Multiple Imputation for Nonresponse in Surveys

DONALD B. RUBIN

Department of Statistics Harvard University

JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto • Singapore

Multiple Imputation for Nonresponse in Surveys

Multiple Imputation for Nonresponse in Surveys

DONALD B. RUBIN

Department of Statistics Harvard University

JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto • Singapore

A NOTE TO THE READER:

This book has been electronically reproduced from digital information stored at John Wiley & Sons, Inc. We are pleased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings.

Copyright © 1987 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Rubin, Donald B. Multiple imputation for nonresponse in surveys. (Wiley series in probability and mathematical statistics. Applied probability and statistics, ISSN 0271-6232)
Bibliography: p. Includes index.
1. Multiple imputation (Statistics) I. Title.
II. Series.
HH31.2.R83 1987 001.4'225 86-28935
ISBN 0-471-08705-X

Printed in the United States of America

10 9 8

To the family of my childhood and the family of my parenthood

Preface

Multiple imputation is a statistical technique designed to take advantage of the flexibility in modern computing to handle missing data. With it, each missing value is replaced by two or more imputed values in order to represent the uncertainty about which value to impute. The ideas for multiple imputation first arose in the early 1970s when I was working on a problem of survey nonresponse at Educational Testing Service, here summarized as Example 1.1. This work was published several years later as Rubin (1977a).

The real impetus for multiple imputation, however, came from work encouraged and supported by Fritz Scheuren, then of the United States Social Security Administration and now head of the Statistics of Income Division at the United States Internal Revenue Service. His concern for problems of nonresponse in the Current Population Survey led to a working paper for the Social Security Administration (Rubin, 1977b), which explicitly proposed multiple imputation. Fritz's continued support and encouragement for the idea of multiple imputation resulted in (1) an American Statistical Association invited address on multiple imputation (Rubin, 1978a); (2) continued research, such as published in Rubin (1979a); (3) joint work with Fritz and Thomas N. Herzog in the late 1970s, summarized in several papers including Herzog and Rubin (1983); and (4) application of the ideas in 1980 to file matching, which eventually was published as Rubin (1986).

Another important contributor to the development of multiple imputation has been the United States Census Bureau, which several years ago supported the production of a monograph on multiple imputation (Rubin, 1980a). This monograph was the first of four nearly complete drafts that were supposed to become this book. The second such draft was composed of the collection of chapters distributed to my class on survey nonresponse at the University of Chicago, Winter Quarter 1983. These stopped short of becoming the book primarily because of two Ph.D. students there, Kim Hung Li and Nathaniel Schenker, both of whom wrote theses on aspects of multiple imputation (Li, 1985; Schenker, 1985). Our efforts provided the foundation for the next level of sophistication, and I am extremely grateful for their involvement and for the outstandingly colleageal atmosphere at the University of Chicago, which made this period so productive.

The third draft owed its demise to continued work involving Schenker and two Ph.D. students at Harvard University, T. E. Raghunathen and Leisa Weld, both of whom are completing theses on aspects of multiple imputation. This fourth and final version has benefitted from many suggestions from Raghunathen, Weld, Roderick J. A. Little and Alan Zaslavsky, and was facilitated by Raghunathen's computing help, and Bea Shube's and Rosalyn Farkas's editorial advice and patience. It too could have been postponed, waiting for improved results to come from ongoing research, but I believe the existing perspective is highly useful and that publication will stimulate new work. In fact, although many of the problems at the end of the chapters are rather standard exercises designed to check understanding of the material being presented, other problems involve issues that I consider research topics for term papers in a graduate-level course on survey methods or even points of departure for Ph.D. theses.

Since the summer of 1983, support for my work on multiple imputation and my graduate students' work at the University of Chicago and Harvard University has been primarily provided by a grant from NSF (SES-83-11428), and I am very grateful for this funding as well as additional support in 1986 from NSF (DMS-85-04332). The SES grant deals explicitly with the problem of the comparability of Census Bureau occupation and industry codes between 1970 and 1980, summarized here as Example 1.3. The creation of 1970 public-use files with multiply-imputed 1980 codes will be, I believe, an important milestone in the handling of missing values in public-use files.

This text is directed at applied survey statisticians with some theoretical background, but presents the necessary Bayesian and frequentist theory in the background Chapter 2. Chapter 3 derives, from the Bayesian perspective, general procedures for analyzing multiply-imputed data sets, and Chapter 4 evaluates the operating characteristics of these procedures from the randomization theory perspective. Particular procedures for creating multiple imputations are presented in Chapter 5 for cases with ignorable nonresponse and in Chapter 6 for cases with nonignorable nonresponse. Chapter 1 and the detailed table of contents are designed to allow the

PREFACE

reader to obtain a rapid overview of the theory and practice of multiple imputation.

Multiple Imputation for Nonresponse in Surveys can serve as the basis for a course on survey methodology at the graduate level in a department of statistics, as I have done with earlier drafts at the University of Chicago and Harvard University. When utilized this way, I believe it should be supplemented with a more standard text, such as Cochran (1977), and readings from the National Academy of Sciences volumes on Incomplete Data (Madow et al., 1983).

I hope that the reader finds the material presented here to be a stimulating and useful contribution to the theory and practice of handling nonresponse in surveys.

DONALD B. RUBIN

Cambridge, Massachusetts January 1987

Contents

TA	TABLES AND FIGURES		xxiv
GL	GLOSSARY		xxvii
1.	INTRODUCTION		1
	1.1.	Overview	1
		Nonresponse in Surveys	1
		Multiple Imputation	2
		Can Multiple Imputation Be Used in Nonsurvey	
		Problems?	3
		Background	4
	1.2.	Examples of Surveys with Nonresponse	4
		Example 1.1. Educational Testing Service's Sample Survey of Schools	4
		Example 1.2. Current Population Survey and Missing Incomes	5
		Example 1.3. Census Public-Use Data Bases and	
		Missing Occupation Codes	6
		Example 1.4. Normative Aging Study of Drinking	7
	1.3.	Properly Handling Nonresponse	7
		Handling Nonresponse in Example 1.1	7
		Handling Nonresponse in Example 1.2	9
		Handling Nonresponse in Example 1.3	10

	Handling Nonresponse in Example 1.4	10
	The Variety of Objectives When Handling Nonresponse	11
1.4.	Single Imputation	11
	Imputation Allows Standard Complete-Data Methods of Analysis to Be Used	11
	Imputation Can Incorporate Data Collector's Knowledge	12
	The Problem with One Imputation for Each Missing Value	12
	Example 1.5. Best-Prediction Imputation in a Simple Random Sample	13
	Example 1.6. Drawing Imputations from a Distribution (Example 1.5 continued)	14
1.5.	Multiple Imputation	15
	Advantages of Multiple Imputation	15
	The General Need to Display Sensitivity to Models of	
	Nonresponse	16
	Disadvantages of Multiple Imputation	17
1.6.	Numerical Example Using Multiple Imputation	19
	Analyzing This Multiply-Imputed Data Set	19
	Creating This Multiply-Imputed Data Set	22
1.7.	Guidance for the Reader	22
Prot	blems	23
STA	TISTICAL BACKGROUND	27
2.1.	Introduction	27
	Random Indexing of Units	27
2.2.	Variables in the Finite Population	28
	Covariates X	28
	Outcome Variables Y	29
	Indicator for Inclusion in the Survey I	29
	Indicator for Response in the Survey R	30
	Stable Response	30
	Surveys with Stages of Sampling	31

2.

CONTENT	ſS	xiii
2.3.	Probability Distributions and Related Calculations	31
	Conditional Probability Distributions	32
	Probability Specifications Are Symmetric in Unit Indices	32
	Bayes's Theorem	33
	Finding Means and Variances from Conditional Means	
	and Variances	33
2.4.	Probability Specifications for Indicator Variables	35
	Sampling Mechanisms	35
	Examples of Unconfounded Probability Sampling	
	Mechanisms	37
	Examples of Confounded and Nonprobability Sampling	
	Mechanisms	38
	Response Mechanisms	38
2.5.	Probability Specifications for (X, Y)	39
	de Finetti's Theorem	40
	Some Intuition	40
	Example 2.1. A Simple Normal Model for Y_i	40
	Lemma 2.1. Distributions Relevant to Example 2.1	41
	Example 2.2. A Generalization of Example 2.1	42
	Example 2.3. An Application of Example 2.2:	
	The Bayesian Bootstrap	44
	Example 2.4. Y_i Approximately Proportional to X_i	46
2.6.	Bayesian Inference for a Population Quantity	48
	Notation	48
	The Posterior Distribution for $Q(X, Y)$	48
	Relating the Posterior Distribution of Q to the Posterior	
	Distribution of Y_{nob}	49
	Ignorable Sampling Mechanisms	50
	Result 2.1. An Equivalent Definition for Ignorable	
	Sampling Mechanisms	50
	Ignorable Response Mechanisms	51
	Result 2.2. Ignorability of the Response Mechanism	~
	When the Sampling Mechanism Is Ignorable	51
	Result 2.3. The Practical Importance of Ignorable Mechanisms	52
	with the second	52

		Relating Ignorable Sampling and Response Mechanisms to Standard Terminology in the Literature on Parametric Inference from Incomplete Data	53
	2.7	Interval Estimation	54
		General Interval Estimates	55
		Bayesian Posterior Coverage	55
		Example 2.5. Interval Estimation in the Context of Example 2.1	56
		Fixed-Response Randomization-Based Coverage	56
		Random-Response Randomization-Based Coverage	58
		Nominal versus Actual Coverage of Intervals	58
	2.8.	Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates	59
		Highest Posterior Density Regions	59
		Significance Levels—p-Values	60
		Point Estimates	62
	2.9.	Evaluating the Performance of Procedures	62
		A Protocol for Evaluating Procedures	63
		Result 2.4. The Average Coverages Are All Equal to the Probability That C Includes Q	64
		Further Comments on Calibration	64
	2.10.	Similarity of Bayesian and Randomization-Based Inferences in Many Practical Cases	65
		Standard Asymptotic Results Concerning Bayesian	
		Procedures	66
		Extensions of These Standard Results	66
		Practical Conclusions of Asymptotic Results	67
		Relevance to the Multiple-Imputation Approach to	67
	Prob	Nonresponse	68
	1100		00
3.	UNE	DERLYING BAYESIAN THEORY	75
	3.1.	Introduction and Summary of Repeated-Imputation Inferences	75
		Notation	75

	Combining the Repeated Complete-Data Estimates	
	and Variances	76
	Scalar Q	77
	Significance Levels Based on the Combined	
	Estimates and Variances	77
	Significance Levels Based on Repeated Complete-Data Significance Levels	78
	Example 3.1. Inference for Regression Coefficients	79
3.2.	Key Results for Analysis When the Multiple Imputations Are Repeated Draws from the Posterior Distribution of the Missing Values	81
	Result 3.1. Averaging the Completed-Data Posterior Distribution of Q over the Posterior Distribution of Y_{mis}	
	to Obtain the Actual Posterior Distribution of Q	82
	Example 3.2. The Normal Model Continued	82
	The Posterior Cumulative Distribution Function of Q	83
	Result 3.2. Posterior Mean and Variance of Q	84
	Simulating the Posterior Mean and Variance of Q	85
	Missing and Observed Information with Infinite m	85
	Inference for Q from Repeated Completed-Data Means and Variances	86
	Example 3.3. Example 3.2 Continued	87
	• •	07
3.3.	Inference for Scalar Estimands from a Modest Number of Repeated Completed-Data Means and Variances	87
	The Plan of Attack	88
	The Sampling Distribution of S_m Given (X, Y_{abs}, R_{inc})	88
	The Conditional Distribution of $(\overline{Q}_{\infty}, \overline{U}_{\infty})$ Given S_m	
	and B_{∞}	89
	The Conditional Distribution of Q Given S_m and B_{∞}	89
	The Conditional Distribution of B_m Given S_m	90
	The Conditional Distribution of $\overline{U}_m + (1 + m^{-1})B_{\infty}$ Given \mathbf{S}_m	90
	Approximation 3.1 Relevant to the Behrens-Fisher Distribution	91
	Applying Approximation 3.1 to Obtain (3.3.9)	92
	The Approximating t Reference Distribution	
	for Scalar Q	92

xv

	Example 3.4. Example 3.3 Continued	92
	Fraction of Information Missing Due to Nonresponse	93
3.4.	Significance Levels for Multicomponent Estimands from a Modest Number of Repeated Completed-Data Means	04
	and Variance-Covariance Matrices	94
	The Conditional Distribution of Q Given S_m and B_{∞} The Bayesian <i>p</i> -Value for a Null Value Q_0 Given S_m :	94
	General Expression	95
	The Bayesian <i>p</i> -Value Given S_m with Scalar Q	95
	The Bayesian <i>p</i> -Value Given S_m with Scalar Q — Closed-Form Approximation	96
	<i>p</i> -Values with B_{∞} a Priori Proportional to T_{∞}	96
	<i>p</i> -Values with B_{∞} a Priori Proportional to T_{∞} —	
	Closed-Form Approximation	97
	<i>p</i> -Values When B_{∞} Is Not <i>a Priori</i> Proportional to \overline{U}_{∞}	98
3.5.	Significance Levels from Repeated Completed-Data Significance Levels	99
	A New Test Statistic	99
	The Asymptotic Equivalence of \tilde{D}_m and \hat{D}_m —Proof	100
	Integrating over r_m to Obtain a Significance Level from	
	Repeated Completed-Data Significance Levels	100
3.6.	Relating the Completed-Data and Complete-Data Posterior Distributions When the Sampling Mechanism	
	Is Ignorable	102
	Result 3.3. The Completed-Data and Complete-Data Posterior Distributions Are Equal When Sampling and	
	Response Mechanisms Are Ignorable	103
	Using i.i.d. Modeling	104
	Result 3.4. The Equality of Completed-Data and Complete-Data Posterior Distributions When Using	
	i.i.d. Models	104
	Example 3.5. A Situation in Which Conditional on θ_{XY} , the Completed-Data and Complete-Data Posterior	105
	Distributions of Q Are Equal—Condition (3.6.7)	105
	Example 3.6. Cases in Which Condition (3.6.7) Nearly Holds	105

		Example 3.7. Situations in Which the Completed-Data and Complete-Data Posterior Distributions of θ_{XY} Are Equal—Condition (3.6.8)	106
		Example 3.8. A Simple Case Illustrating the Large- Sample Equivalence of Completed-Data and Complete- Data Posterior Distributions of θ_{XY}	106
		The General Use of Complete-Data Statistics	106
	Prob	olems	107
4.	RAN	DOMIZATION-BASED EVALUATIONS	113
	4.1.	Introduction	113
		Major Conclusions	113
		Large-Sample Relative Efficiency of Point Estimates	114
		Large-Sample Coverage of <i>t</i> -Based Interval Estimates	114
		Outline of Chapter	115
	4.2.	General Conditions for the Randomization-Validity of	
		Infinite-m Repeated-Imputation Inferences	116
		Complications in Practice	117
		More General Conditions for Randomization-Validity	117
		Definition: Proper Multiple-Imputation Methods	118
		Result 4.1. If the Complete-Data Inference Is Randomization-Valid and the Multiple-Imputation Procedure Is Proper, Then the Infinite- <i>m</i> Repeated- Imputation Inference Is Randomization-Valid under the	110
		Posited Response Mechanism	119
	4.3.	Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse	120
		Example 4.1. Simple Random Multiple Imputation	120
		Why Variability Is Underestimated Using the Multiple- Imputation Hot-Deck	122
		Example 4.2. Fully Normal Bayesian Repeated Imputation	123
		Example 4.3. A Nonnormal Bayesian Imputation Procedure That Is Proper for the Standard Inference—	
		The Bayesian Bootstrap	123
		Example 4.4. An Approximately Bayesian yet Proper Imputation Method—The Approximate Bayesian	10.
		Bootstrap	124

xvii

	Example 4.5. The Mean and Variance Adjusted Hot-Deck	124
4.4.	Further Discussion of Proper Imputation Methods	125
	Conclusion 4.1. Approximate Repetitions from a Bayesian Model Tend to Be Proper	125
	The Heuristic Argument	126
	Messages of Conclusion 4.1	126
	The Importance of Drawing Repeated Imputations Appropriate for the Posited Response Mechanism	127
	The Role of the Complete-Data Statistics in Determining Whether a Repeated Imputation Method Is Proper	127
4.5.	The Asymptotic Distribution of $(\overline{Q}_m, \overline{U}_m, B_m)$ for Proper Imputation Methods	128
	Validity of the Asymptotic Sampling Distribution of S_m The Distribution of $(\overline{Q}_m, \overline{U}_m, B_m)$ Given (X, Y)	128
	for Scalar Q	129
	Random-Response Randomization-Based Justification for the t Reference Distribution	130
	Extension of Results to Multicomponent Q	131
	Asymptotic Efficiency of \overline{Q}_m Relative to \overline{Q}_∞	131
4.6.	Evaluations of Finite-m Inferences with Scalar Estimands	132
	Small-Sample Efficiencies of Asymptotically Proper Imputation Methods from Examples 4.2–4.5	132
	Large-Sample Coverages of Interval Estimates Using a t Reference Distribution and Proper Imputation	
	Methods	134
	Small-Sample Monte Carlo Coverages of Asymptotically Proper Imputation Methods from Examples 4.2–4.5	135
	Evaluation of Significance Levels	135
47	C C	
4.7.	Evaluation of Significance Levels from the Moment- Based Statistics D_m and \tilde{D}_m with Multicomponent	
	Estimands	137
	The Level of a Significance Testing Procedure	138
	The Level of D_m —Analysis for Proper Imputation	
	Methods and Large Samples	138
	The Level of D_m —Numerical Results	139

CONTENTS		xix	
		The Level of \tilde{D}_m —Analysis	139
		The Effect of Unequal Fractions of Missing Information	
		on \tilde{D}_m	141
		Some Numerical Results for \tilde{D}_m with $k' = (k+1)\nu/2$	141
	4.8.	Evaluation of Significance Levels Based on Repeated Significance Levels	144
		The Statistic $\hat{\hat{D}}_m$	144
		The Asymptotic Sampling Distribution of \bar{d}_m and s_d^2	144
		Some Numerical Results for $\hat{\hat{D}}_m$	145
		The Superiority of Multiple Imputation Significance	
		Levels	145
	Prob	lems	148
5.	PRC	CEDURES WITH IGNORABLE NONRESPONSE	154
	5.1.	Introduction	154
		No Direct Evidence to Contradict Ignorable Nonresponse	155
		Adjust for All Observed Differences and Assume Unobserved Residual Differences Are Random	155
		Univariate Y_i and Many Respondents at Each Distinct Value of X_i That Occurs Among Nonrespondents	156
		The More Common Situation, Even with Univariate Y_i	156
		A Popular Implicit Model—The Census Bureau's	
		Hot-Deck	157
		Metric-Matching Hot-Deck Methods	158
		Least-Squares Regression	159
		Outline of Chapter	159
	5.2.	Creating Imputed Values under an Explicit Model	160
		The Modeling Task	160
		The Imputation Task	161
		Result 5.1. The Imputation Task with Ignorable	
		Nonresponse	162
		The Estimation Task	163
		Result 5.2. The Estimation Task with Ignorable Nonresponse When $\theta_{Y X}$ and θ_X Are <i>a Priori</i>	
		Independent	164

	Result 5.3. The Estimation Task with Ignorable Nonresponse, $\theta_{Y X}$ and θ_X a Priori Independent,	
	and Univariate Y_i	165
	A Simplified Notation	165
5.3.	Some Explicit Imputation Models with Univariate Y_i and	
	Covariates	166
	Example 5.1. Normal Linear Regression Model with Univariate Y_i	166
	Example 5.2. Adding a Hot-Deck Component to the Normal Linear Regression Imputation Model	168
	Extending the Normal Linear Regression Model	168
	Example 5.3. A Logistic Regression Imputation Model for Dichotomous Y_i	169
5.4.	Monotone Patterns of Missingness in Multivariate Y_i	170
	Monotone Missingness in Y—Definition	171
	The General Monotone Pattern—Description of General Techniques	171
	Example 5.4. Bivariate Y_i and an Implicit Imputation Model	172
	Example 5.5. Bivariate Y_i with an Explicit Normal Linear Regression Model	173
	Monotone-Distinct Structure	174
	Result 5.4. The Estimation Task with a Monotone- Distinct Structure	175
	Result 5.5. The Imputation Task with a Monotone- Distinct Structure	177
5.5.	Missing Social Security Benefits in the Current	
	Population Survey	178
	The CPS-IRS-SSA Exact Match File	178
	The Reduced Data Base	179
	The Modeling Task	179
	The Estimation Task	180
	The Imputation Task	181
	Results Concerning Absolute Accuracies of Prediction	181
	Inferences for the Average OASDI Benefits for the	10.4
	Nonrespondents in the Sample	184
	Results on Inferences for Population Quantities	185

CONTENTS		xxi	
	5.6.	Beyond Monotone Missingness	186
		Two Outcomes Never Jointly Observed—Statistical Matching of Files	186
		Example 5.6. Two Normal Outcomes Never Jointly Observed	187
		Problems Arising with Nonmonotone Patterns	187
		Discarding Data to Obtain a Monotone Pattern	189
		Assuming Conditional Independence Among Blocks of	105
		Variables to Create Independent Monotone Patterns	190
		Using Computationally Convenient Explicit Models	191
		Iteratively Using Methods for Monotone Patterns	192
		The Sampling/Importance Resampling Algorithm	192
		Some Details of SIR	193
		Example 5.7. An Illustrative Application of SIR	194
	Ргођ		195
6.		CEDURES WITH NONIGNORABLE NRESPONSE	202
	6.1.	Introduction	202
		Displaying Sensitivity to Models for Nonresponse	202
		The Need to Use Easily Communicated Models	203
		Transformations to Create Nonignorable Imputed	
		Values from Ignorable Imputed Values	203
		Other Simple Methods for Creating Nonignorable	
		Imputed Values Using Ignorable Imputation Models	203
		Essential Statistical Issues and Outline of Chapter	204
	6.2.	Nonignorable Nonresponse with Univariate Y_i	
		and No X _i	205
		The Modeling Task	205
		The Imputation Task	206
		The Estimation Task	206
		Two Basic Approaches to the Modeling Task	207
		Example 6.1. The Simple Normal Mixture Model	207
		Example 6.2. The Simple Normal Selection Model	209
	6.3.	Formal Tasks with Nonignorable Nonresponse	210
		The Modeling Task—Notation	210

	Two General Approaches to the Modeling Task	211
	Similarities with Ignorable Case	211
	The Imputation Task	212
	Result 6.1. The Imputation Task with Nonignorable Nonresponse	212
	Result 6.2. The Imputation Task with Nonignorable Nonresponse When Each Unit Is Either Included in or	
	Excluded from the Survey	212
	The Estimation Task	213
	Result 6.3. The Estimation Task with Nonignorable Nonresponse When $\theta_{YR X}$ Is a Priori Independent of θ_X	213
	Result 6.4. The Estimation Task with Nonignorable Nonresponse When $\theta_{Y XR}$ Is <i>a Priori</i> Independent of	
	$(\theta_{R X}, \theta_X)$ and Each Unit Is Either Included in or Excluded from the Survey	213
	Result 6.5. The Imputation and Estimation Tasks with Nonignorable Nonresponse and Univariate Y_i	214
	Monotone Missingness	214
	Result 6.6. The Estimation and Imputation Tasks with a Monotone-Distinct Structure and a Mixture Model for	
	Nonignorable Nonresponse	214
	Selection Modeling and Monotone Missingness	215
6.4.	Illustrating Mixture Modeling Using Educational Testing	
	Service Data	215
	The Data Base	216
	The Modeling Task	216
	Clarification of Prior Distribution Relating	
	Nonrespondent and Respondent Parameters	217
	Comments on Assumptions	218
	The Estimation Task	219
	The Imputation Task	219
	Analysis of Multiply-Imputed Data	221
6.5.	Illustrating Selection Modeling Using CPS Data	222
	The Data Base	223
	The Modeling Task	224
	The Estimation Task	225
	The Imputation Task	225

CONTENT	rs	xxiii
	Accuracy of Results for Single Imputation Methods	226
	Estimates and Standard Errors for Average log(wage)	
	for Nonrespondents in the Sample	227
	Inferences for Population Mean log(wage)	229
6.6.	Extensions to Surveys with Follow-Ups	229
	Ignorable Nonresponse	231
	Nonignorable Nonresponse with 100% Follow-Up	
	Response	231
	Example 6.3. 100% Follow-Up Response in a Simple	
	Random Sample of Y_i	232
	Ignorable Hard-Core Nonresponse Among Follow-Ups	233
	Nonignorable Hard-Core Nonresponse Among Follow-	222
	Ups	233
	Waves of Follow-Ups	234
6.7.	Follow-Up Response in a Survey of Drinking Behavior	
	Among Men of Retirement Age	234
	The Data Base	235
	The Modeling Task	235
	The Estimation Task	235
	The Imputation Task	235
	Inference for the Effect of Retirement Status on Drinking	
	Behavior	239
Prot	olems	240
REFERI	ENCES	244
AUTHO	R INDEX	251
SUBJEC	CT INDEX	253

Tables and Figures

Figure 1.1.	Data set with m imputations for each missing datum.	3
Table 1.1.	Artificial example of survey data and multiple imputa- tion.	20
Table 1.2.	Analysis of multiply-imputed data set of Table 1.1.	21
Figure 2.1.	Matrix of variables in a finite population of N units.	29
Figure 2.2.	Contours of the posterior distribution of Q with the null value Q_0 indicated. The significance level of Q_0 is the posterior probability that Q is in the shaded area and beyond.	62
Table 4.1.	Large-sample relative efficiency (in %) when using a finite number of proper imputations, m , rather than an infinite number, as a function of the fraction of missing information, γ_0 : RE = $(1 + \gamma_0/m)^{-1/2}$.	114
Table 4.2.	Large-sample coverage probability (in %) of interval estimates based on the <i>t</i> reference distribution, (3.1.8), as a function of the number of proper imputations, $m \ge 2$; the fraction of missing information, γ_0 ; and the nominal level, $1 - \alpha$. Also included for contrast are results based on single imputation, $m = 1$, using the complete-data normal reference distribution (3.1.1) with \hat{Q} replaced by $\overline{Q}_1 = \hat{Q}_{*1}$ and U replaced by $\overline{U}_1 = U_{*1}$.	115
Table 4.3.	Simulated coverages (in %) of asymptotically proper multiple ($m = 2$) imputation procedures with nominal levels 90% and 95%, using <i>t</i> -based inferences, response rates n_1/n , and normal and nonnormal data (Laplace, lognormal = exp N(0, 1)); maximum standard error < 1%.	136
	10 maximum standard circle $1/2$, $1/2$	120

xxiv

- **Table 4.4.** Large-sample level (in %) of D_m with $F_{k,\nu}$ reference distribution as a function of nominal level, α ; number of components being tested, k; number of proper imputations, m; and fraction of missing information, γ_0 . Accuracy of results = 5000 simulations of (4.7.8) with ρ_0 set to I.
- **Table 4.5.** Large-sample level (in %) of \tilde{D}_m with $F_{k,(k+1)\nu/2}$ reference distribution as a function of number of components being tested, k; number of proper imputations, m; fraction of missing information, γ_0 ; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results = 5000 simulations of (4.7.9).
- **Table 4.6.** Large-sample level (in %) of \hat{D}_m with $F_{k,(1+k^{-1})\hat{\nu}/2}$ reference distribution as a function of number of components being tested, k; number of proper imputations, m; fraction of missing information, γ_0 ; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results = 5000 simulations of (4.7.7).
- **Table 4.7.** Large-sample level (in %) of d_{*1} with χ_k^2 reference distribution as a function of nominal level α ; number of components being tested, k; and fraction of missing information, γ_0 .
- Figure 5.1. A monotone pattern of missingness, 1 = observed, 0 = missing. 171
- Figure 5.2. Artificial example illustrating hot-deck multiple imputation with a monotone pattern of missing data; parentheses enclose m = 2 imputations. 172
- Table 5.1.Multiple imputations of OASDI benefits for nonre-
spondents 62-71 years of age.182
- Table 5.2.Multiple imputations of OASDI benefits for nonre-
spondents over 72 years of age.183
- Table 5.3.Accuracies of imputation methods with respect to
mean absolute deviation (MAD) and root mean squared
deviation (RMS).183
- Table 5.4.Comparison of estimates (standard errors) for mean
OASDI benefits implied by imputation methods for
nonrespondent groups in the sample.184

140

142

146

147

Table 5.5.	Comparison of estimates (standard errors) for mean OASDI benefits implied by imputation methods for groups in the population.	185
Table 5.6.	Example from Marini, Olsen and Rubin (1980) il- lustrating how to obtain a monotone pattern of missing data by discarding data; $1 =$ observed, $0 =$ missing.	190
Table 6.1.	Summary of repeated-imputation intervals for variable 17B in educational example.	221
Table 6.2.	Background variables X for GRZ example on imputa- tion of missing incomes.	223
Table 6.3.	Root-mean-squared error of imputations of log-wage: Impute posterior mean given θ fixed at MLE, $\hat{\theta}$.	226
Table 6.4.	Repeated-imputation estimates (standard errors) for average log(wage) for nonrespondents in the sample under five imputation procedures.	228
Figure 6.1.	Schematic data structure with follow-up surveys of nonrespondents: boldface produces Y data.	230
Table 6.5.	Mean alcohol consumption level and retirement status for respondents and nonrespondents within birth cohort: Data from 1982 Normative Aging Study drink- ing questionnaire.	236
Table 6.6.	Summary of least-squares estimates of the regression of $log(1 + drinks/day)$ on retirement status (0 = working, 1 = retired), birth year, and retirement status × birth year interaction.	237
Table 6.7.	Five values of regression parameters for nonrespon- dents drawn from their posterior distribution.	237
Table 6.8.	Five imputed values of $log(1 + drinks/day)$ for each of the 74 non-followed-up nonrespondents.	238
Table 6.9.	Sets of least-squares estimates from the five data sets completed by imputation.	239
Table 6.10.	Repeated-imputation estimates, standard errors, and percentages of missing information for the regression of $log(1 + drinks/day)$ on retirement status, birth year, and retirement status \times birth year interaction.	239

	٠
VVV	
AAV	

Glossary

Basic Random Variables

$X = N \times q$ matrix of fully observed covariates = (X_{ij})	28
$X_i = i$ th row of $X =$ values of X for <i>i</i> th unit	28
$Y = N \times p$ matrix of partially observed outcome variables = (Y_{ij})	29
$Y_i = i$ th row of $Y =$ values of Y for <i>i</i> th unit	29
$Y_{[j]} = j$ th column of $Y = j$ th outcome variable	171
$I = N \times p$ 0-1 indicator for inclusion of Y in survey = (I_{ij})	29
$I_i = i$ th row of $I =$ indicator for outcomes included for unit i	29
$R = N \times p$ 0-1 indicator for response on $Y = (R_{ij})$	30
$R_i = i$ th row of $R =$ indicator for response for <i>i</i> th unit	30

Index Sets Describing Portions of Y

$inc = \{(i, j) I_{ij} = 1\} = $ included in survey	48
$exc = \{(i, j) I_{ij} = 0\} =$ excluded from survey	48
$obs = \{(i, j) I_{ij}R_{ij} = 1\} = observed$	48
$nob = \{(i, j) I_{ij} R_{ij} = 0\} = not observed$	48
$mis = \{(i, j) I_{ij}(1 - R_{ij}) = 1\} = missing (i.e., included but)$	
not observed)	48
$inc(i) = \{ j I_{ij} = 1 \}$ = included in survey for unit i	162
$exc(i) = \{ j I_{ij} = 0 \}$ = excluded from survey for unit i	162
$obs(i) = \{ j I_{ij}R_{ij} = 1 \}$ = observed for unit <i>i</i>	162
$nob(i) = \{ j I_{ij} R_{ij} = 0 \}$ = not observed for unit i	162
$mis(i) = \{ j I_{ij}(1 - R_{ij}) = 1 \} = missing \text{ for unit } i$	162
	••

xxvii