ter 13. Examples in remote sensing are given there where the assumption of 
independence is not valid. 
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With separate sampling in practice, the feature vectors are observed for a 
sample of ni entities taken separately from each group Gi (i = 1,. . .,g). Hence, 
it is appropriate to retrospective studies, which are common in epidemiolog- 
ical investigations. For example, with the simplest retrospective case-control 
study of a disease, one sample is taken from the cases that occurred during 
the study period and the other sample is taken from the group of individu- 
als who remained free of the disease. As many diseases are rare and even 
a large prospective study may produce few diseased individuals, retrospective 
sampling can result in important economies in cost and study duration. Note 
that as separate sampling corresponds to sampling from the distribution of X 
conditional on z, it does not provide estimates of the prior probabilities q for 
the groups. 

1.7 SAMPLE-BASED ALLOCATION RULES 

We now consider the construction of an allocation rule from available train- 
ing data t in the situation where the groupconditional densities and perhaps 
also the group-prior probabilities are unknown. The initial approach to this 
problem, and indeed to discriminant analysis in its modern guise as remarked 
earlier, was by Fisher (1936). In the context of g = 2 groups, he proposed that 
an entity with feature vector x be assigned on the basis of the linear discrim- 
inant function a'x, where a maximizes an index of separation between the 
two groups. The index was defined to be the magnitude of the difference be- 
tween the groupsample means of a'x normalized by the pooled sample 
estimate of its assumed common variance within a group. The derivation 
of Fisher's (1936) linear discriminant function is to be discussed further 
in Section 3.3, where it is contrasted with normal theory-based discriminant 
rules. 

The early development of discriminant analysis before Fisher (1936) dealt 
primarily with measures of differences between groups based on sample mo- 
ments or frequency tables, and ignored correlations among different variates 
in the feature vector (Pearson, 1916; Mahalanobis, 1927, 1928). One of Fisher's 
first contacts with discriminant problems was in connection with M. M. Barn- 
ard's (1935) work on the secular variation of Egyptian skull characteristics. 
By 1940, Fisher had published four papers on discriminant analysis, including 
Fisher (1938) in which he reviewed his 1936 work and related it to the contri- 
butions by Hotelling (1931) on his now famous T2 statistic and by Mahalanobis 
(1936) on his 0' statistic and earlier measures of distance. Das Gupta (1980) 
has given an account of Fisher's research in discriminant analysis. 

With the development of discriminant analysis through to the decision- 
theoretic stage (Wald, 1944; Rao, 1948, 1952, 1954; Hoe1 and Peterson, 1949), 
an obvious way of forming a sample-based allocation rule r(x;t) is to take it 
to be an estimated version of the Bayes rule r,,(x) where, in (1.4.3), the pos- 
terior probabilities of group membership q(x) are replaced by some estimates 
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.Pi(X; t) formed from the training data t. One approach to the estimation of the 
posterior probabilities of group membership is to model the q(x) directly, as 
with the logistic model to be presented in Chapter 8. Dawid (1976) calls this 
approach the diagnostic paradigm. 

A more common approach, called the sampling approach by Dawid (1976), 
is to use the Bayes formula (1.24) to formulate the T i ( X )  through the group 
conditional densities fi(x). With this approach, the Bayes rule is estimated by 
the so-called plug-in rule, 

r(x; t) = ro(x;P), (1.7.1) 

where we now write the optimal or Bayes rule as r,(x;F) to explicitly denote 
its dependence on the distribution function F ( y )  of Y = (X',Z')'. As before, 
X is the feature observation and Z defines its group of origin. In (1.7.1), &' 
denotes an estimate of I; that can be obtained by estimating separately each 
group-conditional distribution from the training data t. 

The groupprior probabilities can be estimated by the proportion of enti- 
ties from each group at least under mixture sampling. Their estimation un- 
der separate sampling is considered in the next chapter, commencing in Sec- 
tion 2.3. Concerning the estimates of the groupconditional distribution func- 
tions, a nonparametric approach may be adopted using, say, kernel or nearest- 
neighbor methods. These along with other nonparametric methods are to be 
discussed in Chapter 9. A commonly used approach is the parametric, which is 
introduced in the next section in a general context. It is to be considered fur- 
ther in Chapter 3 for the specific choice of normal models and in Chapter 7 for 
nonnormal models. There is also the work, in the spirit of the empirical Bayes 
approach of Robbins (1951, 1964), on the allocation of a sequence of unclas- 
sified entities whose groupindicator vectors and features are independently 
distributed. Results under various assumptions on the available information 
on the underlying distributions have been obtained by Johns (l%l), Samuel 
(1%3a, 1%3b), Hudimoto (1968), K. Choi (1%9), Wojciechowski (1985), and 
Stirling and Swindlehurst (1989, among others. 

1.8 PARAM-C ALLOCATION RULES 

Under the parametric approach to the estimation of the groupconditional dis- 
tributions, and hence of the &yes rule, the groupconditional distributions are 
taken to be known up to a manageable number of parameters. More specif- 
ically, the ith groupconditional density is assumed to belong to a family of 
densities 

{fl:(x;@i) : 8i E Si}, (1.8.1) 

where @i is an unknown parameter vector belonging to some parameter space 
ei (i = 1, ...,g). Often the groupconditional densities are taken to belong to 
the same parametric family, for example, the normal. 
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The density functions of X and Y = (X',Z')' are written now as f . ( x ; S )  
and f(y;q), respectively, where 

(1.8.2) 

and 8 is the vector consisting of the elements of 81,. . .,8, known a priori to 
be distinct. For example, if the groupconditional distributions are assumed to 
be multivariate normal with means p1,. . . , pg and common covariance matrix 
I=, then 8i consists of the elements of pi and of the distinct elements of I=, 
and 8 consists of the elements of p1, ...,pg and of the distinct elements of C. 
Note that since the elements of the vector 7r of the mixing proportions Zj sum 
to one, one of them is redundant in 9, but we will not modify q accordingly, 
at least explicitly. However, in our statements about the distribution of any 
estimator of 9, it will be implicitly assumed that one of the mixing proportions 
has been deleted from ?!. 

With the so-called estimative approach to the choice of a sample-based dis- 
criminant rule, unknown parameters in the adopted parametric forms for the 
groupconditional distributions are replaced by appropriate estimates obtained 
from the training data t. Hence, if ro (x ;q )  now denotes the optimal rule, then 
with this approach, 

r(x;t) = ro(x;&), 

where & is an estimate of ?Ir formed from t. Provided 8i is a consistent estima- 
tor of 8i and fi(X;8j) is continuous in 8i (i = 1, ...,g), then ro(x;&) is a Bayes 
risk consistent rule in the sense that its risk, conditional on 4, converges in 
probability to that of the Bayes rule, as n approaches infinity. This is assum- 
ing that the postulated model (1.8.1) is indeed valid and that the group-prior 
probabilities are estimated consistently as possible, for instance, with mixture 
sampling of the training data. If the conditional risk for ro(x;&) converges al- 
most surely to that of the Bayes rule as n approaches infinity, then it is said 
to be Bayes risk strongly consistent. Consistency results for sample-based al- 
location rules have been obtained by Van Ryzin (1966) and Glick (1972, 
1976). Initial references on the notion of consistency for sample-based al- 
location rules include Hoe1 and Peterson (1949) and Fix and Hodges (1951). 
The latter technical report, which also introduced several important non- 
parametric concepts in a discriminant analysis context, has been reprinted 
in full recently at the end of a commentary on it by Silverman and Jones 

Given the widespread use of maximum likelihood as a statistical estima- 
tion technique, the plug-in rule ro(x;$) is usually formed with &, or at least 
8, taken to be the maximum likelihood estimate. This method of estimation 
in the context of discriminant analysis is to be considered further in the next 
section. Since their initial use by Wald (1944), Rao (1948, 1954), and T. W. An- 
derson (1951), among others, plug-in rules formed by maximum likelihood es- 
timation under the assumption of normality have been extensively applied in 

(1989). 
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practice. The estimation of ro(x;q) by ro(x;&), where @ is the maximum 
likelihood estimate of Y, preserves the invariance of an allocation rule under 
monotone transformations. 

Concerning some other parametric approaches to constructing a sample- 
based rule, there is the likelihood ratio criterion. The unknown vector z of 
zero-one indicator variables defining the group of origin of the unclassified 
entity is treated as a parameter to be estimated, along With 9, on the basis 
of t and also x. It differs from the estimative approach in that it includes 
the unclassified observation x in the estimation process. Hence, in principle, 
there is little difference between the two approaches although, in practice, the 
difference may be of some consequence, in particular for disparate group 
sample sizes. 

Another way of proceeding with the estimation of the group-conditional 
densities, and, hence, of ro(x;Y), is to adopt a Bayesian approach, which is 
considered in Section 2.2. Among other criteria proposed for constructing al- 
location rules is minimum distance. With this criterion, an entity with fea- 
ture vector x is allocated to the group whose classified data in the training 
set t is closest to x in some sense. Although minimum-distance rules are of- 
ten advocated in the spirit of distribution-free approaches to allocation, they 
are predicated on some underlying assumption for the group-conditional 
distributions, For example, the use of Euclidean distance as a metric cor- 
responds to multivariate normal group-conditional distributions with a com- 
mon spherical covariance matrix, and Mahalanobis distance corresponds to 
multivariate normal distributions with a common covariance matrix. The 
aforementioned parametric allocation rules are discussed in more detail 
with others in Chapter 3 in the context of normal theory-based discrimin- 
ation. 

Often, in practice, the total sample size is too small relative to the number 
p of feature variables in x for a reliable estimate of 8 to be obtained from the 
full set t of training data. This is referred to as “the curse of dimensionality,” 
a phrase due to Bellman (l%l). Consideration then has to be given to which 
variables in x should be deleted in the estimation of 8 and the consequent 
allocation rule. Even if a satisfactory discriminant rule can be formed using all 
the available feature variables, consideration may still be given to the deletion 
of some of the variables in x. This is because the performance of a rule fails 
to keep improving and starts to fall away once the number of feature variables 
has reached a certain threshold. This so-called peaking phenomenon of a rule 
is discussed further in Chapter 12, where the variable-selection problem is 
to be addressed. It is an important problem in its own right in discriminant 
analysis, as with many applications, the primary or sole aim is not one of 
allocation, but rather to infer which feature variables of an entity are most 
useful in explaining the differences between the groups. If some or all of the 
groupsample sizes ni of the classified data are very small, then consideration 
may have to be given to using unclassified data in the estimation of 8, as 
discussed in Section 2.7. 
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1.9 ASSESSMENT OF MODEL FIT 

If the postulated group-conditional densities provide a good fit and the group 
prior probabilities are known or able to be estimated with some precision, 
then the plug-in rule ro(x;P) should be a good approximation to the Bayes 
rule ro(x; F). However, even if fi is a poor estimate of F, ro(x;$) may still 
be a reasonable allocation rule. It can be seen from the definition (1.4.4) of 
ro(x;F) that for ro(x;#) to be a good approximation to ro(x;F), it is only 
necessary that the boundaries defining the allocation regions, 

(1.9.1) 

be estimated precisely. This implies at least for well-separated groups that in 
consideration of the estimated group-conditional densities, it is the fit in the 
tails rather than in the main body of the distributions that is crucial. This is 
what one would expect. Any reasonable allocation rule should be able to al- 
locate correctly an entity whose group of origin is obvious from its feature 
vector. Its accuracy is really determined by how well it can handle entities of 
doubtful origin. Their feature vectors tend to occur in the tails of the distribu- 
tions. 

If reliable estimates of the posterior probabilities of group membership 
q(x) are sought in their own right and not just for the purposes of making 
an outright assignment, then the fit of the estimated density ratios $(x)/jj(x) 
is important for all values of x and not just on the boundaries (1.9.1). It can be 
seen in discriminant analysis that the estimates of the groupconditional den- 
sities are not of interest as an end in themselves, but rather how useful their 
ratios are in providing estimates of the posterior probabilities of group mem- 
bership or at least an estimate of the Bayes rule. However, for convenience, 
the question of model fit in practice is usuaIly approached by consideration of 
the individual fit of each estimated density h(x). 

Many different families of distributions may be postulated for the group 
conditional densities, although some may be difficult to deal with analytically 
or computationally. The normal assumption is commonly adopted in practice. 
In some cases for this to be reasonable, a suitable transformation of the fea- 
ture variables is required, In many practical situations, some variables in the 
feature vector x may be discrete. Often treating the discrete variables, in par- 
ticular binary variables, as if they were normal in the formation of the dis- 
criminant rule is satisfactory. However, care needs to be exercised if several 
of the feature variables are discrete. The use of nonnormal models, includ- 
ing for mixed feature vectors where some of the variables are continuous and 
some are discrete, is discussed in Chapter 7, and Chapter 3 is devoted entirely 
to discrimination via normal models. Practical aspects such as robust methods 
of estimating groupconditional parameters, use of transformations to achieve 
approximate normality, testing for normality, and detection of atypical entities 
are discussed in Chapters 5 and 6. 
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1.10 ERROR RATES OF ALLOCATION RULES 

1.10.1 Qpes of Error Rates 
The allocation rates associated with the optimal or Bayes rule are given by 

eoij(F) = pr{ro(XF) = j I XE Gi} (i, j = 1 ,..., g), (1.10.1) 

where eoij(F) is the probability that a randomly chosen entity from Gj is al- 
located to Gj on the basis of ro(x;F). The error rate specific to the ith group 
Gj is 

8 

j # i  

eoi(F) = C e o i j ( F )  (i = 1, ...,g>, 

and the overall error rate is 
8 

eo(F) = Cfljeoj(F).  
i=l 

As seen in Section 1.4, r,(x;F) is the rule that minimizes the overall error 
rate in the case of unit costs of misallocation. Consequently, eo(F) is referred 
to as the optimal (overall) error rate. The optimal overall error rate can be 
used as a measure of the degree of separation between the groups, as to be 
considered in Section 1.12. 

We proceed now to define the error rates of a sample-based rule. Let r(x; t )  
denote an allocation rule formed from the training data t. Then the allocation 
rates of r(x;t), conditional on t, are defined by 

eCij(fi;t) = pr{r(Xt) j I X E  Gipt}, (1.10.2) 

which is the probability, conditional on t, that a randomly chosen entity from 
Ci is allocated to Gj (i, j = 1, .. .,g). The group-specific conditional error rates 
are given by 

8 

i#i 
eci(fi;t) = Cecij(Fi;t)  (i = 1, ...,g), 

and the overall conditional error rate by 
8 

ec(F;t) = CTiec j ( f i ; t ) .  
i l l  

For equal costs of misallocation, the rule r(x; t) is Bayes risk consistent (strong- 
ly consistent) if ec(F;t) converges in probability (almost surely) to eo(F), as 
PI approaches infinity. 

On averaging the conditional allocation rates over the distribution of the 
training data, we obtain the expected or unconditional rates defined as 

euij(F) E{ecij(F;:;T)} 

= pr{r(XT) = j I X E Gi} ( i , j  = 1 ,..., g). (1.10.3) 
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In the case of separate sampling where t is based on a fwd  number of enti- 
ties from each group, we should, strictly speaking, denote these unconditional 
rates as eUij(F1,. . . ,Fg), rather than euij(F). The groupspecific unconditional 
error rates are given by 

8 
eui(F) = C e u i j ( F ) ,  

j #i 

and the overall unconditional error rate by 
P 

eu(F) = zmjeuj(F).  
i= l  

We are following Hills (1966) here in referring to the eci(Fi;t) and ec(F; t )  
as the conditional or actual error rates, and to the euj(F) and eu(F) as the 
unconditional or expected error rates. Before the introduction of his careful 
terminology for the various types of error rates, there had been a good deal 
of confusion in the literature; see the comment of Cochran (1966). 

1.10.2 Relevance of Error Rates 

Concerning the relevance of error rates in discriminant analysis, for allocation 
problems, they play a major role in providing a measure of the global perfor- 
mance of a discriminant rule. It has been suggested (Lindley, 1966) that more 
attention should be paid to the unconditional lases. However, as remarked 
earlier, the specification of costs in practice is often arbitrary. 

On the use of error rates to measure the performance of a sample-based 
allocation rule, it is the conditional error rates that are of primary concern 
once the rule has been formed from the training data t. If t denotes all the 
available data of known origin, then one is stuck with this training set in form- 
ing a rule. An example where these error rates enter naturally into an analysis 
is when the rule r(x;t) forms the basis of a diagnostic test for estimating the 
prevalence rates of a disease, as covered in Section 2.3. 

The average performance of the rule over all possible realizations of t is 
of limited interest in applications of r(x; t).  However, the unconditional error 
rates are obviously relevant in the design of a rule. They relate the average 
performance of the rule to the size of the training set and to the group 
conditional distributions as specified. For example, consider the case of two 
groups G1 and G2 in which the feature vector X is taken to have a multivariate 
normal distribution with means p1 and p2, respectively, and common covari- 
ance matrix 8. For separate sampling with equal sample sizes n / 2  from each 
of the two groups, the sample-based analogue of the Bayes rule with equal 
groupprior probabilities has equal unconditional error rates. Their common 
value, equal to the overall error rate for equal priors, is given by 

eu(F) M eo(F) + n-l {$(+A) /4} {PA + 4@ - l)A-'}, (1.10.4) 



ERROR RATES OF ALLOCATION RULES 19 

where 
eo(F) = @(-fa) 

and 
A = {(PI - P ~ ) ' ~ - ' ( P I  - ~ 2 ) ) ' ' ~  (1.10.5) 

is the Mahalanobis (1936) distance between GI and G2. In this and subsequent 
work, @ and denote the standard normal distribution and density, respec- 
tively. The error of the approximation (1.10.4) is of order 0(K2) (Okamoto, 
1963). The derivation of (1.10.4) is discussed in Section 4.2 

From (1.10.4), we can determine approximately how large n must be for 
a specified A and p in order for the unconditional error rate not to exceed 
too far the best obtainable, as given by the optimal rate eo(F). For instance, 
for A = 1 representing two groups that are close together, n on the basis of 
(1.10.4) has be to at least 40 with p = 3 for the rate to be less than 1/3 on aver- 
age; that is, not more than 0.0248 in excess of the optimal rate of 0.3085. The 
latter value shows that it is not possible to design an accurate allocation rule 
in this case. Indeed, if n is small, then for p > 1, the error rate is not far short 
of 112, which is the error rate for a randomized rule that ignores the feature 
vector and makes a choice of groups according to the toss of a fair coin. 

It can be seen from (1.10.2) and (1.10.3) that the conditional and uncondi- 
tional allocation rates of a sample-based rule depend on the unknown group 
conditional distributions and so must be estimated. In the absence of any fur- 
ther data of known origin, these rates must be estimated from the same data t 
from which the rule has been formed. Hence, there are difficulties in obtaining 
unbiased estimates of the error rates of a sample-based rule in its application 
to data of unknown origin, distributed independently of the training sample. 
Estimation of the error rates of allocation rules is thus a difficult but impor- 
tant problem in discriminant analysis. It is taken up in Chapter 10, which is 
devoted fully to it. 

We have seen that the situation where some of the errors of allocation are 
more serious than others can be handled through the specification of unequal 
costs of misallocation in the definition (1.4.6) of the Bayes rule. Another a p  
proach would be to introduce regions of doubt in the feature space where no 
allocation is made. This approach was adopted by J. A. Anderson (1%9) in his 
design of a rule with upper bounds specified on the errors of allocation. It was 
used also by Habbema, Hermans, and van der Burgt (1974b) in their devel- 
opment of a decision-theoretic model for allocation. Previously, Marshall and 
Olldn (1968) had considered situations where direct assessment of the group 
of origin is possible, but expensive. In these situations, after the feature vector 
has been observed, there is a choice between allocation and extensive group 
assessment. Another approach where there is an alternative to an outright 
allocation of the entity after its feature vector has been observed was given 
by Quesenberry and Gessaman (1%8). Their nonparametric procedure con- 
structs tolerance regions for each group, and an entity is allocated to the set 
of those group whose tolerance regions contain the feature vector x. If x falls 
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within all or outside all the tolerance regions, then the entity is not allocated; 
see also Gessaman and Gessaman (1972). Broffitt, Randles, and Hogg (1976) 
introduced a rank method for partial allocation with constraints imposed on 
the unconditional error rataes. This nonparametric approach to partial dis- 
crimination in the presence of constraints is discussed in Section 9.9. 

A parametric approach to constrained discrimination with unknown group 
conditional densities has been investigated by T. W. Anderson (1973a, 1973b) 
and McLachlan (1977b) for the sample normal-based linear discriminant rule. 
Their work is described in Section 4.5. Also, Gupta and Govindarajulu (1973) 
considered constrained discrimination in the special case of univariate nor- 
mal groupconditional distributions with multiple independent measurements 
available on the entity to be allocated. 

The error rates are not the only measure of the global accuracy of an allo- 
cation rule. Breiman et al. (1984, Section 4.6) have proposed a global measure 
in terms of estimates of the posterior probabilities of group membership for 
a rule r(x; t )  defined analogously to the Bayes rule ro(x;F).  That is, r(x; t) is 
equal to i if the estimated posterior probabilities satisfy 

.ii(x;t) 2 f j ( X ; Z )  (j 1, ...,g; j # i ) .  (1.10.6) 

Their proposed measure of the accuracy (conditional here on the training data 
t) of the rule r (x ; t )  is 

( 1.10.7) 

They noted that if the mean-squared error (conditional on t) of the rule r(x; t) 
is defined as 

MSE(r)  = E C{fi(X;t) - Zi}' I t , (1.10.8) r i = l  1 
then it can be decomposed into the two terms, 

MSE(r)  = MSE(r,,) + E I I], 

where 

1 MSE(r,) = E [ k { T i ( X ) - Z i ] '  
i= l  

is the mean-squared error of the Bayes rule ro(x). Hence, a comparison in 
terms of the accuracy (1.10.7) of different rules of the form (1.10.6) can be 
made in terms of their conditional mean-squared errors. This provides a sig- 
nificant advantage as, unlike (1.10.7), MSE(r)  can be estimated directly from 
t as 
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where Zij = (zj)j, and zj is the vector of zero-one indicator variables defining 
the known group of origin of the jth feature vector X j  in the training data 
t ( j  = 1, ..., n). 

Note that by virtue of their definition, error rates are concerned only with 
the allocatory performance of a rule. Hence, for rules of the form (1.10.6), 
they are concerned only with the relative sizes of the estimated posterior prob- 
abilities of group membership. By contrast, the criterion (1.10.7) attempts to 
measure the accuracy of a rule of the form (1.10.6) by assessing the absolute 
fit of the posterior probabilities of group membership. 

Other ways of assessing the discriminatory performance of a fitted model 
have been considered by Habbema, Hilden, and Bjerregaard (1978b, 1981); 
Hilden, Habbema, and Bjerregaard (1978a, 1978b); and Habbema and Hilden 
(1981). 

1.11 POSTERIOR PROBABILITIES OF GROUP MEMBERSHIP 

It was shown in Section 1.8 that the posterior probabilities of group member- 
ship T ~ ( x )  or their estimates may play no role in the formation of some alloca- 
tion rules in the pure decision context. On the other hand with the Bayes rule 
or a sample version, the relative sizes of the posterior probabilities of group 
membership T i ( X )  form the basis of the subsequent outright allocation to be 
made. In many real problems, only a tentative allocation is contemplated be- 
fore consideration is to be given to taking an irrevocable decision as to the 
group of origin of an unclassified entity. For these problems, the probabilistic 
allocation rule implied by the q(x) or their estimates provides a concise way 
of expressing the uncertainty about the group membership of an unclassified 
entity with an observed feature vector x. 

It has been argued (Spiegelhalter, 1986) that the provision of accurate and 
useful probabilistic assessments of future events should be a fundamental task 
for biostatisticians collaborating in clinical or experimental medicine. lb this 
end, the posterior probabilities of group membership play a major role in pa- 
tient management and clinical trials. For example, in the former context with 
the groups corregponding to the possible treatment decisions, the uncertainty 
over which decision to make is conveniently formulated in terms of the poste- 
rior probabilities of group membership. Moreover, the management of the pa- 
tient may be only at a preliminary stage where an outright assignment may be 
premature particularly, say, if the suggested treatment decision is not clearcut 
and involves major surgery on the patient. The reliability of these estimates 
is obviously an important question to be considered, especially in applications 
where doubtful cases of p u p  membership arise. 

If the posterior probabilities of group membership have been estimated for 
the express purpose of forming an allocation rule, then their overall reliability 
can be assessed through the global performance of this rule as measured by its 
associated error rates. However, as emphasized by Critchley and Ford (1985), 
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even if all its error rates are low, there may still be entities about which there 
is great uncertainty as to their group of origin. Conversely, these global mea- 
sures may be high, yet it may still be possible to allocate some entities with 
great certainty. Thus, in some situations, it may not be appropriate to consider 
an assessment in terms of the error rates. Indeed, as pointed out by Aitchison 
and Kay (1979, in clinical medicine, the Hippocratic oath precludes any ni- 
terion of average results over individual patients (such as error rates), so that 
conditioning on the feature vector x is an apt way to proceed. In Chapter 11, 
we consider methods for assessing the reliability of the estimates of the pos- 
terior probabilities of group membership from the same training data used to 
form these estimates in the first instance. 

1.12 DISTANCES BETWEEN GROUPS 

Over the years, there have been proposed many different measures of dis- 
tance, divergence, or discriminatory information between two groups. Krzan- 
owski (1983a) has put them broadly into two categories: (a) measures based 
on ideas from information theory and (b) measures related to Bhattacharyya's 
(1943) measure of affinity. 

Some members of category (a) are considered first. There is the Kullback- 
Leibler (1951) measure of discriminatory information between two groups 
with distribution functions F1 and 8'2, admitting densities f ~ ( x )  and f2 (x ) ,  re- 
spectively, with respect to some measure v. This measure is given by 

dKL(F1,  F2) = J fl(X)loB~fi(x>l~2(x)~ dv. 

It is a directed divergence in that it also has a directional component, since 
generally, ~ K L ( F ~ , F ~ )  # ~ K L ( F ~ , F ~ ) ;  that is, it is not a metric. Jeffreys' (1948) 
measure is a symmetric combination of the Kullback-Leibler information, 

dI(Fl,F2) = (5KL(Fl,F2) + dKL(F2,Fl). 

A third measure in category (a) is 

dS(F1,FZ) = ; [ s K L { F l ,  h(Fl+ F2)) + dKKLU72, f(Fl+ FZ))l, 
which is Sibson's (1%9) information radius given in its simple form. 

Rhyi (1%l) generalized both Shannon (1948) entropy and the Jeffreys- 
Kullback-Leibler information by introducing a scalar parameter. Recently, 
Burbea and Rao (1982), Burbea (1984), and 'hneja (1983) have proposed 
various alternative ways to generalize d,(F&). The proposed measures of 
Burbea and Rao (1982) and Burbea (1984) involve one parameter, and the 
measures proposed by Bneja (1983) involve two parameters. The definitions 
of these generalized measures may be found in 'hneja (1987). Another mea- 
sure that has been proposed is the power divergence corresponding to the 
power-divergence family of goodness-of-fit statistics introduced by Cressie and 
Read (1984); see also Read and Cressie (1988, Section 7.4). 


