Multiple Imputation for Nonresponse in Surveys

DONALD B. RUBIN
Department of Statistics
Harvard University

JOHN WILEY \& SONS
New York • Chichester • Brisbane - Toronto • Singapore

This Page Intentionally Left Blank

Multiple Imputation for Nonresponse in Surveys

This Page Intentionally Left Blank

Multiple Imputation for Nonresponse in Surveys

DONALD B. RUBIN
Department of Statistics
Harvard University

JOHN WILEY \& SONS
New York • Chichester • Brisbane - Toronto • Singapore

```
A NOTE TO THE READER:
This book has been electronically reproduced from digital
information stored at John Wiley & Sons, Inc. We are
pleased that the use of this new technology will enable us
to keep works of enduring scholarly value in print as long
as there is a reasonable demand for them. The content of
this book is identical to previous printings.
```

Copyright © 1987 by John Wiley \& Sons, Inc.
All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley \& Sons, Inc.

Library of Congress Cataloging in Publication Data:

Rubin, Donald B.
Multiple imputation for nonresponse in surveys.
(Wiley series in probability and mathematical statistics. Applied probability and statistics, ISSN 0271-6232)

Bibliography: p .
Includes index.

1. Multiple imputation (Statistics) I. Title.
II. Series.

HH31.2.R83 1987 001.4'225 86-28935
ISBN 0-471-08705-X
Printed in the United States of America

To the family of my childhood and the family of my parenthood

This Page Intentionally Left Blank

Preface

Multiple imputation is a statistical technique designed to take advantage of the flexibility in modern computing to handle missing data. With it, each missing value is replaced by two or more imputed values in order to represent the uncertainty about which value to impute. The ideas for multiple imputation first arose in the early 1970 s when I was working on a problem of survey nonresponse at Educational Testing Service, here summarized as Example 1.1. This work was published several years later as Rubin (1977a).

The real impetus for multiple imputation, however, came from work encouraged and supported by Fritz Scheuren, then of the United States Social Security Administration and now head of the Statistics of Income Division at the United States Internal Revenue Service. His concern for problems of nonresponse in the Current Population Survey led to a working paper for the Social Security Administration (Rubin, 1977b), which explicitly proposed multiple imputation. Fritz's continued support and encouragement for the idea of multiple imputation resulted in (1) an American Statistical Association invited address on multiple imputation (Rubin, 1978a); (2) continued research, such as published in Rubin (1979a); (3) joint work with Fritz and Thomas N. Herzog in the late 1970s, summarized in several papers including Herzog and Rubin (1983); and (4) application of the ideas in 1980 to file matching, which eventually was published as Rubin (1986).

Another important contributor to the development of multiple imputation has been the United States Census Bureau, which several years ago supported the production of a monograph on multiple imputation (Rubin, 1980a). This monograph was the first of four nearly complete drafts that were supposed to become this book.

The second such draft was composed of the collection of chapters distributed to my class on survey nonresponse at the University of Chicago, Winter Quarter 1983. These stopped short of becoming the book primarily because of two Ph.D. students there, Kim Hung Li and Nathaniel Schenker, both of whom wrote theses on aspects of multiple imputation (Li, 1985; Schenker, 1985). Our efforts provided the foundation for the next level of sophistication, and I am extremely grateful for their involvement and for the outstandingly colleageal atmosphere at the University of Chicago, which made this period so productive.

The third draft owed its demise to continued work involving Schenker and two Ph.D. students at Harvard University, T. E. Raghunathen and Leisa Weld, both of whom are completing theses on aspects of multiple imputation. This fourth and final version has benefitted from many suggestions from Raghunathen, Weld, Roderick J. A. Little and Alan Zaslavsky, and was facilitated by Raghunathen's computing help, and Bea Shube's and Rosalyn Farkas's editorial advice and patience. It too could have been postponed, waiting for improved results to come from ongoing research, but I believe the existing perspective is highly useful and that publication will stimulate new work. In fact, although many of the problem? at the end of the chapters are rather standard exercises designed to check understanding of the material being presented, other problems involve issues that I consider research topics for term papers in a graduate-level course on survey methods or even points of departure for Ph.D. theses.

Since the summer of 1983, support for my work on multiple imputation and my graduate students' work at the University of Chicago and Harvard University has been primarily provided by a grant from NSF (SES-8311428), and I am very grateful for this funding as well as additional support in 1986 from NSF (DMS-85-04332). The SES grant deals explicitly with the problem of the comparability of Census Bureau occupation and industry codes between 1970 and 1980, summarized here as Example 1.3. The creation of 1970 public-use files with multiply-imputed 1980 codes will be, I believe, an important milestone in the handling of missing values in public-use files.

This text is directed at applied survey statisticians with some theoretical background, but presents the necessary Bayesian and frequentist theory in the background Chapter 2. Chapter 3 derives, from the Bayesian perspective, general procedures for analyzing multiply-imputed data sets, and Chapter 4 evaluates the operating characteristics of these procedures from the randomization theory perspective. Particular procedures for creating multiple imputations are presented in Chapter 5 for cases with ignorable nonresponse and in Chapter 6 for cases with nonignorable nonresponse. Chapter 1 and the detailed table of contents are designed to allow the
reader to obtain a rapid overview of the theory and practice of multiple imputation.

Multiple Imputation for Nonresponse in Surveys can serve as the basis for a course on survey methodology at the graduate level in a department of statistics, as I have done with earlier drafts at the University of Chicago and Harvard University. When utilized this way, I believe it should be supplemented with a more standard text, such as Cochran (1977), and readings from the National Academy of Sciences volumes on Incomplete Data (Madow et al., 1983).

I hope that the reader finds the material presented here to be a stimulating and useful contribution to the theory and practice of handling nonresponse in surveys.

Donald B. Rubin
Cambridge, Massachusetts
January 1987

This Page Intentionally Left Blank

Contents

TABLES AND FIGURES xxiv
GLOSSARY xxvii

1. INTRODUCTION 1
1.1. Overview 1
Nonresponse in Surveys 1
Multiple Imputation 2
Can Multiple Imputation Be Used in Nonsurvey Problems? 3
Background 4
1.2. Examples of Surveys with Nonresponse 4
Example 1.1. Educational Testing Service's Sample Survey of Schools 4
Example 1.2. Current Population Survey and Missing Incomes 5
Example 1.3. Census Public-Use Data Bases and Missing Occupation Codes 6
Example 1.4. Normative Aging Study of Drinking 7
1.3. Properly Handling Nonresponse 7
Handling Nonresponse in Example 1.1 7
Handling Nonresponse in Example 1.2 9
Handling Nonresponse in Example 1.3 10
Handling Nonresponse in Example 1.4 10
The Variety of Objectives When Handling Nonresponse 11
1.4. Single Imputation 11
Imputation Allows Standard Complete-Data Methods of Analysis to Be Used 11
Imputation Can Incorporate Data Collector's Knowledge 12
The Problem with One Imputation for Each Missing Value 12
Example 1.5. Best-Prediction Imputation in a Simple Random Sample 13
Example 1.6. Drawing Imputations from a Distribution (Example 1.5 continued) 14
1.5. Multiple Imputation 15
Advantages of Multiple Imputation 15
The General Need to Display Sensitivity to Models of Nonresponse 16
Disadvantages of Multiple Imputation 17
1.6. Numerical Example Using Multiple Imputation 19
Analyzing This Multiply-Imputed Data Set 19
Creating This Multiply-Imputed Data Set 22
1.7. Guidance for the Reader 22
Problems 23
2. STATISTICAL BACKGROUND 27
2.1. Introduction 27
Random Indexing of Units 27
2.2. Variables in the Finite Population 28
Covariates X 28
Outcome Variables Y 29
Indicator for Inclusion in the Survey I 29
Indicator for Response in the Survey R 30
Stable Response 30
Surveys with Stages of Sampling 31
CONTENTS xiii
2.3. Probability Distributions and Related Calculations 31
Conditional Probability Distributions 32
Probability Specifications Are Symmetric in Unit Indices 32
Bayes's Theorem 33
Finding Means and Variances from Conditional Means and Variances 33
2.4. Probability Specifications for Indicator Variables 35
Sampling Mechanisms 35
Examples of Unconfounded Probability Sampling Mechanisms 37
Examples of Confounded and Nonprobability Sampling Mechanisms 38
Response Mechanisms 38
2.5. Probability Specifications for (X, Y) 39
de Finetti's Theorem 40
Some Intuition 40
Example 2.1. A Simple Normal Model for Y_{i} 40
Lemma 2.1. Distributions Relevant to Example 2.1 41
Example 2.2. A Generalization of Example 2.1 42
Example 2.3. An Application of Example 2.2: The Bayesian Bootstrap 44
Example 2.4. Y_{i} Approximately Proportional to X_{i} 46
2.6. Bayesian Inference for a Population Quantity 48
Notation 48
The Posterior Distribution for $Q(X, Y)$ 48
Relating the Posterior Distribution of Q to the Posterior Distribution of $Y_{n o b}$ 49
Ignorable Sampling Mechanisms 50
Result 2.1. An Equivalent Definition for Ignorable Sampling Mechanisms 50
Ignorable Response Mechanisms 51
Result 2.2. Ignorability of the Response Mechanism When the Sampling Mechanism Is Ignorable 51
Result 2.3. The Practical Importance of Ignorable Mechanisms 52
Relating Ignorable Sampling and Response Mechanisms to Standard Terminology in the Literature on Parametric Inference from Incomplete Data 53
2.7. Interval Estimation 54
General Interval Estimates 55
Bayesian Posterior Coverage 55
Example 2.5. Interval Estimation in the Context of Example 2.1 56
Fixed-Response Randomization-Based Coverage 56
Random-Response Randomization-Based Coverage 58
Nominal versus Actual Coverage of Intervals 58
2.8. Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates 59
Highest Posterior Density Regions 59
Significance Levels-p-Values 60
Point Estimates 62
2.9. Evaluating the Performance of Procedures 62
A Protocol for Evaluating Procedures 63
Result 2.4. The Average Coverages Are All Equal to the Probability That C Includes Q 64
Further Comments on Calibration 64
2.10. Similarity of Bayesian and Randomization-Based Inferences in Many Practical Cases 65
Standard Asymptotic Results Concerning Bayesian Procedures 66
Extensions of These Standard Results 66
Practical Conclusions of Asymptotic Results 67
Relevance to the Multiple-Imputation Approach to Nonresponse 67
Problems 68
3. UNDERLYING BAYESIAN THEORY 75
3.1. Introduction and Summary of Repeated-Imputation Inferences 75
Notation 75
Combining the Repeated Complete-Data Estimates and Variances 76
Scalar Q 77
Significance Levels Based on the Combined Estimates and Variances 77
Significance Levels Based on Repeated Complete-Data Significance Levels 78
Example 3.1. Inference for Regression Coefficients 79
3.2. Key Results for Analysis When the Multiple Imputations Are Repeated Draws from the Posterior Distribution of the Missing Values 81
Result 3.1. Averaging the Completed-Data Posterior Distribution of Q over the Posterior Distribution of $Y_{m i s}$ to Obtain the Actual Posterior Distribution of Q 82
Example 3.2. The Normal Model Continued 82
The Posterior Cumulative Distribution Function of Q 83
Result 3.2. Posterior Mean and Variance of Q 84
Simulating the Posterior Mean and Variance of Q 85
Missing and Observed Information with Infinite m 85
Inference for Q from Repeated Completed-Data Means and Variances 86
Example 3.3. Example 3.2 Continued 87
3.3. Inference for Scalar Estimands from a Modest Number of Repeated Completed-Data Means and Variances 87
The Plan of Attack 88
The Sampling Distribution of S_{m} Given ($X, Y_{o b s}, R_{i n c}$) 88
The Conditional Distribution of $\left(\bar{Q}_{\infty}, \bar{U}_{\infty}\right)$ Given \mathbf{S}_{m} and B_{∞} 89
The Conditional Distribution of Q Given \mathbf{S}_{m} and B_{∞} 89
The Conditional Distribution of B_{m} Given \mathbf{S}_{m} 90
The Conditional Distribution of $\bar{U}_{m}+\left(1+m^{-1}\right) B_{\infty}$ Given \mathbf{S}_{m} 90
Approximation 3.1 Relevant to the Behrens-Fisher Distribution 91
Applying Approximation 3.1 to Obtain (3.3.9) 92
The Approximating t Reference Distribution for Scalar Q 92
Example 3.4. Example 3.3 Continued 92
Fraction of Information Missing Due to Nonresponse 93
3.4. Significance Levels for Multicomponent Estimands from a Modest Number of Repeated Completed-Data Means and Variance-Covariance Matrices 94
The Conditional Distribution of Q Given \mathbf{S}_{m} and B_{∞} 94
The Bayesian p-Value for a Null Value Q_{0} Given \mathbf{S}_{m} : General Expression 95
The Bayesian p-Value Given \mathbf{S}_{m} with Scalar Q 95
The Bayesian p-Value Given \mathbf{S}_{m} with Scalar Q - Closed-Form Approximation 96
p-Values with B_{∞} a Priori Proportional to T_{∞} 96
p-Values with B_{∞} a Priori Proportional to $T_{\infty}-$ Closed-Form Approximation 97
p-Values When B_{∞} Is Not a Priori Proportional to \bar{U}_{∞} 98
3.5. Significance Levels from Repeated Completed-Data Significance Levels 99
A New Test Statistic 99
The Asymptotic Equivalence of \tilde{D}_{m} and \hat{D}_{m} - Proof 100
Integrating over r_{m} to Obtain a Significance Level from Repeated Completed-Data Significance Levels 100
3.6. Relating the Completed-Data and Complete-Data Posterior Distributions When the Sampling Mechanism Is Ignorable 102
Result 3.3. The Completed-Data and Complete-Data Posterior Distributions Are Equal When Sampling and Response Mechanisms Are Ignorable 103
Using i.i.d. Modeling 104
Result 3.4. The Equality of Completed-Data and Complete-Data Posterior Distributions When Using i.i.d. Models 104
Example 3.5. A Situation in Which Conditional on $\theta_{X Y}$, the Completed-Data and Complete-Data Posterior Distributions of Q Are Equal-Condition (3.6.7) 105
Example 3.6. Cases in Which Condition (3.6.7) Nearly Holds 105
Example 3.7. Situations in Which the Completed-Data and Complete-Data Posterior Distributions of $\theta_{X Y}$ Are Equal-Condition (3.6.8) 106
Example 3.8. A Simple Case Illustrating the Large- Sample Equivalence of Completed-Data and Complete- Data Posterior Distributions of $\theta_{X Y}$ 106
The General Use of Complete-Data Statistics 106
Problems 107
4. RANDOMIZATION-BASED EVALUATIONS 113
4.1. Introduction 113
Major Conclusions 113
Large-Sample Relative Efficiency of Point Estimates 114
Large-Sample Coverage of t-Based Interval Estimates 114
Outline of Chapter 115
4.2. General Conditions for the Randomization-Validity of Infinite-m Repeated-Imputation Inferences 116
Complications in Practice 117
More General Conditions for Randomization-Validity 117
Definition: Proper Multiple-Imputation Methods 118
Result 4.1. If the Complete-Data Inference Is Randomization-Valid and the Multiple-Imputation Procedure Is Proper, Then the Infinite-m Repeated- Imputation Inference Is Randomization-Valid under the Posited Response Mechanism 119
4.3. Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse 120
Example 4.1. Simple Random Multiple Imputation 120
Why Variability Is Underestimated Using the Multiple- Imputation Hot-Deck 122
Example 4.2. Fully Normal Bayesian Repeated Imputation 123
Example 4.3. A Nonnormal Bayesian Imputation Procedure That Is Proper for the Standard Inference- The Bayesian Bootstrap 123
Example 4.4. An Approximately Bayesian yet Proper Imputation Method-The Approximate Bayesian Bootstrap 124
Example 4.5. The Mean and Variance Adjusted Hot-Deck 124
4.4. Further Discussion of Proper Imputation Methods 125
Conclusion 4.1. Approximate Repetitions from a Bayesian Model Tend to Be Proper 125
The Heuristic Argument 126
Messages of Conclusion 4.1 126
The Importance of Drawing Repeated Imputations Appropriate for the Posited Response Mechanism 127
The Role of the Complete-Data Statistics in Determining Whether a Repeated Imputation Method Is Proper 127
4.5. The Asymptotic Distribution of $\left(\bar{Q}_{m}, \bar{U}_{m}, B_{m}\right)$ for Proper Imputation Methods 128
Validity of the Asymptotic Sampling Distribution of \mathbf{S}_{m} 128
The Distribution of $\left(\bar{Q}_{m}, \bar{U}_{m}, B_{m}\right)$ Given (X, Y) for Scalar Q 129
Random-Response Randomization-Based Justification for the t Reference Distribution 130
Extension of Results to Multicomponent Q 131
Asymptotic Efficiency of \bar{Q}_{m} Relative to \bar{Q}_{∞} 131
4.6. Evaluations of Finite-m Inferences with Scalar Estimands 132
Small-Sample Efficiencies of Asymptotically Proper Imputation Methods from Examples 4.2-4.5 132
Large-Sample Coverages of Interval Estimates Using a t Reference Distribution and Proper Imputation Methods 134
Small-Sample Monte Carlo Coverages of Asymptotically Proper Imputation Methods from Examples 4.2-4.5 135
Evaluation of Significance Levels 135
4.7. Evaluation of Significance Levels from the Moment- Based Statistics D_{m} and \tilde{D}_{m} with Multicomponent Estimands 137
The Level of a Significance Testing Procedure 138
The Level of D_{m}-Analysis for Proper Imputation Methods and Large Samples 138
The Level of D_{m}-Numerical Results 139
CONTENTS xix
The Level of \tilde{D}_{m}-Analysis 139
The Effect of Unequal Fractions of Missing Information on \tilde{D}_{m} 141
Some Numerical Results for \tilde{D}_{m} with $k^{\prime}=(k+1) \nu / 2$ 141
4.8. Evaluation of Significance Levels Based on Repeated Significance Levels 144
The Statistic $\hat{\hat{D}}_{m}$ 144
The Asymptotic Sampling Distribution of \bar{d}_{m} and s_{d}^{2} 144
Some Numerical Results for $\hat{\hat{D}}_{m}$ 145
The Superiority of Multiple Imputation Significance Levels 145
Problems 148
5. PROCEDURES WITH IGNORABLE NONRESPONSE 154
5.1. Introduction 154
No Direct Evidence to Contradict Ignorable Nonresponse 155
Adjust for All Observed Differences and Assume Unobserved Residual Differences Are Random 155
Univariate Y_{i} and Many Respondents at Each Distinct Value of X_{i} That Occurs Among Nonrespondents 156
The More Common Situation, Even with Univariate Y_{i} 156
A Popular Implicit Model-The Census Bureau's Hot-Deck 157
Metric-Matching Hot-Deck Methods 158
Least-Squares Regression 159
Outline of Chapter 159
5.2. Creating Imputed Values under an Explicit Model 160
The Modeling Task 160
The Imputation Task 161
Result 5.1. The Imputation Task with Ignorable Nonresponse 162
The Estimation Task 163
Result 5.2. The Estimation Task with Ignorable Nonresponse When $\theta_{Y \mid X}$ and θ_{X} Are a Priori Independent 164
Result 5.3. The Estimation Task with Ignorable Nonresponse, $\theta_{Y_{I} X}$ and θ_{X} a Priori Independent, and Univariate Y_{i} 165
A Simplified Notation 165
5.3. Some Explicit Imputation Models with Univariate Y_{i} and Covariates 166
Example 5.1. Normal Linear Regression Model with Univariate Y_{i} 166
Example 5.2. Adding a Hot-Deck Component to the Normal Linear Regression Imputation Model 168
Extending the Normal Linear Regression Model 168
Example 5.3. A Logistic Regression Imputation Model for Dichotomous Y_{i} 169
5.4. Monotone Patterns of Missingness in Multivariate $\boldsymbol{Y}_{\boldsymbol{i}}$ 170
Monotone Missingness in Y-Definition 171
The General Monotone Pattern-Description of General Techniques 171
Example 5.4. Bivariate Y_{i} and an Implicit Imputation Model 172
Example 5.5. Bivariate Y_{i} with an Explicit Normal Linear Regression Model 173
Monotone-Distinct Structure 174
Result 5.4. The Estimation Task with a Monotone- Distinct Structure 175
Result 5.5. The Imputation Task with a Monotone- Distinct Structure 177
5.5. Missing Social Security Benefits in the Current Population Survey 178
The CPS-IRS-SSA Exact Match File 178
The Reduced Data Base 179
The Modeling Task 179
The Estimation Task 180
The Imputation Task 181
Results Concerning Absolute Accuracies of Prediction 181
Inferences for the Average OASDI Benefits for the Nonrespondents in the Sample 184
Results on Inferences for Population Quantities 185
CONTENTS xxi
5.6. Beyond Monotone Missingness 186
Two Outcomes Never Jointly Observed-Statistical Matching of Files 186
Example 5.6. Two Normal Outcomes Never Jointly Observed 187
Problems Arising with Nonmonotone Patterns 188
Discarding Data to Obtain a Monotone Pattern 189
Assuming Conditional Independence Among Blocks of Variables to Create Independent Monotone Patterns 190
Using Computationally Convenient Explicit Models 191
Iteratively Using Methods for Monotone Patterns 192
The Sampling/Importance Resampling Algorithm 192
Some Details of SIR 193
Example 5.7. An Illustrative Application of SIR 194
Problems 195
6. PROCEDURES WITH NONIGNORABLE NONRESPONSE 202
6.1. Introduction 202
Displaying Sensitivity to Models for Nonresponse 202
The Need to Use Easily Communicated Models 203
Transformations to Create Nonignorable Imputed Values from Ignorable Imputed Values 203
Other Simple Methods for Creating Nonignorable Imputed Values Using Ignorable Imputation Models 203
Essential Statistical Issues and Outline of Chapter 204
6.2. Nonignorable Nonresponse with Univariate \boldsymbol{Y}_{i} and No X_{i} 205
The Modeling Task 205
The Imputation Task 206
The Estimation Task 206
Two Basic Approaches to the Modeling Task 207
Example 6.1. The Simple Normal Mixture Model 207
Example 6.2. The Simple Normal Selection Model 209
6.3. Formal Tasks with Nonignorable Nonresponse 210
The Modeling Task - Notation 210
Two General Approaches to the Modeling Task 211
Similarities with Ignorable Case 211
The Imputation Task 212
Result 6.1. The Imputation Task with Nonignorable Nonresponse 212
Result 6.2. The Imputation Task with Nonignorable Nonresponse When Each Unit Is Either Included in or Excluded from the Survey 212
The Estimation Task 213
Result 6.3. The Estimation Task with Nonignorable Nonresponse When $\theta_{Y R \mid X}$ Is a Priori Independent of θ_{X} 213
Result 6.4. The Estimation Task with Nonignorable Nonresponse When $\theta_{Y \mid X R}$ Is a Priori Independent of ($\theta_{R \mid X}, \theta_{X}$) and Each Unit Is Either Included in or Excluded from the Survey 213
Result 6.5. The Imputation and Estimation Tasks with Nonignorable Nonresponse and Univariate Y_{i} 214
Monotone Missingness 214
Result 6.6. The Estimation and Imputation Tasks with a Monotone-Distinct Structure and a Mixture Model for Nonignorable Nonresponse 214
Selection Modeling and Monotone Missingness 215
6.4. Illustrating Mixture Modeling Using Educational Testing Service Data 215
The Data Base 216
The Modeling Task 216
Clarification of Prior Distribution Relating Nonrespondent and Respondent Parameters 217
Comments on Assumptions 218
The Estimation Task 219
The Imputation Task 219
Analysis of Multiply-Imputed Data 221
6.5. Illustrating Selection Modeling Using CPS Data 222
The Data Base 223
The Modeling Task 224
The Estimation Task 225
The Imputation Task 225
Accuracy of Results for Single Imputation Methods 226
Estimates and Standard Errors for Average \log (wage) for Nonrespondents in the Sample 227
Inferences for Population Mean \log (wage) 229
6.6. Extensions to Surveys with Follow-Ups 229
Ignorable Nonresponse 231
Nonignorable Nonresponse with 100% Follow-Up Response 231
Example 6.3. 100% Follow-Up Response in a Simple Random Sample of Y_{i} 232
Ignorable Hard-Core Nonresponse Among Follow-Ups 233
Nonignorable Hard-Core Nonresponse Among Follow- Ups 233
Waves of Follow-Ups 234
6.7. Follow-Up Response in a Survey of Drinking Behavior Among Men of Retirement Age 234
The Data Base 235
The Modeling Task 235
The Estimation Task 235
The Imputation Task 235
Inference for the Effect of Retirement Status on Drinking Behavior 239
Problems 240
REFERENCES 244
AUTHOR INDEX 251
SUBJECT INDEX 253

Tables and Figures

Figure 1.1. Data set with m imputations for each missing datum. 3
Table 1.1. Artificial example of survey data and multiple imputa- tion. 20
Table 1.2. Analysis of multiply-imputed data set of Table 1.1. 21
Figure 2.1. Matrix of variables in a finite population of N units. 29Figure 2.2. Contours of the posterior distribution of Q with thenull value Q_{0} indicated. The significance level of Q_{0} isthe posterior probability that Q is in the shaded areaand beyond.62
Table 4.1. Large-sample relative efficiency (in \%) when using afinite number of proper imputations, m, rather than aninfinite number, as a function of the fraction of missinginformation, $\gamma_{0}: \mathrm{RE}=\left(1+\gamma_{0} / m\right)^{-1 / 2}$.114
Table 4.2. Large-sample coverage probability (in \%) of interval estimates based on the t reference distribution, (3.1.8), as a function of the number of proper imputations, $m \geq 2$; the fraction of missing information, γ_{0}; and the nominal level, $1-\alpha$. Also included for contrast are results based on single imputation, $m=1$, using the complete-data normal reference distribution (3.1.1) with \hat{Q} replaced by $\bar{Q}_{1}=\hat{Q}_{* 1}$ and U replaced by $\bar{U}_{1}=U_{* 1}$.115
Table 4.3. Simulated coverages (in \%) of asymptotically proper multiple ($m=2$) imputation procedures with nominal levels 90% and 95%, using t-based inferences, response rates n_{1} / n, and normal and nonnormal data (Laplace, $\operatorname{lognormal}=\exp N(0,1)$); maximum standard error $<1 \%$.136

Table 4.4. Large-sample level (in \%) of D_{m} with $F_{k, \nu}$ reference distribution as a function of nominal level, α; number of components being tested, k; number of proper imputations, m; and fraction of missing information, γ_{0}. Accuracy of results $=5000$ simulations of (4.7.8) with ρ_{0} set to I.140

Table 4.5. Large-sample level (in $\%$) of \tilde{D}_{m} with $F_{k,(k+1) \nu / 2}$ reference distribution as a function of number of components being tested, k; number of proper imputations, m; fraction of missing information, γ_{0}; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results $=5000$ simulations of (4.7.9).
Table 4.6. Large-sample level (in \%) of $\hat{\hat{D}}_{m}$ with $F_{k,\left(1+k^{-1}\right) \hat{v} / 2}$ reference distribution as a function of number of components being tested, k; number of proper imputations, m; fraction of missing information, γ_{0}; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results $=5000$ simulations of (4.7.7).
Table 4.7. Large-sample level (in $\%$) of $d_{*_{1}}$ with χ_{k}^{2} reference distribution as a function of nominal level α; number of components being tested, k; and fraction of missing information, γ_{0}.
Figure 5.1. A monotone pattern of missingness, $1=$ observed, $0=$ missing.
Figure 5.2. Artificial example illustrating hot-deck multiple imputation with a monotone pattern of missing data; parentheses enclose $m=2$ imputations.172

Table 5.1. Multiple imputations of OASDI benefits for nonrespondents 62-71 years of age.182

Table 5.2. Multiple imputations of OASDI benefits for nonrespondents over 72 years of age.183

Table 5.3. Accuracies of imputation methods with respect to mean absolute deviation (MAD) and root mean squared deviation (RMS).183

Table 5.4. Comparison of estimates (standard errors) for mean OASDI benefits implied by imputation methods for nonrespondent groups in the sample.
Table 5.5. Comparison of estimates (standard errors) for mean OASDI benefits implied by imputation methods for groups in the population. 185
Table 5.6. Example from Marini, Olsen and Rubin (1980) il- lustrating how to obtain a monotone pattern of missing data by discarding data; $1=$ observed, $0=$ missing. 190
Table 6.1. Summary of repeated-imputation intervals for variable 17B in educational example. 221
Table 6.2. Background variables X for GRZ example on imputa- tion of missing incomes. 223
Table 6.3. Root-mean-squared error of imputations of log-wage: Impute posterior mean given θ fixed at MLE, $\hat{\boldsymbol{\theta}}$. 226
Table 6.4. Repeated-imputation estimates (standard errors) for average \log (wage) for nonrespondents in the sample under five imputation procedures. 228
Figure 6.1. Schematic data structure with follow-up surveys of nonrespondents: boldface produces Y data. 230
Table 6.5. Mean alcohol consumption level and retirement status for respondents and nonrespondents within birth cohort: Data from 1982 Normative Aging Study drink- ing questionnaire. 236
Table 6.6. Summary of least-squares estimates of the regression of $\log (1+$ drinks /day) on retirement status $(0=$ working, $1=$ retired), birth year, and retirement status \times birth year interaction. 237
Table 6.7. Five values of regression parameters for nonrespon- dents drawn from their posterior distribution. 237
Table 6.8. Five imputed values of $\log (1+$ drinks $/$ day $)$ for each of the 74 non-followed-up nonrespondents. 238
Table 6.9. Sets of least-squares estimates from the five data sets completed by imputation. 239
Table 6.10. Repeated-imputation estimates, standard errors, and percentages of missing information for the regression of $\log (1+$ drinks /day $)$ on retirement status, birth year, and retirement status \times birth year interaction. 239

Glossary

Basic Random Variables
$X=N \times q$ matrix of fully observed covariates $=\left(X_{i j}\right)$ 28
$X_{i}=i$ th row of $X=$ values of X for i th unit 28
$Y=N \times p$ matrix of partially observed outcome variables $=\left(Y_{i j}\right)$ 29
$Y_{i}=i$ th row of $Y=$ values of Y for i th unit 29
$Y_{[J]}=j$ th column of $Y=j$ th outcome variable 171
$I=N \times p 0-1$ indicator for inclusion of Y in survey $=\left(I_{i j}\right)$ 29
$I_{i}=i$ th row of $I=$ indicator for outcomes included for unit i 29
$R=N \times p 0-1$ indicator for response on $Y=\left(R_{i j}\right)$ 30
$R_{i}=i$ th row of $R=$ indicator for response for i th unit 30
Index Sets Describing Portions of \boldsymbol{Y}
inc $=\left\{(i, j) \mid I_{i j}=1\right\}=$ included in survey 48
exc $=\left\{(i, j) \mid I_{i j}=0\right\}=$ excluded from survey 48
obs $=\left\{(i, j) \mid I_{i j} R_{i j}=1\right\}=$ observed 48
nob $=\left\{(i, j) \mid I_{i j} R_{i j}=0\right\}=$ not observed 48
mis $=\left\{(i, j) \mid I_{i j}\left(1-R_{i j}\right)=1\right\}=$ missing (i.e., included but not observed) 48
$\operatorname{inc}(i)=\left\{j \mid I_{i j}=1\right\}=$ included in survey for unit i 162
$\operatorname{exc}(i)=\left\{j \mid I_{i j}=0\right\}=$ excluded from survey for unit i 162
obs $(i)=\left\{j \mid I_{i j} R_{i j}=1\right\}=$ observed for unit i 162
nob $(i)=\left\{j \mid I_{t j} R_{i j}=0\right\}=$ not observed for unit i 162
$\operatorname{mis}(i)=\left\{j \mid I_{i j}\left(1-R_{i j}\right)=1\right\}=$ missing for unit i 162

