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Preface 

An experiment is an intervention in the operation of a working system. It is 
always done to learn about the effect of the change in conditions. Some con- 
ditions must be controlled; some, at least one. must be varied deliberately, 
not just passively observed. To avoid Chantecler’s mistake, the variation 
should not be regular. (You will remember that Rostand’s cock thought it 
was his crowing that made the sun rise.) All industrial experiments are 
interventions; unfortunately not all are irregularly timed interventions. 

It is impossible to make any very general statistical statements about 
industrial experiments. No claim is made here for the universal applicability 
of statistical methods to the planning of such experiments. Rather, we 
proceed by examples and by modest projections to make some judgments 
on some sorts of industrial experiments that may gain from statistical 
experience. 

Industrial experiments may be classified in several ways that carry impli- 
cations for statistical thinking. First, I put J. W. Tukey’s distinction between 
confirmation and exploration experiments, which might well be extended by 
the small but important classification of fundamental, or creative, or stroke- 
of-genius experiments. This book deals almost entirely with confirmatory 
experiments, a little with exploratory ones, and not at all with the last type. 
Confirmation experiments are nearly always done on a working system and 
are meant to verify or extend knowledge about the response of the system to 
varying levels or versions of the conditions of operation. The results found 
are usually reported as point- or confidence-interval statements, not as 
significance tests or P-values. 

A second way of classifying experiments is based on the distance of their 
objectives from the market. As we get closer to being ready to go into pro- 
duction (or to making a real change in production operations), it becomes 
more important to have broadly based conclusions, covering the effects of 
realistic ranges of inputs, operating conditions, on all properties of the 
product. The Fdrther we are to the right on the God-Mammon scale, the 
more useful large-scale multifactor experiments arc likcly to be. 

vii 
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A third classification involves continuity of factors. If most factors in an 
experimental situation are continuously variable and are controllable at 
predetermined levels, the whole range of response surface methodology 
becomes available. These procedures are only cursorily discussed here, since 
there are already many excellent expositions in print. When many factors 
are orderable in their levels, but not measurable, the response surface methods 
become less useful. When many factors are discrete-leveled and unorderable, 
one's thinking and one's designs necessarily change to accommodate these 
facts. I t  is with these latter types of situations that this work is mainly 
concerned. 

A fourth classification distinguishes between experimental situations in 
which data are produced sequentially and those in which many results are 
produced simultaneously, perhaps after a lapse of time. Pilot plants, full- 
scale factory operations, and even bench work on prototype equipment 
usually produce one result at  a time. Storage tests, and clinical trials on 
slowly maturing diseases are examples of situations that are intrinsically 
many at a time, not one at  a time. They are always multiple simultaneous 
trials since a long time may be needed to fill in omissions. A very large 
number of such experiments have been carried out, and dozens have been 
published. They are strongly isomorphic with the corresponding agricultural 
factorial experiments. At the one-at-a-time end of this scale 1 believe but 
cannot prove that some statistical contribution is to be expected. No 
examples of completed sets can be given. 

Experiments vary in their sensitivity. In some situations the effect of 
interest A is four or more times the error standard deviation (T of the system, 
so that A/cr 3 4. In such cases, small numbers of trials (runs, tests, sub- 
experiments) are required, and replication is supererogatory. This happens 
most commonly in physical sciences, and in bench work when the experi- 
mental setup is familiar and stable. At the other extreme are situations in 
which A/a 6 1 ,  as is common in the biological sciences, including clinical 
trials, and in work on large-scale, even plant-wide, experiments, where 
uncontrollable variation is always present and small improvements are 
commercially important. Statistical methods can be well adjusted to this 
whole gamut, and the details ofthis coverage will be given in several chapters. 

The book should be of use to experimenters who have some knowledge 
of elementary statistics and to statisticians who want simple explanations, 
detailed examples, and a documentation of the variety of outcomes that 
may be encountered. 

CUTHBERT DANIEL 

Rlihicbcck, N o v  YuIk 
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C H A P T E R  1 

Introduction 

1.1 
1.2 
1.3 
1.4 
1.5 
I .6 
1.7 
I .8 

The Range of Indnstrial Research, I 
Scientific Methods, 2 
Making Each Piece of Data Wark Twice, 3 
First Stages in Planning Industrial Experiments, 4 
Statistical Background Required, 5 
Doing the Arithmetic, 6 
Sequences of Experiments, 7 
The Future of the Design of Industrial Experiments, 7 

1.1. THE RANGE OF INDUSTRIAL RESEARCH 

The connections between scientific research and industrial research are 
sometimes very close. In studying a new industrial use for the water-gas 
shift reaction, for example, industrial research workers would depend heavily 
on the theoretical and experimental results in the technical literature. In 
producing a new modification of a familiar dyestuff with somewhat improved 
lightfastness, one industrial organic chemist would start with a careful theo- 
retical study and search for the reievant literature. Another equally able 
chemist might prefer a wider search of alternatives directly in the laboratory. 
In attempting to find acceptable operating conditions to make a new petro- 
chemical, it might well be discovered that no basis for a theory exists until 
a considerable volume of laboratory work has been completed. 

A wide spectrum of degrees ofempiricism already exists, then, in industrial 
research. The word theory is used with entirely different references in dif- 
ferent parts of this spectrum. The word may be almost a term of derogation 
when used by a chemist working on a problem requiring a high degree of 
empiricism, to describe the work of another who has a good mathematical 
background but a less sound laboratory foreground. In such contexts the 
term in theory, yes is usually understood to be followed by the phrase in 
practice, no. Contrariwise, the experienced kineticist (even more so, the fresh 
graduate) may believe that the bench worker should use the term conjccfure 

1 
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or the expression set of vagire andprejudiced hunches rather than the fine word 
theory to describe the set of bcliefs under which the latter is laboring. 

The effects of some factors on one property of an industrial product may 
well be broadly guessed or cvcn prccisely predicted from available theory, 
But no industrial product has only one propcrty of interest. It must be stable 
and inexpensive and small and inodorous and easy to use, and so on, through 
a list of perhaps 20 attributes. For many of these, little or no theory will be 
available. Even when theoretical methods might yield correct answers, it may 
be that no one is available who can use these methods expeditiously. Time 
will often be saved by simply “getting the data.” 

Most of my own experience with industrial experimentation has been near 
the empirical end of the spectrum just indicated, and this bias will show 
repeatedly in later chapters. The two-level multifactor fractional rcplicates- 
and other incomplete two-level factorials -which are one of the principal 
subjects of this work are quite surely of wide application when a broad range 
of experience must be accumulated economically in the absence of easily 
applied theory. Little, but still something, will be said about the prospects 
for other, more theoretically developed branches of industrial research. 

Real differences of opinion on how best to proceed may become very 
important. Theoreticians may judge that a problem should first be studied 
“on paper”; laboratory workers may feel certain that the primary necd is 
for more data. Compromises should be considered. Perhaps both vicws can 
be implemented at  the same time. If the theoreticians can tell the laboratory 
workers what data they would most like to have, the information may be 
produced more quickly than either group thought possible. This is so because 
more can be found out per run made or per compound synthesized or per 
product modification carried out than most experimenters realize. 

1.2. SCIENTIFIC METHODS 

The research worker is often able to see the results of one run or trial before 
making another. He may guess that he can improve his yield, say, by a slight 
increase in temperature, by a considerable increase in pressure, by using a 
little more emulsifier, and adding a little more catalyst. He will act on all four 
guesses at  once in his next run. And yet, in conversation, especially in genera1 
or philosophical conversation, he may state his belief in the value of varying 
onefactor at a time. Indeed many experimenters identify the one-factor-at-a- 
time approach as “the” scientific method of experimentation. 

Two different phases of research are being confused here. In the very early 
stages of any problem, operability experiments must be done, to see whether 
any yield or other desired property is attainable. After some set of operable 
or promising conditions has been established, the experimenter is very likely 
to continue trying simultancous variation of all factors he thinks may help. 
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When this no longer works, he may well decide that he must settle down and 
vary the experimental conditions one at  a time, in sequences that are natural 
for the system in question. This will often involve series of small increments 
for each of the continuously variable factors. Confusion appears when 
methods that seem appropriate for the later stage are claimed as valid for the 
earlier one. 

As the process or product gets closer to the market, more and more 
conditions and tolerances turn up as requirements. Toxicity, inflammability, 
shelf life, and compatibility with dozens of other materials may have to be 
studied. The tolerance of the product to a wide variety of circumstance of use 
begins to assume major importance. The research or development technician 
must now investigate a whole set of newconditions. He must be able to assure 
the producing and marketing divisions of his company that the product can 
be guaranteed safe, efficient, and operable under a range of conditions not 
studied when it was first being considered and developed. 

Because of the shortage of available technicians, because of the entire lack 
of any theory for some properties, because of the multiplicity of factors that 
may influence a product, and because of the other multiplicity of factors to 
which it must be insensitive, industrial research often differs widely from 
pure or basic research. In particular, more factors must be studied, and so it 
is often said, and rightly, that more data must be taken in industrial research 
problems than in pure research ones. 

1.3. MAKING EACH PIECE OF DATA WORK TWICE* 

It does not follow that the enormous amounts of data often accumulated 
in industrial research laboratories are entirely justified. Most experimenters, 
and most research directors too, 1 believe, have assumed that each piece of 
data can be expected to give information on the effect of one factor ar most. 
This entirely erroneous notion is so widespread and so little questioned that 
its correction should start right here wiih the simplest possibleexample to the 
contrary. 

A chemist has two small objects to weigh. He has a double-pan scale of 
fair precision and of negligible bias and a set of weights with excellent 
calibration. He would like to know the weight of each object with the best 
precision possible. He is to make two weighings only. His experience, habits, 
and common sense conspire to tell him to weigh one object (call it P )  and 
then to weigh the other, Q-carefuIly of course. For each object there will be 
one weighing, one piece of data, one weight. 

There is, however, a way to find the weight of each object as precisely as if 
ir had been weighed twice and the two weighings averaged. To do  this each 

* T h i s  cnpressian is due to W. J. Yotiden. 
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object must indeed be weighed twice. But we are allowed only two weighings 
in all. Hence each object must be on the scale pans twice. if the two objects 
are put in one pan and weighed together, we get an estimate of the sum of the 
two weights. To separate the components we must either weigh just one, or 
else find their difference. By placing one object in one pan and one in the 
other, we can, by balancing with the calibrated weights, find the difference. 
Calling the sum of the weights S = P + Q, and the difference D = P - Q, 
we see that the average of S and D measures the weight of P only, since Q is 
exactly balanced out. Similarly, the average of S and -D measures the 
weight of Q with P exactly balanced out. We have then weighed each object 
twice, in two weighings, each with the precision of two averaged weighings. 

The disadvantage of this “weighing design” is that no information is 
available until all the data are in. The reward for the delay is, in this case, the 
double precision. The moral, to be given extended emphasis and develop- 
ment later, is that each observation can be made to yield information on two 
(or more) parameters. indeed the number of times that each observation 
can be used increases steadily with the number of observations in each 
balanced set. What is required is plunning. In most cases, little or no infor- 
mation is extractable along the way. Finally a computation, usually quite 
simple, must be made to extract all the information at  once. 

The pronounced improvement of the (S ,  D) pair of weighings over the 
(P, Q) set becomes a minor matter when compared with the gains that are 
attainable when larger sets of weights or any other measurements are to be 
estimated. The simplest case was used here as an example that does not 
appear to have been mentioned since it was first pointed out by Hotelling 
(1 9421. 

1.4, FIRST STAGES IN PLANNING INDUSTRIAL EXPERIMENTS 

The stated aims of an industrial experiment are not the same at all of its 
stages, but the same broad desiderata seem to emerge repeatedly. We always 
want to know whether an effect holds fairly generally, and whether an ap- 
parent lack of effect of some factor is a general lack. Fisher’s determined 
emphasis on the importance of a broad base for scientific inferences can never 
be forgotten. It is not a counsel of perfection but rather a sine qua non for 
good industrial research. 

Some experimenters believe that they must be able to judge early which 
factors are going to be influential. They foresee, or think they do, that the 
experimental program will become unmanageably large if all factors are 
admitted for detailed study. But if factors are dropped from the active list 
too early, on the basis of relatively small numbers of data, it may take the 
research worker a long time to get back on the right track. 
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It is better to write down quite early a full list of all the factors that might 
influence the desired properties of the product under development. A valu- 
able exercise in planning an attack on a new problem is  to prepare a cross 
tabulation of all potential factors by all interesting properties of the product 
or process, This “influence matrix” should be a dated record of the ex- 
perimenter’s opinions about the effect(s) of each independently controllable 
variable on each property. Its use is discussed in Chapter 9. 

Within the limits of practicability it is desirable to look at each factor’s 
effects under a wide range of conditions or levels of the other factors. A 
stable effect, even at zero, over a wide range of settings of the other factors is 
reassuring because broadly based. On the other hand, if the effect of some 
factor varies, perhaps even changes sign depending on the settings of the 
others, this information is important and should be known early. Balanced 
or nearly balanced sets of runs provide the easiest way to learn about these 
situations. 

Perhaps the major departure of this work from others with similar subject 
is its attitude toward the assumptions that are usually made before experi- 
mentation is started. The standard assumptions of most statistical treatments 
are as follows: 

1. The observations must be a fair (representative, random) sample of the 
population about which inferences are desired. 

2. The observations are of constant variance (or at least the variance must 
be a known function of the independent variables), are statistically 
independent, and are normally distributed. 

3. Few or no bad values will be produced, and few missing values. 

Assumption 1 is for the experimenters to guarantee. The three parts of 
assumption 2 can often be verified, or at least refuted, by the data themselves. 
Responding to the myriad ways in which data fail to meet these requirements 
will be a major part of the effort. Assumption 3 is violated in a large number, 
perhaps 30%, of all industrial experiments. Methods are given for spotting 
bad values, and for drawing valid conclusions, though often with reduced 
precision, in spite of these defects. 

1.5. STATISTICAL BACKGROUND REQUIRED 

I assume that the research worker reading this book knows a few of the 
fundamentals of applied statistics. Foremost among these are the following: 

1. The prime requirement for drawing any valid inference from experi- 
mental data is that the inferrer know something about the way in which 
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the data (a sample) represent nature (the population). The prime require- 
ment for the validity of any conclusions drawn from the study of experi- 
mental data is that the data be a real sample of the situations to which 
the conclusions are to apply. 
The basic terms-statistic, parameter, sample mean, sample standard 
deviutioti, standard error of a mean, regression coeflcierit, leust-sqirccres 
estimate-should all be familiar. They will all be defined and described, 
but if the reader is encountering many of them for the first time, he will 
not find these pages easy reading. 
The most pervasive generalization in the whole of statistics is the Central 
Limit Theorem. Its effect is to make averages ofindependent observations 
more nearly Gaussian in their distribution than the error distributions 
of the single observations. Since a large proportion of the parameter 
estimates we make are averages, the central limit theorem must be 
working for us a large part of the time. This comforting circumstance 
cannot account for the apparent “normality” we will repeatedly find in 
residuals, however, since they are heavily dependent on the single ob- 
servations themselves. For these we must believe that a considerable 
number of small additive, nearly independent factors are responsible. 
No quantitative knowledge or application of the theorem is ever neces- 
sary. It simply operates, like a law of nature, but, unlike other laws, 
generally in our favor. The reader is referred to Cram&r [I9461 for 
an illuminating discussion of the central limit theorem and of its ante- 
cedents. 

6 

2. 

3. 

1.6. DOING THE ARITHMETIC 

Many research engineers and industrial scientists are repelled by the mo- 
notonous and extensive arithmetic that statistical texts and handbooks seem 
to demand. My sympathies are with them; much of this drudgery is un- 
necessary. Nearly all the arithmetic in this book has been done by hand, 
perhaps on a desk calculator. Intelligent coding and rounding are of the 
essence and frequently result in reducing time, as well as errors, to a small 
fraction of their former magnitudes. 

When 10 or more experiments (or responses in a single experiment of size 
16 or larger) must be analyzed, time will be saved if the standard algorithms 
(for the analysis of variance, for Yates’s method in 2” plans, for partially 
balanced incomplete blocks) are available on a computer. Do not consider 
any proyrmt that does not comprrte and print residirals automatically, pref- 
erably roimded to two digits. 

The plotting of cumulative empirical distributions of residuah on a 
“normal” grid is again a tedious job when done 8 s  proposed in the few 
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textbooks that mention it. But when the number of points is large, the job 
can be greatly shortened. Standard grids for N = 16,32 are given that require 
no calculation of probability points. All large computers have been pro- 
grammed to a fare-thee-well to make approximate plots without special 
peripheral equipment, and only approximate plots are needed. I have found 
too that, when the number of points exceeds 100, it is usually necessary to 
plot onIy the largest 25 or so (including both ends). As soon as the plotted 
set “point” straight through the 50% point, there is no nced Lo continue 
plotting. 

1.7. SEQUENCES OF EXPERIMENTS 

‘The analysis of sequences of agricultural experiments has been studied 
extensively by Yates and Cochran [1957, pages 565 ff.], and much can be 
learned from this work. Thc tlesigri of sequences of industrial experiments 
is much less fully developed, although economical augmentation of early 
experiments seems to be crucial in industrial research. The earliest work in 
this area was by Davies and Hay [1950]. Less clear, but more economical, 
augmentations were published in 1962 [Daniel]. [Although trend-robust 
plans (Chapter IS) are carried out in sequence, they are not really adaptive 
designs but have to be carried all the way before effects can be estimated.] 

1.8. THE FUTURE OF THE DESIGN OF 
INDUSTRIAL EXPERIMENTS 

Major new developments in the design of industrial experiments seem to 
me to await the appearance of well-educated statisticians who want to work 
in close touch with industrial scientists. Many mathematical statisticians are 
under the illusion that they and their graduate students are writing for a 
future which they forsee without benefit ofdetailed knowledge of the present. 
A tiny proportion of their work may be remembered 20 years from now. 

As in the past, many developments will come from scientists and engineers 
with extensive experience in industrial research. But we need in addition a 
cohort of modest graduate statisticians who recognize the productiveness o f  
going directly to industrial scientists to find out just how they do their re- 
search. Far too many graduates, and even some senior statisticians, are 
willing if not anxious to tell scientists how to plan their experiments, in 
advance of knowing just how such work is now done. There are, fortunately, 
a few outstanding exceptions. I think especially of the work of Box, Lucas, 
Behnken, W. G. Hunter, N. R. Draper, and their associates on “nonlinear” 
design. A shortcoming of this book is its lack of any treatment of these 
plans- .an omission due to my own lack of experience with them. 
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Simple Comparison Experiments 

2.1 An Example, 9 
2.2 The Effects of n Factor? 10 

2.1. AN EXAMPLE 

The example is taken from Davies [1956, Ed. 2, printing 1971, pages 
12-18]. Only one criticism is to  be made, and that with some hesitation, since 
this is the fundamental work on industrial experimentation (from which I 
for one have learned more than from any other book). 

We quote from Davies, Section 2.21 : 

The experiment was required to test whether or not treatment with a certain 
chlorinating agent increased the abrasion resistance of a particular type of rubber. 
The experimenter took tcn test-pieces of the material and divided each piece into 
two. One half was treated and the other half was left untreated, the choice of which 
half of the specimen should receive the treatment being made by tossinga coin. The 
abrasion resistances of the ten pairs of specimens were then tested by a machine, the 
specimens being taken in random order. 

Perhaps most experimenters would prefer to call such a collection of data 
a test, so as not to invoke the grander connotations of the term scientific 
experiment. It is not clear from the description or from later discussion 
(page 43, Figure 2.5) whether all 10 specimens were taken from one sheet of 
rubber. Since we need a straw man for this discussion, let us assume that the 
10 were indeed a random sample from a single sheet. Randomization of the 
choice of half piece for chiorhalion plus random allocation of sample 
points in the sheet of rubber have guaranteed that any differcnce found and 
judged to be real has a good chance of being confirmed if measured over the 
whole sheet. 

But the data cotnefrom one sheet of rubber. The pains taken to obtain 
precise and “unbiased” data have resulted in our getting into our sample 

9 


