
Multiple Imputation for 
Nonresponse in Surveys 

DONALD B. RUBIN 

Department of Statistics 
Harvard University 

JOHN WILEY & SONS 

New York Chichester Brisbane Toronto Singapore 



This Page Intentionally Left Blank



Multiple Imputation for 
Nonresponse in Surveys 



This Page Intentionally Left Blank



Multiple Imputation for 
Nonresponse in Surveys 

DONALD B. RUBIN 

Department of Statistics 
Harvard University 

JOHN WILEY & SONS 

New York Chichester Brisbane Toronto Singapore 



ANOTETOTHEREADER: 
This book has been electronically reproduced from digital 
information stored at John Wiley & Sons. Inc. We arc 
pleased that the use of this new technology will enable us 
to keep works of enduring scholarly value in print as long 
as there is a reasonable demand for them. The content of 
this book is identical to previous printings. 

Copyright 0 1987 by John Wiley & Sons, Inc. 

All rights reserved. Published simultaneously in Canada. 

Reproduction or translation of any part of this work 
beyond that permitted by Section 107 or 108 of the 
1976 United States Copyright Act without the permission 
of the copyright owner is unlawful. Requests for 
permission or further information should be addressed to 
the Permissions Department, John Wiley & Sons, Inc. 

Library of Congress Cataloging in Publication Data 

Rubin. Donald B. 
Multiple imputation for nonresponse in surveys 

(Wiley series in probability and mathematical 
statistics. Applied probability and statistics, 
ISSN 0271-6232) 

Bibliography: p. 
Includes index. 
1 .  Multiple imputation (Statistics) I. Title. 

11. Series. 
HH31.2.R83 1987 001.4’225 86-28935 
ISBN 0-471-08705-X 

Printed in the United States of America 

10 9 8 



To the family of my childhood 
and the family of my parenthood 



This Page Intentionally Left Blank



Preface 

Multiple imputation is a statistical technique designed to take advantage of 
the flexibility in modem computing to handle missing data. With it, each 
missing value is replaced by two or more imputed values in order to 
represent the uncertainty about whch value to impute. The ideas for 
multiple imputation first arose in the early 1970s when I was working on a 
problem of survey nonresponse at Educational Testing Service, here sum- 
marized as Example 1.1. T h s  work was published several years later as 
Rubin (1977a). 

The real impetus for multiple imputation, however, came from work 
encouraged and supported by Fritz Scheuren, then of the United States 
Social Security Administration and now head of the Statistics of Income 
Division at the United States Internal Revenue Service. His concern for 
problems of nonresponse in the Current Population Survey led to a working 
paper for the Social Security Administration (Rubin, 1977b), which ex- 
plicitly proposed multiple imputation. Fritz’s continued support and 
encouragement for the idea of multiple imputation resulted in (1) an 
American Statistical Association invited address on multiple imputation 
(Rubin, 1978a); (2) continued research, such as published in Rubin (1979a); 
(3) joint work with Fritz and Thomas N. Herzog in the late 1970s, 
summarized in several papers including Herzog and Rubin (1983); and (4) 
application of the ideas in 1980 to file matching, which eventually was 
published as Rubin (1986). 

Another important contributor to the development of multiple imputa- 
tion has been the United States Census Bureau, which several years ago 
supported the production of a monograph on multiple imputation (Rubin, 
1980a). This monograph was the first of four nearly complete drafts that 
were supposed to become this book. 
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viii PREFACE 

The second such draft was composed of the collection of chapters 
distributed to my class on survey nonresponse at the University of Chcago, 
Winter Quarter 1983. These stopped short of becoming the book primarily 
because of two Ph.D. students there, IGm Hung Li and Nathaniel Schenker, 
both of whom wrote theses on aspects of multiple imputation (Li, 1985; 
Schenker, 1985). Our efforts provided the foundation for the next level of 
sophistication, and I am extremely grateful for their involvement and for 
the outstandingly colleageal atmosphere at the University of Chcago, 
which made t h s  period so productive. 

The third draft owed its demise to continued work involving Schenker 
and two Ph.D. students at Harvard University, T. E. Raghunathen and 
Leisa Weld, both of whom are completing theses on aspects of multiple 
imputation. This fourth and final version has benefitted from many sugges- 
tions from Raghunathen, Weld, Roderick J. A. Little and Alan Zaslavsky, 
and was facilitated by Raghunathen’s computing help, and Bea Shube’s and 
Rosalyn Farkas’s editorial advice and patience. It too could have been 
postponed, waiting for improved results to come from ongoing research, 
but I believe the existing perspective is highly useful and that publication 
will stimulate new work. In fact, although many of the problem. at the end 
of the chapters are rather standard exercises designed to check understand- 
ing of the material being presented, other problems involve issues that I 
consider research topics for term papers in a graduate-level course on 
survey methods or even points of departure for Ph.D. theses. 

Since the summer of 1983, support for my work on multiple imputation 
and my graduate students’ work at the University of Chicago and Harvard 
University has been primarily provided by a grant from NSF (SES-83- 
11428), and I am very grateful for this funding as well as additional support 
in 1986 from NSF (DMS-85-04332). The SES grant deals explicitly with the 
problem of the comparability of Census Bureau occupation and industry 
codes between 1970 and 1980, summarized here as Example 1.3. The 
creation of 1970 public-use files with multiply-imputed 1980 codes will be, I 
believe, an important milestone in the handling of missing values in 
public-use files. 

T h s  text is directed at applied survey statisticians with some theoretical 
background, but presents the necessary Bayesian and frequentist theory in 
the background Chapter 2. Chapter 3 derives, from the Bayesian perspec- 
tive, general procedures for analyzing multiply-imputed data sets, and 
Chapter 4 evaluates the operating characteristics of these procedures from 
the randomization theory perspective. Particular procedures for creating 
multiple imputations are presented in Chapter 5 for cases with ignorable 
nonresponse and in Chapter 6 for cases with nonignorable nonresponse. 
Chapter 1 and the detailed table of contents are designed to allow the 
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reader to obtain a rapid overview of the theory and practice of multiple 
imputation. 

Multiple Imputation for Nonresponse in Surveys can serve as the basis for 
a course on survey methodology at the graduate level in a department of 
statistics, as I have done with earlier drafts at the University of Chcago and 
Harvard University. When utilized this way, I believe it should be supple- 
mented with a more standard text, such as Cochran (1977), and readings 
from the National Academy of Sciences volumes on Incomplete Data 
(Madow et al., 1983). 

I hope that the reader finds the material presented here to be a stimulat- 
ing and useful contribution to the theory and practice of handling nonre- 
sponse in surveys. 

DONALD B. RUBIN 
Cambridge. Massachurerrs 
January I987 
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X = N x 9 matrix of fully observed covariates = (&,) 
X, = ith row of X = values of X for ith unit 

Y = N x p matrix of partially observed outcome variables = (y,) 
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Y, = ith row of Y = values of Y for ith unit 

Yr,] = j th column of Y = th outcome variable 

I = N X p 0-1 indicator for inclusion of Y in survey = ( Z f , )  
I, = i th row of I = indicator for outcomes included for unit i 

R = N X p 0-1 indicator for response on Y = ( R f , )  
R ,  = ~ t h  row of R = indicator for response for ith unit 

Index Sets Describing Portions of Y 
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exc = { ( I ,  j ) l I f ,  = 0 )  = excluded from survey 
obs = { ( I ,  j ) ( I , ,R , ,  = I}  = observed 

nob = { ( I ,  j ) l I f , R f ,  = 0 }  = not observed 
mis = { ( I ,  j ) l l f , ( l  - R f , )  = 1 )  = rmsslng (i.e., included but 

not observed) 

~ n c ( i )  = { j [ I , ,  = l }  = included in survey for unit I 
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obs(i) = { JIZ , ,R ,~  = 1 )  = observed for unit I 

nob(i)  = { j / I , , R f ,  = 0 )  = not observed for unit I 

mis( i )  = { jlIf,(l - R i J )  = l }  = rmssing for umt I 
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