
JWDD073-pre October 4, 2007 17:27 Char Count= 0

Models for Probability and
Statistical Inference

Theory and Applications

JAMES H. STAPLETON

Michigan State University
Department of Statistics and Probability
East Lansing, Michigan

iii





Innodata
9780470183403.jpg



JWDD073-pre October 4, 2007 17:27 Char Count= 0

vi



JWDD073-pre October 4, 2007 17:27 Char Count= 0

Models for Probability and
Statistical Inference

i



JWDD073-pre October 4, 2007 17:27 Char Count= 0

ii



JWDD073-pre October 4, 2007 17:27 Char Count= 0

Models for Probability and
Statistical Inference

Theory and Applications

JAMES H. STAPLETON

Michigan State University
Department of Statistics and Probability
East Lansing, Michigan

iii



JWDD073-pre October 4, 2007 17:27 Char Count= 0

Copyright C© 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the accuracy
or completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data:

Stapleton, James H., 1931–
Models for probability and statistical inference: theory and applications/James H. Stapleton.

p. cm.
ISBN 978-0-470-07372-8 (cloth)
1. Probabilities—Mathematical models. 2. Probabilities—Industrial applications. I. Title.

QA273.S7415 2008
519.2—dc22 2007013726

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

iv

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

www.wiley.com.

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


JWDD073-pre October 4, 2007 17:27 Char Count= 0

To Alicia, who has made my first home so pleasant
for almost 44 years.

To Michigan State University and its Department of Statistics
and Probability, my second home for almost 49 years,

to which I will always be grateful.

v



JWDD073-pre October 4, 2007 17:27 Char Count= 0

vi



JWDD073-pre October 4, 2007 17:27 Char Count= 0

Contents

Preface xi

1. Discrete Probability Models 1

1.1. Introduction, 1

1.2. Sample Spaces, Events, and Probability Measures, 2

1.3. Conditional Probability and Independence, 15

1.4. Random Variables, 27

1.5. Expectation, 37

1.6. The Variance, 47

1.7. Covariance and Correlation, 55

2. Special Discrete Distributions 62

2.1. Introduction, 62

2.2. The Binomial Distribution, 62

2.3. The Hypergeometric Distribution, 65

2.4. The Geometric and Negative Binomial Distributions, 68

2.5. The Poisson Distribution, 72

3. Continuous Random Variables 80

3.1. Introduction, 80

3.2. Continuous Random Variables, 80

3.3. Expected Values and Variances for Continuous Random Variables, 88

3.4. Transformations of Random Variables, 93

3.5. Joint Densities, 97

3.6. Distributions of Functions of Continuous Random Variables, 104

vii



JWDD073-pre October 4, 2007 17:27 Char Count= 0

viii contents

4. Special Continuous Distributions 110

4.1. Introduction, 110

4.2. The Normal Distribution, 111

4.3. The Gamma Distribution, 117

5. Conditional Distributions 125

5.1. Introduction, 125

5.2. Conditional Expectations for Discrete Random Variables, 130

5.3. Conditional Densities and Expectations for Continuous Random
Variables, 136

6. Moment Generating Functions and Limit Theory 145

6.1. Introduction, 145

6.2. Moment Generating Functions, 145

6.3. Convergence in Probability and in Distribution and the Weak
Law of Large Numbers, 148

6.4. The Central Limit Theorem, 155

7. Estimation 166

7.1. Introduction, 166

7.2. Point Estimation, 167

7.3. The Method of Moments, 171

7.4. Maximum Likelihood, 175

7.5. Consistency, 182

7.6. The �-Method, 186

7.7. Confidence Intervals, 191

7.8. Fisher Information, Cramér–Rao Bound and Asymptotic
Normality of MLEs, 201

7.9. Sufficiency, 207

8. Testing of Hypotheses 215

8.1. Introduction, 215

8.2. The Neyman–Pearson Lemma, 222

8.3. The Likelihood Ratio Test, 228

8.4. The p-Value and the Relationship between Tests of Hypotheses
and Confidence Intervals, 233

9. The Multivariate Normal, Chi-Square, t , and F Distributions 238

9.1. Introduction, 238



JWDD073-pre October 4, 2007 17:27 Char Count= 0

contents ix

9.2. The Multivariate Normal Distribution, 238

9.3. The Central and Noncentral Chi-Square Distributions, 241

9.4. Student’s t-Distribution, 245

9.5. The F-Distribution, 254

10. Nonparametric Statistics 260

10.1. Introduction, 260

10.2. The Wilcoxon Test and Estimator, 262

10.3. One-Sample Methods, 271

10.4. The Kolmogorov–Smirnov Tests, 277

11. Linear Statistical Models 281

11.1. Introduction, 281

11.2. The Principle of Least Squares, 281

11.3. Linear Models, 290

11.4. F-Tests for H0: � = �1 X1 + · · · + �k Xk∈ V0, a Subspace of V, 299

11.5. Two-Way Analysis of Variance, 308

12. Frequency Data 319

12.1. Introduction, 319

12.2. Confidence Intervals on Binomial and Poisson Parameters, 319

12.3. Logistic Regression, 324

12.4. Two-Way Frequency Tables, 330

12.5. Chi-Square Goodness-of-Fit Tests, 340

13. Miscellaneous Topics 350

13.1. Introduction, 350

13.2. Survival Analysis, 350

13.3. Bootstrapping, 355

13.4. Bayesian Statistics, 362

13.5. Sampling, 369

References 378

Appendix 381

Answers to Selected Problems 411

Index 437



JWDD073-pre October 4, 2007 17:27 Char Count= 0

x



JWDD073-pre October 4, 2007 17:27 Char Count= 0

Preface

This book was written over a five to six-year period to serve as a text for the two-
semester sequence on probability and statistical inference, STT 861–2, at Michigan
State University. These courses are offered for master’s degree students in statistics
at the beginning of their study, although only one-half of the students are working
for that degree. All students have completed a minimum of two semesters of calculus
and one course in linear algebra, although students are encouraged to take a course
in analysis so that they have a good understanding of limits. A few exceptional
undergraduates have taken the sequence. The goal of the courses, and therefore of
the book, is to produce students who have a fundamental understanding of statistical
inference. Such students usually follow these courses with specialized courses on
sampling, linear models, design of experiments, statistical computing, multivariate
analysis, and time series analysis.

For the entire book, simulations and graphs, produced by the statistical package
S-Plus, are included to build the intuition of students. For example, Section 1.1 begins
with a list of the results of 400 consecutive rolls of a die. Instructors are encouraged
to use either S-Plus or R for their courses. Methods for the computer simulation of
observations from specified distributions are discussed.

Each section is followed by a selection of problems, from simple to more complex.
Answers are provided for many of the problems.

Almost all statements are backed up with proofs, with the exception of the con-
tinuity theorem for moment generating functions, and asymptotic theory for logistic
and log-linear models. Simulations are provided to show that the asymptotic theory
provides good approximations.

The first six chapters are concerned with probability, the last seven with statistical
inference. If a few topics covered in the first six chapters were to be omitted, there
would be enough time in the first semester to cover at least the first few sections of
Chapter Seven, on estimation. There is a bit too much material included on statistical
inference for one semester, so that an instructor will need to make judicious choices of
sections. For example, this instructor has omitted Section 7.8, on Fisher information,
the Cramér–Rao bound, and asymptotic normality of MLEs, perhaps the most difficult
material in the book. Section 7.9, on sufficiency, could be omitted.

xi
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xii preface

Chapter One is concerned with discrete models and random variables. In Chapter
Two we discuss discrete distributions that are important enough to have names: the
binomial, hypergeometric, geometric, negative binomial, and Poisson, and the Poisson
process is described. In Chapter Three we introduce continuous distributions, expected
values, variances, transformation, and joint densities.

Chapter Four concerns the normal and gamma distributions. The beta distribution is
introduced in Problem 4.3.5. Chapter Five, devoted to conditional distributions, could
be omitted without much negative effect on statistical inference. Markov chains are
discussed briefly in Chapter Five. Chapter Six, on limit theory, is usually the most
difficult for students. Modes of convergence of sequences of random variables, with
special attention to convergence in distribution, particularly the central limit theorem
for independent random variables, are discussed thoroughly.

Statistical inference begins in Chapter Seven with point estimation: first methods
of evaluating estimators, then methods of finding estimators: the method of moments
and maximum likelihood. The topics of consistency and the �-method are usually a bit
more difficult for students because they are often still struggling with limit arguments.
Section 7.7, on confidence intervals, is one of the most important topics of the last
seven chapters and deserves extra time. The author often asks students to explain the
meaning of confidence intervals so that “your mother [or father] would understand.”
Students usually fail to produce an adequate explanation the first time. As stated
earlier, Section 7.8 is the most difficult and might be omitted. The same could be
said for Section 7.9, on sufficiency, although the beauty of the subject should cause
instructors to think twice before doing that.

Chapter Eight, on testing hypotheses, is clearly one of the most important chapters.
We hope that sufficient time will be devoted to it to “master” the material, since the
remaining chapters rely heavily on an understanding of these ideas and those of
Section 7.7, on confidence intervals.

Chapter Nine is organized around the distributions defined in terms of the normal:
multivariate normal, chi-square, t, and F (central and noncentral). The usefulness of
each of the latter three distributions is shown immediately by the development of con-
fidence intervals and testing methods for “normal models.” Some of “Student’s” data
from the 1908 paper introducing the t-distribution is used to illustrate the methodol-
ogy.

Chapter Ten contains descriptions of the two- and one-sample Wilcoxon tests,
together with methods of estimation based on these. The Kolmogorov–Smirnov one-
and two-sample tests are also discussed.

Chapter Eleven, on linear models, takes the linear space-projection approach. The
geometric intuition it provides for multiple regression and the analysis of variance,
by which sums of squares are simply squared lengths of vectors, is quite valuable.
Examples of S-Plus and SAS printouts are provided.

Chapter Twelve begins with logistic regression. Although the distribution theory
is quite different than the linear model theory discussed in Chapter Eleven and is
asymptotic, the intuition provided by the vector-space approach carries over to logistic
regression. Proofs are omitted in general in the interests of time and the students’ level
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of understanding. Two-way frequency tables are discussed for models which suppose
that the logs of expected frequencies satisfy a linear model.

Finally, Chapter Thirteen has sections on survival analysis, including the Kaplan–
Meier estimator of the cumulative distribution function, bootstrapping, Bayesian
statistics, and sampling. Each is quite brief. Instructors will probably wish to select
from among these four topics.

I thank the many excellent students in my Statistics 861–2 classes over the last seven
years, who provided many corrections to the manuscript as it was being developed.
They have been very patient.

Jim Stapleton

March 7, 2007
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C H A P T E R O N E

Discrete Probability Models

1.1 INTRODUCTION

The mathematical study of probability can be traced to the seventeenth-century cor-
respondence between Blaise Pascal and Pierre de Fermat, French mathematicians of
lasting fame. Chevalier de Mere had posed questions to Pascal concerning gambling,
which led to Pascal’s correspondence with Fermat. One question was this: Is a gam-
bler equally likely to succeed in the two games: (1) at least one 6 in four throws of
one six-sided die, and (2) at least one double-6 (6–6) in 24 throws of two six-sided
dice? At that time it seemed to many that the answer was yes. Some believe that
de Mere had empirical evidence that the first event was more likely to occur than
the second, although we should be skeptical of that, since the probabilities turn out
to be 0.5178 and 0.4914, quite close. After students have studied Chapter One they
should be able to verify these, then, after Chapter Six, be able to determine how many
times de Mere would have to play these games in order to distinguish between the
probabilities.

In the eighteenth century, probability theory was applied to astronomy and to the
study of errors of measurement in general. In the nineteenth and twentieth centuries,
applications were extended to biology, the social sciences, medicine, engineering—
to almost every discipline. Applications to genetics, for example, continue to grow
rapidly, as probabilistic models are developed to handle the masses of data being
collected. Large banks, credit companies, and insurance and marketing firms are all
using probability and statistics to help them determine operating rules.

We begin with discrete probability theory, for which the events of interest often
concern count data. Although many of the examples used to illustrate the theory
involve gambling games, students should remember that the theory and methods are
applicable to many disciplines.

Models for Probability and Statistical Inference: Theory and Applications, By James H. Stapleton
Copyright C© 2008 John Wiley & Sons, Inc.

1
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2 discrete probability models

1.2 SAMPLE SPACES, EVENTS, AND PROBABILITY MEASURES

We begin our study of probability by considering the results of 400 consecutive throws
of a fair die, a six-sided cube for which each of the numbers 1, 2, . . . , 6 is equally
likely to be the number showing when the die is thrown.

6 1 6 3 5 5 2 2 4 4 2 1 6 4 1 3 6 5 3 6 5 2 1 1 4 6 4 4 5 2 3 3 1 3 2 2 6 3 2 4 6 2 6 2 4 6 3 1 3 4
3 6 4 2 6 3 3 5 5 2 6 5 5 5 4 6 4 6 2 3 5 6 1 1 1 3 2 2 5 6 3 6 4 3 5 6 4 1 4 6 5 3 5 1 4 5 6 3 6 4
5 2 6 2 4 1 2 5 3 4 1 5 3 6 2 6 5 2 6 1 4 3 4 4 5 1 3 2 2 3 6 6 1 2 6 5 3 6 2 3 6 3 2 6 5 2 1 5 6 4
2 1 5 2 4 1 3 5 5 2 6 5 2 5 3 2 1 2 2 5 4 2 2 3 4 3 2 3 6 1 6 2 4 5 4 5 4 5 6 1 1 5 1 2 5 3 6 5 5 5
4 5 2 1 5 6 6 4 4 2 4 2 6 3 5 5 2 5 2 2 1 3 2 4 2 1 5 4 3 4 1 6 3 3 6 6 3 2 4 1 1 3 1 1 1 5 4 3 4 3
3 2 2 6 1 6 3 1 5 5 5 5 2 3 5 1 3 6 1 1 5 4 3 4 6 5 6 3 2 3 4 1 6 6 6 3 1 2 2 1 5 3 2 3 3 5 2 4 1 4
5 3 3 6 6 6 2 3 3 6 1 1 2 6 5 5 5 1 3 6 5 6 5 2 4 6 4 2 1 5 4 4 2 2 1 1 4 2 2 2 1 5 1 4 5 3 1 6 6 2
5 5 2 4 1 5 4 2 2 3 2 5 1 5 6 5 6 1 5 5 4 3 3 2 4 3 6 5 6 6 2 3 4 6 6 5 1 1 2 3 1 1 4 1 4 2 4 6 5 3

The frequencies are:

1 2 3 4 5 6

60 73 65 58 74 70

We use these data to motivate the definitions and theory to be presented. Consider,
for example, the following question: What is the probability that the five numbers
appearing in five throws of a die are all different? Among the 80 consecutive sequences
of five numbers above, in only four cases were all five numbers different, a relative
frequency of 5/80 = 0.0625. In another experiment, with 2000 sequences of five
throws each, all were different 183 times, a relative frequency of 0.0915. Is there a
way to determine the long-run relative frequency? Put another way, what could we
expect the relative frequency to be in 1 million throws of five dice?

It should seem reasonable that all possible sequences of five consecutive integers
from 1 to 6 are equally likely. For example, prior to the 400-throw experiment, each
of the first two sequences, 61635 and 52244, were equally likely. For this example,
such five-digit sequences will be called outcomes or sample points. The collection of
all possible such five-digit sequences will be denoted by S, the sample space. In more
mathematical language, S is the Cartesian product of the set A = {1, 2, 3, 4, 5, 6}
with itself five times. This collection of sequences is often written as A(5). Thus,
S = A(5) = A × A × A × A × A. The number of outcomes (or sample points) in
S is 65 = 7776. It should seem reasonable to suppose that all outcomes (five-digit
sequences) have probability 1/65.

We have already defined a probability model for this experiment. As we will see, it
is enough in cases in which the sample space is discrete (finite or countably infinite)
to assign probabilities, nonnegative numbers summing to 1, to each outcome in the
sample space S. A discrete probability model has been defined for an experiment when
(1) a finite or countably infinite sample space has been defined, with each possible
result of the experiment corresponding to exactly one outcome; and (2) probabilities,
nonnegative numbers, have been assigned to the outcomes in such a way that they
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sum to 1. It is not necessary that the probabilities assigned all be the same as they are
for this example, although that is often realistic and convenient.

We are interested in the event A that all five digits in an outcome are different.
Notice that this event A is a subset of the sample space S. We say that an event A has
occurred if the outcome is a member of A. In this case event A did not occur for any
of the eight outcomes in the first row above.

We define the probability of the event A, denoted P(A), to be the sum of the
probabilities of the outcomes in A. By defining the probability of an event in this way,
we assure that the probability measure P, defined for all subsets (events, in probability
language) of S, obeys certain axioms for probability measures (to be stated later).
Because our probability measure P has assigned all probabilities of outcomes to be
equally likely, to find P(A) it is enough for us to determine the number of outcomes
N (A) in A, for then P(A) = N (A)[1/N (S)] = N (A)/N (S). Of course, this is the case
only because we assigned equal probabilities to all outcomes.

To determine N (A), we can apply the multiplication principle. A is the collection
of 5-tuples with all components different. Each outcome in A corresponds to a way
of filling in the boxes of the following cells:

The first cell can hold any of the six numbers. Given the number in the first cell, and
given that the outcome must be in A, the second cell can be any of five numbers, all
different from the number in the first cell. Similarly, given the numbers in the first two
cells, the third cell can contain any of four different numbers. Continuing in this way,
we find that N (A) = (6)(5)(4)(3)(2) = 720 and that P(A) = 720/7776 = 0.0926,
close to the value obtained for 2000 experiments. The number N (A) = 720 is the
number of permutations of six things taken five at a time, indicated by P(6, 5).

Example 1.2.1 Consider the following discrete probability model, with sample
space S = {a, b, c, d, e, f }.

Outcome � a b c d e f

P(�) 0.30 0.20 0.25 0.10 0.10 0.05

Let A = {a, b, d} and B = {b, d, e}. Then A ∪ B = {a, b, d, e} and P(A ∪ B) =
0.3 + 0.2 + 0.1 + 0.1 = 0.7. In addition, A ∩ B = {b, d}, so that P(A ∩ B) = 0.2 +
0.1 = 0.3. Notice that P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (Why must this be
true?). The complement of an event D, denoted by Dc, is the collection of outcomes
in S that are not in D. Thus, P(Ac) = P({c, e, f }) = 0.15 + 0.15 + 0.10 = 0.40.

Notice that P(Ac) = 1 − P(A). Why must this be true?

Let us consider one more example before more formally stating the definitions we
have already introduced.
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Example 1.2.2 A penny and a dime are tossed. We are to observe the number
X of heads that occur and determine P(X = k) for k = 0, 1, 2. The symbol X , used
here for its convenience in defining the events [X = 0], [X = 1], and [X = 2], will
be called a random variable (rv). P(X = k) is shorthand for P([X = k]). We delay
a more formal discussion of random variables.

Let S1 = {HH, HT, TH, TT} = {H, T}(2), where the result for the penny and dime
are indicated in this order, with H denoting head and T denoting tail. It should seem
reasonable to assign equal probabilities 1/4 to each of the four outcomes. Denote
the resulting probability measure by P1. Thus, for A = [event that the coins give the
same result] = {HH, TT}, P1(A) = 1/4 + 1/4 = 1/2.

The 400 throws of a die can be used to simulate 400 throws of a coin, and therefore
200 throws of two coins, by considering 1, 2, and 3 as heads and 4, 5, and 6 as tails.
For example, using the first 10 throws, proceeding across the first row, we get TH, TH,
TT, HH, TT. For all 400 die throws, we get 50 cases of HH, 55 of HT, 47 of TH, and
48 of TT, with corresponding relative proportions 0.250, 0.275, 0.235, and 0.240. For
the experiment with 10,000 throws, simulating 5000 pairs of coin tosses, we obtain
1288 HH’s, 1215 HT’s, 1232 TH’s, and 1265 TT’s, with relative frequencies 0.2576,
0.2430, 0.2464, and 0.2530. Our model (S1, P1) seems to fit well.

For this model we get P1(X = 0) = 1/4, P1(X = 1) = 1/4 + 1/4 = 1/2, and
P1(X = 2) = 1/4. If we are interested only in X , we might consider a slightly
smaller model, with sample space S2 = {0, 1, 2}, where these three outcomes rep-
resent the numbers of heads occurring. Although it is tempting to make the model
simpler by assigning equal probabilities 1/3, 1/3, 1/3 to these outcomes, it should
be obvious that the empirical results of our experiments with 400 and 10,000 tosses
are not consistent with such a model. It should seem reasonable, instead, to as-
sign probabilities 1/4, 1/2, 1/4, thus defining a probability measure P2 on S2. The
model (S2, P2) is a recoding or reduction of the model (S1, P1), with the outcomes
HT and TH of S1 corresponding to the single outcome X = 1 of S2, with corre-
sponding probability determined by adding the probabilities 1/4 and 1/4 of HT
and TH.

The model (S2, P2) is simpler than the model (S1, P1) in the sense that it has fewer
outcomes. On the other hand, it is more complex in the sense that the probabili-
ties are unequal. In choosing appropriate probability models, we often have two or
more possible models. The choice of a model will depend on its approximation of
experimental evidence, consistency with fundamental principles, and mathematical
convenience.

Let us stop now to define more formally some of the terms already introduced.

Definition 1.2.1 A sample space is a collection S of all possible results, called
outcomes, of an experiment. Each possible result of the experiment must correspond
to one and only one outcome in S. A sample space is discrete if it has a finite or
countably infinite number of outcomes. (A set is countably infinite if it can be put
into one-to-one correspondence with the positive integers.)
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Definition 1.2.2 An event is a subset of a sample space. An event A is said to occur
if the outcome of an experiment is a member of A.

Definition 1.2.3 A probability measure P on a discrete sample space S is a function
defined on the subsets of S such that:

(a) P({�}) ≥ 0 for all points � ∈ S.
(b) P(A) =∑�∈A P(�) for all subsets A of S.
(c) P(S) = 1.

For simplicity, we write P({�}) as P(�).

Definition 1.2.4 A probability model is a pair (S, P), where P is a probability
measure on S.

In writing P({�}) as P(�), we are abusing notation slightly by using the symbol
P to denote both a function on S and a function on the subsets of S. We assume
that students are familiar with the notation of set theory: union, A ∪ B; intersection
A ∩ B; and complement, Ac. Thus, for events A and B, the event A ∪ B is said to
occur if the outcome is a member of A or B (by “or” we include the case that the
outcome is in both A and B). The event A ∩ B is said to occur if both A and B occur.
Ac, called a complement, is said to occur if A does not occur. For convenience we
sometimes write A ∩ B as AB.

We also assume that the student is familiar with the notation for relationships
among sets, A ⊂ B and A ⊃ B. Thus, if A ⊂ B, the occurrence of event A implies
that B must occur. We sometimes use the language “event A implies event B.” For
the preceding two-coin-toss example, the event [X = 1] implies the event [X ≥ 1].

Let ∅ denote the empty event, the subset of S consisting of no outcomes. Thus,
A ∩ Ac = ∅. We say that two events A and B are mutually exclusive if their intersection
is empty. That is, A ∩ B = ∅. Thus, if A and B are mutually exclusive, the occurrence
of one of them implies that the other cannot occur. In set-theoretic language we say
that A and B are disjoint. DeMorgan’s laws give relationships among intersection,
union, and complement:

(1) (A ∩ B)c = Ac ∪ Bc and (2) (A ∪ B)c = Ac ∩ Bc.

These can be verified from a Venn diagram or by showing that any element in the set
on the left is a member of the set on the right, and vice versa (see Figure 1.2.1).

Properties of a Probability Measure P on a Sample Space S

1. P(∅) = 0.

2. P(S) = 1.

3. For any event A, P(Ac) = 1 − P(A).
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A B

C

FIGURE 1.2.1 Venn diagram for three events.

4. For any events A and B, P(A ∪ B) = P(A) + P(B) − P(A ∩ B). For
three events A, B, C , P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) −
P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C). This follows from repeated use of the
identity for two events. An almost obvious similar result holds for the probability
of the union of n events, with 2n − 1 terms on the right.

5. For events A and B with A ∩ B = ∅, P(A ∪ B) = P(A) + P(B). More gen-
erally, if A1, A2, . . . , are disjoint (mutually exclusive) events, P(∪∞

k=1 Ak) =∑∞
k=1 P(Ak). This property of P is called countable additivity. Since Ak for

k > n could be ∅, the same equality holds when ∞ is replaced by any integer
n > 0.

Let us make use of some of these properties in a few examples.

Example 1.2.3 Smith and Jones each throw three coins. Let X denote the number
of heads for Smith. Let Y denote the number of heads for Jones. Find P(X = Y ).

We can simulate this experiment using the 400-die-tossing example, again letting
1, 2, 3 correspond to heads, 4, 5, 6 correspond to tails. Let the first three tosses be
for Smith, the next three for Jones, so that the first six tosses determine one trial of
the experiment. Repeating, going across rows, we get 36 trials of the experiment.
Among these 36 trials, 10 resulted in X = Y , suggesting that P(X = Y ) may be
approximately 10/36 = 0.278. For the experiment with 9996 tosses, 525 among 1666
trials gave X = Y , suggesting that P(X = Y ) is close to 525/1666 = 0.3151. Let us
now try to find the probability by mathematical methods.

Let S1 = {H, T}(3), the collection of 3-tuples of heads and tails. S1 is the collection
of outcomes for Smith. Also, let S2 = {H, T}(3) = S1, the collection of outcomes for
Jones. Let S = S1 × S2. This Cartesian product can serve as the sample space for
the experiment in which Smith and Jones both toss three coins. One outcome in S,
for example (using shorthand notation), is (HTH, TTH), so that X = 2, Y = 1. The
event [X = Y ] did not occur. Since N (S1) = N (S2) = 23 = 8, N (S) = 64. Define the
probability measure P on S by assigning probability 1/64 to each outcome. The pair
(S, P) constitutes a probability model for the experiment.

Let Ak = [X = Y = k] for k = 0, 1, 2, 3. By this bracket notation we mean the
collection of outcomes in S for which X and Y are both k. We might also have



OTE/SPH OTE/SPH

JWDD073-c01 October 4, 2007 17:21 Char Count= 0

sample spaces, events, and probability measures 7

TABLE 1.2.1 Box Diagram
R2 Rc

2

R1 0.2 0.6

Rc
1

0.5 1.0

written Ak = [X = k, Y = k]. The events A0, A1, A2, A3 are mutually exclusive,
and [X = Y ] = A0 ∪ A1 ∪ A2 ∪ A3. It follows from property 5 above that P(X =
Y ) = P(A0) + P(A1) + P(A2) + P(A3). Since N (A0) = 1, N (A1) = 32, N (A2) =
32, N (A3) = 1, and P(Ak) = N (Ak)/64, we find that P(X = Y ) = 20/64 = 5/16 =
0.3125, relatively close to the proportions obtained by experimentation.

Example 1.2.4 Suppose that a probability model for the weather for two days has
been defined in such a way that R1 = [rain on day 1], R2 = [rain on day 2], P(R1) =
0.6, P(R2) = 0.5, and P(R1 Rc

2) = 0.2. Find P(R1 R2), P(Rc
1 R2), and P(R1 ∪ R2).

Although a Venn diagram can be used, a box diagram (Table 1.2.1)
makes things clearer. From the three probabilities given, the other cells
may be determined by subtraction. Thus, P(Rc

1) = 0.4, P(Rc
2) = 0.5, P(R1 R2) =

0.4, P(Rc
1 R2) = 0.1, P(Rc

1 Rc
2) = 0.3, P(Rc

1 ∪ Rc
2) = 0.6. Similar tables can be con-

structed for the three events.

Example 1.2.5 A jury of six is to be chosen randomly from a panel of eight men
and seven women. Let X denote the number of women chosen. Let us find P(X = k)
for k = 0, 1, . . . , 6.

For convenience, name the members of the panel 1, 2, . . . , 15, with the first eight
being men. Let D = {1, 2, . . . , 15}. Since the events in which we are interested do not
depend on the order in which the people are drawn, the outcomes can be chosen to be
subsets of D of size 6. That is, S = {B | B ⊂ D, N (B) = 6}. We interpret “randomly”
to mean that all the outcomes in S should have equal probability. We need to determine
N (S). Such subsets are often called combinations. The number of combinations of

size k of a set of size n is denoted by

(
n

k

)
. Thus, N (S) =

(
15

6

)
.

The number of permutations (6-tuples of different people) of 15 people six at
a time, is P(15, 6) = (15)(14)(13)(12)(11)(10) = 15!/9!. The number of ways of
ordering six people is P(6, 6) = 6!. Since (number of subsets of D of size 6) ×
(number of ways of ordering six people) = P(15, 6), we find that N (S) =

(
15

6

)
=

P(15, 6)/6! = 15!/[9!6!] = 5005. Each outcome is assigned probability 1/5005.
Consider the event [X = 2]. An outcome in [X = 2] must include ex-

actly two females and therefore four males. There are

(
7

2

)
= (7)(6)/(2)(1) =

21 such combinations. There are

(
8

4

)
combinations of four males. There are
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0.4

0.2

0.0
0 1 2

P(X = k) for k = 0...., 6

3

k

4 5 6

FIGURE 1.2.2 Probability mass function for X .

therefore

(
7

2

)(
8

4

)
= (21)(70) = 1470 outcomes in the event [X = 2]. Therefore,

P(X = 2) =
(

7

2

)(
8

4

)/(
15

6

)
= 1470/5005 = 0.2937.

Similarly, we find P(X = 3) =
(

7

3

)(
8

3

)/
N (S) = (35)(56)/5005 =

1960/5005 = 0.3916, P(X = 0) = 28/5005 = 0.0056, P(X = 1) = 392/5005 =
0.0783, P(X = 4) = 980/5005 = 0.1691, P(X = 5) = 168/5005 = 0.0336,

P(X = 6) = 7/5005 = 0.0014. Figure 1.2.2 shows that these probabilities go
“uphill,” then “downhill,” with the maximum at 3.

Example 1.2.6 (Poker) The cards in a 52-card deck are classified in two ways:
by 13 ranks and by four suits. The 13 ranks and four suits are indicated by the
column and row headings in Table 1.2.2. In the game of poker, five cards are chosen
randomly without replacement, so that all possible subsets (called hands) are equally
likely. Hands are classified as follows, with decreasing worth: straight flush, 4-of-
a-kind, full house, flush, straight, 3-of-a-kind, two pairs, one pair, and “bad.” The
category “bad” was chosen by the author so that all hands fall in one of the categories.
k-of-a-kind means that k cards are of one rank but the other 5 − k cards are of differing
ranks. A straight consists of five cards with five consecutive ranks. For this purpose
the ace is counted as either high or low, so that ace−2−3−4−5 and 10−J−Q−K−ace
both constitute straights. A flush consists of cards that are all of the same suit. So
that a hand falls in exactly one of these categories, it is always classified in the higher
category if it satisfies the definition. Thus, a hand that is both a straight and a flush is
classified as a straight flush but not as a straight or as a flush. A full house has three
cards of one rank, two of another. Such a hand is not counted as 3-of-a-kind or as
2-of-a-kind.

TABLE 1.2.2 52-Card Deck

Ace 2 3 4 5 6 7 8 9 10 Jack Queen King

Spades

Hearts

Diamonds

Clubs
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Let D be the set of 52 cards. Let S be the collection of five-card hands, subsets
of five cards. Thus, S = {B | B ⊂ D, N (B) = 5}. “Randomly without replacement”

means that all N (S) =
(

52

5

)
= 2,598,960 outcomes are equally likely. Thus, we

have defined a probability model.
Let F be the event [full house]. The rank having three cards can be chosen

in 13 ways. For each of these the rank having two cards can be chosen in 12

ways. For each choice of the two ranks there are

(
4

3

)(
4

2

)
= (4)(6) choices for

the suits. Thus, N (F) = (13)(12)(6)(4) = 3744, and P(F) = 3744/2, 598, 960 =
0.0001439 = 1/694. Similarly, P(straight) = 10[45 − 4]/N (S) = 10,200/N (S) =
0.003925 = 1/255, and P(2 pairs) =

(
13

2

)(
4

2

)(
4

2

)
(44)/N (S) = 123,552/N (S) =

0.04754 = 1/21.035. In general, as the value of a hand increases, the probability of
the corresponding category decreases (see Problem 1.2.3).

Example 1.2.7 (The Birthday Problem) A class has n students. What is the
probability that at least one pair of students have the same birthday, not necessarily
the same birth year?

So that we can think a bit more clearly about the problem, let the days be numbered
1, . . . , 365, and suppose that n = 20. Birth dates were randomly chosen using the
function “sample” in S-Plus, a statistical computer language.

(1) 52 283 327 15 110 214 141∗ 276 16 43 130 219 337 234 64 262 141∗ 336 220 10

(2) 331 106 364 219 209 70 11 54 192 360 75 228 132 172 30 5 166 15 143 173

(3) 199 361∗ 211 48 86 129 39 202 339 347 22 361∗ 208 276 75 115 65 291 57 318

(4) 300 252 274 135 118 199 254 316 133 192 238 189 94 167 182 5 235 363 160 214

(5) 110 187 107 47 250 341 49 341 258 273 290 225 31 108 334 118 214 87 315 282

(6) 195 270∧ 24 204# 69 233 38% 204# 12∗ 358 38% 138 149 76 71 186 106 270∧ 12∗ 87

(7) 105 354 259 10 244 22 70 28 278 127 320 238 60 8 165 339 119 346 295 92

(8) 359# 289 112 299 201 36 94 75 269 359# 122 288 310 329 133 117 291 61∗ 61∗ 336

(9) 300 346 72 296 221 176 109 189 3 114 83 222 292 318 238 215 246 183 220 236

(10) 337 98 17 357 75 32 138 255 150 12 88 133 135 5 319 198 119 288 183 359

Duplicates are indicated by ∗’s, #’s, ∧’s, and %’s. Notice that these 10 trials had 1, 0,
0, 3, 0, 2, 0, 0 duplicates. Based on these trials, we estimate the probability of at least
one duplicate to be 4/10. This would seem to be a good estimate, since 2000 trials
produced 846 cases with at least one duplicate, producing the estimate 0.423. Let us
determine the probability mathematically.

Notice the similarity of this example to the die-throw example at the beginning of
the chapter. In this case let D = {1, . . . , 365}, the “dates” of the year. Let S = D(n),
the n-fold Cartesian product of D with itself. Assign probability 1/N (S) = 1/365n

to each outcome. We now have a probability model.

Let A be the event of at least one duplicate. As with most “at least one”
events, it is easier to determine N (Ac) than N (A) directly. In fact, N (Ac) =
P(365, n) = 365(364) · · · (365 − n + 1). Let G(n) = P(Ac). It follows that G(n) =
N (Ac)/N (S) =∏n

k=1[(365 − k + 1)/365] =∏n
k=1[1 − (k − 1)/365]. We can find
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TABLE 1.2.3 Probabilities of Coincident Birthdays

n

10 20 22 23 30 40 50 60 70

P(A) 0.1169 0.4114 0.4757 0.5073 0.7063 0.8912 0.9704 0.9941 0.9991
h(n) 0.1160 0.4058 0.4689 0.5000 0.6963 0.8820 0.9651 0.9922 0.9987

a good approximation by taking logarithms and converting the product to a sum.
ln G(n) =∑n

k=1 ln [1 − (k − 1)/365]. For x close to zero, ln(1 − x) is close
to −x , the Taylor series linear approximation. It follows that for (n − 1)/365
small, ln(G(n)) is approximately −∑n

k=1[(k − 1)/365] = −[n(n − 1)/2]/365 =
−n(n − 1)/730. Hence, a good approximation for P(A) = 1 − G(n) is h(n) =
1 − e−n(n−1)/730. Table 1.2.3 compares P(A) to its approximation h(n) for various
n. Notice that the relative error in the approximation of P(Ac) by 1 − h(n) increases
as n increases.

Pascal’s Triangle: An Interesting Identity for Combinatorics

Consider a set of five elements A = {a1, a2, . . . , a5}. A has

(
5

3

)
= 10 subsets of

size 3. These are of two types: those that contain element a1 and those that do not.

The number that contains a1 is the number of subsets

(
4

2

)
= 6 of {a2, . . . , a5} of

size 2. The number of subsets of A that do not contain a1 is

(
4

3

)
= 4. Thus,

(
5

3

)
=(

4

2

)
+
(

4

3

)
.

More generally, if A has n elements {a1, a2, . . . , an}, A has

(
n

k

)
subsets of size

k for 0 < k ≤ n. These subsets are of two types, those that contain a1 and those that

do not. It follows by the same reasoning that

(
n

k

)
=
(

n − 1

k − 1

)
+
(

n − 1

k

)
. The same

equality can be proved by manipulation of factorials. Pascal, in the mid-seventeenth
century, represented this in the famous Pascal triangle (Figure 1.2.3). Each row begins
and ends with 1, and each interior value is the sum of the two immediately above. The

nth row for n = 0, 1, . . . has

(
n

k

)
in the kth place for k = 0, 1, . . . , n. Row n = 4

has elements 1, 4, 6, 4, 1. Notice that these sum to 16 = 24.

The Equality
(n

0

)
+
(n

1

)
+ · · · + (n

n

)
= 2k

The collection B of subsets of a set with n elements is in one-to-one correspondence
to the set C = {0, 1}(n). For example, for the set A = {a1, a2, a3, a4}, the point (0, 1,
1, 0) in C corresponds to the subset {a2, a3}, and {1, 0, 1, 1} corresponds to the subset
{a1, a3, a4}. Thus, N (B) = N (C) = 2k . But we can count the elements in B another
way. There are those with no elements, those with one, those with 2, and so on. The
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FIGURE 1.2.3 Pascal’s triangle.

equality above follows. For example, 25 = 1 + 5 + 10 + 10 + 5 + 1. The sum of the
numbers in the row of Pascal’s triangle labeled n is 2n .

Relationship Between Two Probability Models

Example 1.2.8 Suppose that a coin is tossed twice. This experiment may be
reasonably modeled by (S1, P1), where S1 = {HH, HT, TH, TT} and P1 assigns
probability 1/4 to each outcome, and by (S2, P2), where {X = 0, X = 1, X = 2},
where X = (no. heads), and P2 assigns probabilities 1/4, 1/2, 1/4. In this case we
have essentially “glued” together the outcomes HT and TH in S1 to create one out-
come (X = 1) in S2. We have also added the probabilities 1/4 and 1/4 in (S1, P1)
to get P2(X = 1) = 1/2. The model (S2, P2) is simpler than (S1, P1) in the sense
that it has fewer outcomes, but it is more complex in the sense that the probabilities
aren’t equal. We will say that the probability model (S2, P2) is a reduction of the
probability model (S1, P1), and that (S1, P1) is an expansion of the probability model
(S2, P2).

The model (S1, P1) can be used to determine the probability of the event H1 =
[first toss is heads]. The probability model (S2, P2) cannot be used to determine
the probability of H1. The event H1 is not “measurable” with respect to the model
(S2, P2). Such questions on measurability are considered as part of the subject of
measure theory. We say very little about it here.

In order to consider a general definition of reduction and expansion of probability
models, we need to recall that for any function g: S1 → S2,

g−1(A) = {� | g(�) ∈ A} for any subset A of S2.

Definition 1.2.5 Let (S1, P1) and (S2, P2) be two discrete probability models. Then
(S2, P2) is said to be a reduction of (S1, P1) if there exists a function g from S1 to
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S2 such that P1(g−1(A)) = P2(A) for any subset A of S2. (S1, P1) is said to be an
expansion of (S2, P2).

If S1 is finite or countably infinite, P1(g−1(A)) = P2(A) is assured if it holds
whenever A is a one-point set. This follows from the fact that g−1(A) = {g−1(�) |� ∈
A} is a union of mutually exclusive events.

If X is a discrete random variable defined on (S1, P1), let S2 = { k|P(X = k) > 0}.
Let P2(k) = P1(X = k). Then X plays the role of g in the definition so that (S2, P2)
is a reduction of (S1, P1). This is the most common way to reduce a probability
model. More generally, if X1, . . . , Xn are random variables defined on (S1, P1), X =
(X1, . . . , Xn), then we can take S2 = {x ∈ Rn |P(X = x) > 0} and assign P2(x) =
P1(X = x).

Example 1.2.9 A husband and wife and two other couples are seated at random
around a round table with six seats. What is the probability that the husband and wife
in a particular couple, say C1, are seated in adjacent seats?

Let the people be a, b, . . . , g, let the seats be numbered 1, . . . , 6, reading clockwise
around the table, and let (x1, . . . , x6), where each xi is one of the these letters, all differ-
ent, correspond to the outcome in which person xi is seated in seat i, i = 1, 2, . . . , 6.
Let S1 be the collection of such arrangements. Let P1 assign probability 1/6! to
each outcome. Let A be the collection of outcomes for which f and g are adjacent.
If f and g are the husband and wife in C1, then f g in this order may be in seats
12, 23, . . . , 56, 61. They may also be in the order of 21, 32, . . . , 16. For each of these
the other four people may be seated in 4! ways. Thus, N (A) = (2)(6)(4!) = 288 and
P(A) = 2/5.

We may instead let an outcome designate only the seats given to the husband
and wife in C1, and let S2 be the set of pairs (x, y), x �= y. We have combined all 4!
seating arrangements in S1 which lead to the same seats for the husband and wife in C1.
Thus, N (S2) = (6)(5). Let P2 assign equal probability 1/[(5)(6)] to each outcome,
4! = 24 times as large as for the outcomes in S1. Let B = [husband and wife in
C1 are seated together] = {12, 23, . . . , 61, 21, . . . , 16}, a subset of S2. Then P(B) =
(2)(6)/(6)(5) = 2/5, as before. Of course, if we were asked the probability of the event
D that all three couples are seated together, each wife next to her husband. we could
not answer the question using (S2, P2), although we could using the model (S1, P1).
P1(D) = (2)(3!)(23)/6! = 96/720 = 2/15. (Why?) D is an event with respect to S1

(a subset of S1), but there is no corresponding subset of S2.

Problems for Section 1.2

1.2.1 Consider the sample space S = {a, b, c, d, e, f }. Let A = {a, b, c}, B =
{b, c, d}, and C = {a, f }. For each outcome x in S, let P({x}) =
p(x), where p(a) = 0.20, p(b) = 0.15, p(c) = 0.20, p(d) = 0.10, p(e) =
0.30. Find p( f ), P(A), P(B), P(A ∪ B), P(A ∪ Bc), P(A ∪ Bc ∪ C). Ver-
ify that P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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1.2.2 Box 1 has four red and three white balls. Box 2 has three red and two white
balls. A ball is drawn randomly from each box. Let (x, y) denote an outcome
for which the ball drawn from box 1 has color x and the ball drawn from box
2 has color y. Let C = {red, white} and let S = C × C .

(a) Assign probabilities to the outcomes in S in a reasonable way. [In 1000
trials of this experiment the outcome (red, white) occurred 241 times.]

(b) Let X = (no. red balls drawn). Find P(X = k) for k = 0, 1, 2. (In 1000
trials the events [X = 0], [X = 1], and [X = 2] occurred 190, 473, and
337 times.)

1.2.3 For the game of poker, find the probabilities of the events [straight flush],
[4-of-a-kind], [flush], [3-of-a-kind], [one pair].

1.2.4 Find the elements in the rows labeled n = 6 and n = 7 in Pascal’s triangle.
Verify that their sums are 26 and 27.

1.2.5 A coin is tossed five times.

(a) Give a probability model so that S is a Cartesian product.

(b) Let X = (no. heads). Determine P(X = 2).

(c) Use the die-toss data at the beginning of the chapter to simulate this
experiment and verify that the relative frequency of cases for which the
event [X = 2] occurs is close to P(X = 2) for your model.

1.2.6 For a Venn diagram with three events A, B, C , indicate the following events
by darkening the corresponding region:

(a) A ∪ Bc ∪ C .

(b) Ac ∪ (Bc ∩ C).

(c) (A ∪ Bc) ∩ (Bc ∪ C).

(d) (A ∪ Bc ∩ C)c.

1.2.7 Two six-sided fair dice are thrown.

(a) Let X = (total for the two dice). State a reasonable model and determine
P(X = k) for k = 2, 3, . . . , 12. (Different reasonable people may have
sample spaces with different numbers of outcomes, but their answers
should be the same.)

(b) Let Y = (maximum for the two dice). Find P(Y = j) for j = 1, 2, . . . , 6.

1.2.8 (a) What is the (approximate) probability that at least two among five nonre-
lated people celebrate their birthdays in the same month? State a model
first. In 100,000 simulations the event occurred 61,547 times.

(b) What is the probability that at least two of five cards chosen randomly
without replacement from the deck of 48 cards formed by omitting the
aces are of the same rank? Intuitively, should the probability be larger
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or smaller than the answer to part (a)? Why? In 100,000 simulations the
event occurred 52,572 times.

1.2.9 A small town has six houses on three blocks, B1 = {a, b, c}, B2 =
{d, e}, B3 = { f }. A random sample of two houses is to be chosen according
to two different methods. Under method 1, all possible pairs of houses are
written on slips of paper, the slips are thoroughly mixed, and one slip is
chosen. Under method 2, two of the three blocks are chosen randomly with-
out replacement, then one house is chosen randomly from each of the blocks
chosen. For each of these two methods state a probability model, then use it
to determine the probabilities of the events [house a is chosen], [house d is
chosen], [house f is chosen], and [at least one of houses a, d is chosen].

1.2.10 Four married couples attend a dance. For the first dance the partners for the
women are randomly assigned among the men. What is the probability that
at least one woman must dance with her husband?

1.2.11 From among nine men and seven women a jury of six is chosen randomly.
What is the probability that two or fewer of those chosen are men?

1.2.12 A six-sided die is thrown three times.

(a) What is the probability that the numbers appearing are in increasing
order? Hint: There is a one-to one correspondence between subsets of
size 3 and increasing sequences from {1, 2, . . . , 6}. In 10,000 simulations
the event occurred 934 times.

(b) What is the probability that the three numbers are in nondecreasing
order? (2, 4, 4) is not in increasing order, but is in nondecreasing order.
Use the first 60 throws given at the beginning of the chapter to simulate
the experiment 20 times. For the 10,000 simulations, the event occurred
2608 times.

1.2.13 Let (S, P) be a probability model and let A, B, C be three events such
that P(A) = 0.55, P(B) = 0.60, P(C) = 0.45, P(A ∩ B) = 0.25, P(A ∩
C) = 0.20, P(Bc ∩ C) = 0.15, and P(A ∩ B ∩ C) = 0.10.

(a) Present a box diagram with 23 = 8 cells giving the probabilities of all
events of the form A∗ ∩ B∗ ∩ C∗, where A∗ is either A or Ac, and B∗

and C∗ are defined similarly.

(b) Draw a Venn diagram indicating the same probabilities.

(c) Find P(Ac ∩ B ∩ Cc) and P(A ∪ Bc ∪ C). Hint: Use one of DeMor-
gan’s laws for the case of three events.

1.2.14 (The Matching Problem)

(a) Let A1, . . . , An be n events, subsets of the sample space S. Let
Sk be the sum of the probabilities of the intersections of all

(n
k

)
choices of these n events, taken k at a time. For example, for n = 4,
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S3 = P(A1 A2 A3) + P(A1 A2 A4) + P(A1 A3 A4) + P(A2 A3 A4). Prove
that P(A1 ∪ A2 ∪ · · · ∪ An) = S1 − S2 + · · · + (−1)n+1Sn .

(b) Let X = (X1, . . . , Xn) be a random permutation of the integers 1, . . . , n.
Let Ai = [Xi = i]. Thus, Ai is the event of a match in the ith place. Ex-
press the probability of at least one match as a sum of n terms, and
then use this to find an approximation for large n. For 1000 simulations
with n = 10, the frequencies f (k) of k matches were as follows: f (0) =
351, f (1) = 372, f (2) = 195, f (3) = 60, f (4) = 14, f (5) = 8, for an
average of 1.038 matches per experiment. The probabilities for the num-
bers of matches for n = 3, are f (0) = 1/3, f (1) = 3/6, f (3) = 1/6.

Later we will be able to show that the “expected number” of matches
per experiment is 1.0.

(c) Apply the formulas obtained in part (b) to answer Problem 1.2.8.

1.2.15 Give two models (Si , Pi ) for i = 1, 2 for the two tosses of a six-sided die, so
that (S2, P2) is a reduction of (S1, P1). Both should enable you to determine
the probability that the sum of the numbers appearing exceeds 10, while
(S1, P1) allows the determination of the probability that the first toss results
in 6, but (S2, P2) does not.

1.3 CONDITIONAL PROBABILITY AND INDEPENDENCE

Conditional Probability

Suppose that two six-sided fair dice are tossed and you learn that at least one of the
two dice had resulted in 6. What is the probability now that the total of the numbers
on the two dice is at least 10? Obviously, a revised probability should be larger than
it was before you learned of the 6.

To answer this, consider the sample space S = D × D, where D = {1, 2, . . . , 6},
with the assignment of equal probabilities 1/36 to each outcome (see Table 1.3.1).
The event A = [at least one 6] has 11 outcomes, and since you know that A has
occurred, can serve as a new sample space, again with equal probabilities. However,
these probabilities must be 1/11 rather than 1/36, in order to sum to 1. Let us refer

TABLE 1.3.1 Sample Space for Throw of Two Dice

Second Die

First Die 1 2 3 4 5 6

1 a
2 a
3 a
4 ab
5 b ab
6 a a a ab ab ab
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to the new model as the conditional model, given A, and write the new probability
of an event B as P(B |A). For B = [total of 10 or more] = {(4,6), (5,5), (5,6), (6,4),
(6,5), (6,6)}, we get P(B | A) = 5/11 = (5/36)/(11/36) = P(A ∩ B)/P(A). This is
larger than P(B) = 6/36 = 1/6.

Let a and b denote outcomes in A and B, respectively. Consider Example 1.2.1 with
sample space S = {a, b, c, d, e, f }, with probabilities 0.30, 0.20, 0.25, 0.10, 0.10,
0.05. As before, let A = {a, b, d} and B = {b, d, e}. If A is known to have occurred,
then since P(A) = 0.60, we can form a new probability model with sample space A
and revised probabilities 0.30/0.60 = 1/2, 0.20/0.60 = 1/3, and 0.10/0.60 = 1/6.
Since A ∩ B = {b, d}, we find P(B | A) = 1/3 + 1/6 = 1/2 = P(A ∩ B)/P(A).
Since P(B) = 0.40, the occurrence of A has again increased the probability
of B.

We can avoid the need to define a new probability model by simply defining
P(B | A) for events A, B as follows.

Definition 1.3.1 For a given probability model (S, P), let A and B be two events
with P(A) > 0. The conditional probability of B, given A, is P(B | A) = P(A ∩
B)/P(A).

Consider Example 1.2.4. Since P(R1) = 0.6, P(R1 ∩ R2) = 0.4, we find that
P(R2 | R1) = 2/3, while P(R2) = 0.5. Rain on the first day makes it more likely
that it will rain the second day. Similarly, P(R1 | R2) = P(R1 ∩ R2)/P(R2) = 4/5 >

P(R1).
The definition P(B | A) = P(A ∩ B)/P(A) is useful in the form P(A ∩ B) =

P(B | A)P(A), since in many cases conditional probabilities can be determined more
easily from the fundamentals of the experiment than can the probabilities of intersec-
tions. In this form, conditional probabilities can be used to build probability models.

Example 1.3.1 Suppose that a sexual disease is present in 0.6% of 18- to 24-
year-old men in a large city. A blood test for the disease is good, but not perfect, in
the following way. The probability that a man with the disease is positive on the test
is 0.98 (the sensitivity of the test). The probability that a man who does not have the
disease is positive for the test is 0.01. (The specificity of the test is therefore 0.99.)
What are:

(a) The probability that a man of that age selected randomly will be positive for
the test?

(b) Given that such a man is positive for the test, what is the probability that he
actually has the disease? The answer to this question may surprise you.

Let S = {n, d} × {+, −} = {(d, +), (d, −), (n, +), (n, −)}, where d means that
the man has the disease, n means that he does not, + indicates that the test is
positive, and − indicates that the test is negative. Let D = [man has disease]
= {(d, +), (d, −)}, and V = [test is positive] = {(d, +), (n, +)}. We are given
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FIGURE 1.3.1 Tree diagram for sexual disease.

P(D) = 0.006, P(V | D) = 0.98, P(V | Dc) = 0.01. We want to determine P(V )
and P(D | V ).

Figure 1.3.1 presents these and other relevant unconditional and conditional prob-
abilities. For example, P((d, +)) = P(D ∩ V ) = P(D)P(V | D) = (0.006)(0.98) =
0.00588. Similarly, P((n, +)) = P(Dc ∩ V ) = P(Dc)P(V | Dc) = (0.994)(0.01) =
0.00994. Since V = (D ∩ V ) ∪ (Dc ∩ V ) and the two events within parentheses
are mutually exclusive, P(V ) = P(D ∩ V ) + P(Dc ∩ V ) = 0.00588 + 0.00994 =
0.01582. Then P(D|V ) = P(D ∩ V )/P(V ) = 0.00588/0.01582 = 0.3717. Only
37% of all those testing positive actually have the disease! This certainly suggests the
retesting of those whose first test is positive.

Example 1.3.2 A box contains r red and w white balls. Let N = r + w. Two balls
are drawn consecutively and randomly without replacement. What is the probability
that the second ball drawn is red?

We use two different approaches to answer the question. With luck the answers
will be the same. Since the question concerns the ball chosen second, we choose a
sample space in which the outcomes indicate the order in which the balls are chosen.
Let R be the set of red balls and let W be the set of white balls. Let B = R ∪
W . Let S = {(b1, b2) | b1 ∈ B, b2 ∈ B, b1 �= b2}. Assign equal probability 1/N (S) =
1/[N (N − 1)] to each outcome. Let R2 = [red on the second ball chosen]. Let us
determine N (R2). For each possible choice of a red ball for the second ball chosen,
there are (N − 1) choices for the first ball. Therefore, N (R2) = r (N − 1) and P(R2) =
[r (N − 1)]/N (N − 1) = r/N , the proportion of red balls in the box. This is, of course,
also the probability of the event R1 that the first ball chosen is red.

Now consider the problem using conditional probability. Then P(R2) =
P(R1 R2) + P(Rc

1 R2) = P(R1)P(R2 | R1) + P(Rc
1)P(R2 | Rc

1) = (r/N )[(r − 1)/
(N − 1)] + (w/N )[r/(N − 1)] = [r/N (N − 1)][(r − 1) + w] = r/N = P(R1).

The problem many students have when first confronted with this type of example
is caused by their difficulty in distinguishing between conditional and unconditional
probabilities.
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FIGURE 1.3.2 Tree diagram for gene analysis.

Let A1, A2, . . . , An be events. Then, applying the definition of conditional proba-
bility and canceling factors in the numerator and denominator, we get

P(A1)P(A2 |A1)P(A3 | A1 A2) · · · P(An | A1 A2 · · · An−1) = P(A1 A2 · · · An),

assuming that these conditional probabilities are all defined. For example, in con-
secutive random-without-replacement draws of four balls from a box with six
red and seven white balls, the probability of the order (red–white–red–white) is
(6/13)(7/12)(5/11)(6/10).

Example 1.3.3 Suppose that a gene has two forms, g for good and b for bad.
Every person carries a pair of genes, so there are three possible genotypes, gg, gb,
and bb. Persons with genotype bb suffer from the disease and always die young, so
they never have children. Persons of genotype gb do not suffer from the disease but
are carriers in the sense that their offspring (children) may acquire the bad gene b
from them. Suppose now that the proportions of people in the population of adults
of genotypes gg and gb are 0.999 and 0.001. A female of known genotype gb has a
child with a male drawn randomly from the adult male population (see Figure 1.3.2).

(a) What are the probabilities that a child of such a mating is of each of genotypes
gg, gb, bb?

(b) Given that the child is of genotype gb, what is the probability that the male is
of genotype gb?

If the male is of genotype gg, the child is equally likely to be gg or gb. If the male
is of genotype gb, the child has probabilities 1/4, 1/2, 1/4 of being gg, gb, or bb.

From Figure 1.3.2, the answers to part (a) are 0.49975, 0.50000, 0.00025. More
generally, if p is the proportion of genotype gb in the population of adult males, the
probabilities are (1 − p)/2 + p/4 = 1/2 − p/4, (1 − p)/2 + p/2 = 1/2, and p/4.
In general, in answer to part (b), P(male is gb | offspring is gb) = (p/2)/(1/2) = p,
so the conditional probability that the male is gb is the same as the probability that
the child is gb.



OTE/SPH OTE/SPH

JWDD073-c01 October 4, 2007 17:21 Char Count= 0

conditional probability and independence 19

The examples for which we have used a tree diagram suggest useful identities.
Suppose that a sample space can be partitioned into k disjoint subsets A1, . . . , Ak

whose probabilities, often called prior probabilities, are known and are positive.
Suppose also that B is another event and that P(B | Ai ) is known for each i . Then:

Theorem 1.3.1 P(B) =∑k
i=1 P(Ai )P(B | Ai ).

Proof: Since B = B A1 ∪ · · · ∪ B Ak , these events are disjoint, and P(B Ai ) =
P(Ai )P(B | Ai ), the identity follows from the additivity of P .

The identity of Theorem 1.3.1 is sometimes called the total probability formula.
From this formula and the definition of conditional probability, we get:

Theorem 1.3.2 (Bayes’ Formula)

P(A j | B) = P(B | A j )P(A j )∑k
i=1 P(Ai )P(B | Ai )

for j = 1, . . . , k.

The probabilities P(A j | B) are sometimes called posterior probabilities, since
they are the revised probabilities [from the prior probabilities P(A j )] of the events
A j given the occurrence of the event B.

Example 1.3.4 Boxes 1, 2, and 3 each have four balls, each ball being red or
white. Box i has i red balls, i = 1, 2, 3. A six-sided fair die is tossed. If a 1 occurs, a
ball is drawn from box 1. If a 2 or 3 occurs, a ball is drawn from box 2. If a 4, 5, or 6
occurs, a ball is drawn from box 3. What are (a) the probability that the ball drawn is
red, and (b) the conditional probability that the ball was drawn from box j given that
it was red?

Let Ai = [ball is drawn from box i] for i = 1, 2, 3. Let B = [ball drawn is red].
Then P(A j ) = j/6 and P(B | A j ) = j/4 for j = 1, 2, 3. Therefore, from Theorem
1.3.1, P(B) = (1/6)(1/4) + (2/6)(2/4) + (3/6)(3/4) = 14/24. From Bayes’ the-
orem, P(A1 | B) = (1/24)/(14/24) = 1/14, P(A2 | B) = (4/24)/(14/24) = 4/14,

and P(A3 | B) = (9/24)/(14/24) = 9/14. The posterior probability P(A3 | B) =
9/14 that the ball was drawn from box 3 given that it was red is larger than the
prior probability P(A3) = 3/6 that the ball would be drawn from box 3.

Example 1.3.5 Your friend Zeke has been reasonably honest in the past, so that
your prior evaluation of the probability that he is telling the truth when he claims to
be tossing a fair coin rather than his two-headed coin is 0.9. The prior probability that
he is tossing the two-headed coin is therefore 0.1. Zeke then tosses the coin n times
and gets a head on every toss. What is the posterior probability that he tossed the fair
coin?

Let F = [coin tossed is fair] and let B = [all tosses result in heads]. Then P(B) =
P(F)P(B|F) + P(Fc)P(B | Fc) = (0.9)(1/2n) + (0.1)(1) = 0.9/2n + 0.1. There-
fore, P(F | B) = (0.9/2n)/[0.9/2n + 0.1] = 1/[1 + 2n/9]. As n becomes larger, the
posterior probability that he is telling the truth goes rapidly to zero. Students can draw
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their own conclusions about friends who tell them often of low-probability events that
have occurred in their lives.

Simpson’s Paradox

In a paper appearing in the journal Science, Bickel et al. (1975) studied the rates of
admission to graduate school by gender and department at the University of California
at Berkeley. To make their point they invented the following data for the departments
of “Machismatics” and “Social Warfare.” For the combined departments their data
were:

Deny Admit Percentage

Men 300 250 45.5
Women 400 250 38.5

Assuming relatively equal ability among men and women, there seems to be dis-
crimination against women. But the frequencies for the separate departments were:

Machismatics Social Warfare

Admit Deny Percentage Admit Deny Percentage

Men 200 200 50.0 50 100 33.3
Women 100 100 50.0 150 300 33.3

Assigning equal probabilities 1/1200 to each applicant and using obvi-
ous notation, with D1 and D2 denoting the events that the student applied
to the Department of Machismatics and the Department of Social Warfare,
we have P(A | M) = 0.455, P(A | W ) = 0.385, P(A | M ∩ D1) = 0.50, P(A | W ∩
D2) = 0.50. When drawing conclusions about the relationships between variables,
the tendency to “collapse” (combine) tables in this way leads to what is called Simp-
son’s paradox (from a paper by E. H. Simpson, 1951, not named after the famous O.
J. Simpson. In this case the department variable is called a lurking variable. Failure
to take it into consideration leads to the wrong conclusion.

Independence

Consider the experiment in which a fair six-sided die is thrown twice. Let D =
{1, . . . , 6}, S = D × D, and assign probability 1/36 to each outcome in S. Let
A be the event that the number appearing on the first throw is 5 or 6, and
let B be the event that the number appearing on the second throw is at least
3. Then P(A) = 12/36 = 1/3, P(B) = 24/36 = 2/3, P(AB) = 8/36 = 2/9, and
P(B | A) = (2/9)/(1/3) = 2/3 = P(B). Thus, the occurrence of the event A does
not affect the probability of the event B. This, of course, should seem intuitively
clear, unless one believes that dice have memories.
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We take this as a starting point in developing a definition of independence of events.
Suppose that for two events A and B with P(A) > 0, P(B | A) = P(B). Then

P(A ∩ B) = P(B | A)P(A) = P(B)P(A),

and if P(B) > 0 so that if P(A | B) is defined, P(A | B) = P(A). Since

P(AB) = P(A)P(B) (1.3.1)

implies both P(B | A) = P(B) and P(A | B) = P(A), and since (1.3.1) is symmetric
in A and B and does not require either P(A) > 0 or P(B) > 0, we take (1.3.1) as the
definition of the independence of two events.

Definition 1.3.2 Two events A and B are independent if P(AB) = P(A)P(B).

Warning: Do not confuse the statement that two events A and B are independent
with the statement that they are mutually exclusive (disjoint). In fact, if A and B are
mutually exclusive, then P(AB) = 0, so that they cannot be independent unless at
least one of them has probability zero.

It is easy to show that independence of A and B implies independence of the fol-
lowing pairs of events: (A, Bc), (Ac, B), (Ac, Bc). For example, P(Ac B) = P(B) −
P(AB) = P(B) − P(A)P(B) = P(B)[1 − P(A)] = P(B)P(Ac). In fact, indepen-
dence is best thought of as a property of the probability measure on the sample space
as applied to the partitioning of the sample space into four parts produced by the two
events A and B. The fundamental idea of independence of events is used very often
to build probability models.

Suppose that two experiments are to be performed, with corresponding probability
models (S1, P1) and (S2, P2). Suppose also that it is reasonable to believe that the
outcome of either experiment should not change the probability of any event in the
other experiment. We can then produce a probability model for the combination
of experiments as follows. Let S = S1 × S2, and for (s1, s2) ∈ S, let P((s1, s2)) =
P1(s1)P2(s2). In this way we have defined a probability measure on S. To see this,
note that for any events,

A1 ⊂ S1, A2 ⊂ S2, P(A1 × A2) =
∑

s1∈A1,s2∈A2

P((s1, s2)) =
∑

s1∈A1

P1(s1)
∑

s2∈A2

P2(s2)

= P1(A1)P2(A2).

In particular, P(S) = P(S1 × S2) = P1(S1)P2(S2) = (1)(1) = 1. Let B1 = A1 ×
S2 and B2 = S1 × A2, where A1 ⊂ S1 and A2 ⊂ S2. In the language of set the-
ory, B1 and B2 are cylinder sets. B1 is defined entirely in terms of the first ex-
periment, B2 entirely in terms of the second experiment. For the model (S, P), B1
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TABLE 1.3.2 Product Model

e f g sum

a 0.08 0.12 0.20 0.40
b 0.06 0.09 0.15 0.30
c 0.04 0.06 0.10 0.20
d 0.02 0.03 0.05 0.10

sum 0.20 0.30 0.50

and B2 are independent. Since B1 ∩ B2 = A1 × A2, P(B1 ∩ B2) = P(A1 × A2) =
P1(A1)P2(A2) = P(A1 × S2)P(S1 × A2) = P(B1)P(B2). (Pay attention to the sub-
scripts or lack of subscripts on P!)

Example 1.3.6 Let S1 = {a, b, c, d} and let P1 assign probabilities 0.4, 0.3, 0.2,
and 0.1 to its outcomes. Let S2 = {e, f, g} and let P2 assign probabilities 0.2, 0.3,
and 0.5 to its outcomes. Then the outcomes of S = S1 × S2 and the probability as-
signments under the independence model for the two experiments correspond to the
12 cells of Table 1.3.2.

Let A1 = {b, c}, A2 = {e, g}. Then the event A1 × S2, the set of outcomes in the
rows headed by b and c, has probability 0.50. The event S1 × A2, the set of outcomes
in the columns headed by e and f , has probability 0.70. The event A1 × A2, the set of
outcomes in the rectangle formed from the rows headed by b and c and the columns
headed by e and f , has probability 0.35, which is, of course, P(A1 × S2)P(S1 ×
A2) = (0.50)(0.70).

In generalizing the property of independence for two events to that of three or
more events A1, . . . , An , we want to be able to use the multiplication rule,

P(A∗
1 ∩ · · · ∩ A∗

n) = P(A∗
1) · · · P(A∗

n), (1.3.2)

where each A∗
i is either Ai or Ac

i . To assure this, it is not enough to require that these
events be independent in pairs. It is equivalent that for any integer k, 1 ≤ k ≤ n, and
indices 1 ≤ i1 < · · · < ik ≤ n,

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1 ) · · · P(Aik ). (1.3.3)

For example, for n = 3, we need P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3), P(A1 ∩
A2) = P(A1)P(A2), P(A1 ∩ A3) = P(A1)P(A3), and P(A2 ∩ A3) = P(A2)P(A3).

An inductive proof of the equivalence of (1.3.2) and (1.3.3) can be con-
structed, but we will avoid the messy details and instead show that (1.3.3) implies
(1.3.2) for the special case of A1, A2, Ac

3. Since (A1 ∩ A2 ∩ Ac
3) ∪ (A1 ∩ A2 ∩ A3) =

A1 ∩ A2, P(A1 ∩ A2 ∩ Ac
3) = P(A1 ∩ A2) − P(A1 ∩ A2 ∩ A3). From (1.3.3) this is

P(A1)P(A2)[1 − P(A3)] = P(A1)P(A2)P(Ac
3).
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Definition 1.3.3 Events A1, . . . , An are independent if for any integer k, 1 ≤ k ≤ n,
and indices 1 ≤ i1 < · · · < ik ≤ n, (1.3.3) holds.

Given two models (S1, P1) and (S2, P2) for two experiments and independence
of these experiments, we constructed a product model (S, P), where S = S1 × S2

and P(A1 × A2) for A1 ⊂ S1, A2 ⊂ S2. We can generalize this to the case of n
models (S1, P1), . . . , (Sn, Pn). We let S = S1 × · · · × Sn , and for any outcomes
s1 ∈ S1, . . . , sn ∈ Sn , assign probability P1(s1) . . . Pn(sn) to (s1, · · · , sn) ∈ S. Again
we find that events which are defined in terms of nonoverlapping indices are inde-
pendent. For example, for n = 4, independence of the events A1, . . . , A4 implies the
independence of A1 ∪ Ac

3, A2, and Ac
4.

Example 1.3.7 Three new car salespeople, Abe, Betty, and Carl, are to be as-
signed to the next three customers. The three have differing sales skills: Abe makes a
sale with probability 0.3, Betty with probability 0.2, and Carl with probability 0.1. If
the three salespeople do or do not make sales independently, what is the probability
that the three make a total of at least one sale?

Let A be the event that Abe makes a sale, and define B and C similarly for Betty and
Carl. Then, since P(at least one sale) = P(A ∪ B ∪ C) = 1 − P((A ∪ B ∪ C)c) =
1 − P(Ac BcCc) = 1 − P(Ac)P(Bc)P(Cc) = 1 − (0.7)(0.8)(0.9) = 1 − 0.504 =
0.496.

Example 1.3.8 During the seventeenth century the French nobleman Antoine
Gombauld, the Chevalier de Mere, a gambler, wrote to the mathematician Blaise
Pascal concerning his experience throwing dice. He had been able to win regularly
by betting that at least one 6 would appear in four rolls of a die. On the other hand, he
was losing money when he bet that at least one double-6 would occur in 24 throws of
two dice. It seemed to de Mere that he should have about the same chance of winning
on each of these two bets.

It seemed “obvious” that the probability of at least one 6 should be 2/6 for two
throws of a die, 3/6 for three throws, and so on. This reasoning seems to go bad for
seven throws, however, so perhaps we need to think a bit more carefully. Using inde-
pendence and DeMorgan’s law, similarly to Example 1.3.5, for n throws of one die we
get P(at least one 6) = 1 − P(no 6’s) = 1 − (5/6)4 = 1 − 0.4823 = 0.5177 > 0.5,
so de Mere should have been a winner, although he had to be patient. On the other hand,
for n = 24 throws of two dice, P(at least one 6–6) = 1 − (35/36)24 = 1 − 0.5086 =
0.4914 < 0.5, so that de Mere should have expected to lose, although slowly. To
determine the difference in success rates between the two games experimentally, de
Mere must have played very often and must have kept very good records. We have
reason to be skeptical about de Mere’s story.

Example 1.3.9 Consider a system consisting of three components, 1, 2, and 3.
Current (in the case that this is a wiring diagram with resistors 1, 2, and 3) or traffic
(in the case that this is a system of highways with bridges 1, 2, and 3) must travel
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A B1
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FIGURE 1.3.3 Reliability diagram.

from point A to point B. The system works if component 1 works and either of 2 or 3
works. Suppose that the three components have reliabilities (probabilities of working)
0.9, 0.8, and 0.7. Suppose also that the events that the three components function as
they should are independent. What is the reliability of the system? That is, what is
the probability that the system works? (See Figure 1.3.3.)

Let Wi for i = 1, 2, 3 be the probability that component i works. Then the reliabil-
ity of the system = P(W1 ∩ (W2 ∪ W3)) = P(W1)[1 − P(W c

2 )P(W c
3 )] = (0.9)[1 −

(0.2)(0.3)] = 0.846.

Example 1.3.10 Our football team will play games against teams 1, 2, and 3.
It has probabilities 0.7, 0.6, and 0.4 of winning each game, and it is reasonable to
believe that the events of winning each game are independent. Given that the team
wins at least one of the first two games, what is the conditional probability that it wins
at least one of the last two?

Let Wi = [our team wins the game with team i] for i = 1, 2, 3. We need to find
P(W2 ∪ W3 |W1 ∪ W2). A Venn diagram is helpful. Note that (W1 ∪ W2)(W2 ∪ W3) =
W2 ∪ (W1W c

2 W3), so that using the independence of W1, W2, W3, we get P((W1 ∪
W2)(W2 ∪ W3)) = 0.6 + (0.7)(0.4)(0.4) = 0.712. Since P(W1 ∪ W2) = 0.7 + 0.6 −
(0.7)(0.6) = 0.88, we get P(W2 ∪ W3 |W1 ∪ W2) = 0.712/0.880 = 89/110. What is
the conditional probability that the team wins at least two games given that it wins at
least one of the first two?

Problems for Section 1.3

1.3.1 Let S = {a, b, c, d, e} and let P assign probabilities 0.2, 0.3, 0.1,
0.3, and 0.1, respectively. Let A = {a, b, c} and B = {b, c, d}. Find
P(A), P(B), P(A | B), P(B |A), and P(Ac | Bc).

1.3.2 A fair coin is tossed three times. Let A = [at least one of the first two tosses
is a head], B = [same result on tosses 1 and 3], C = [no heads], D = [same
result on tosses 1 and 2]. Among these four events there are six pairs. Which
of these pairs are independent? Which are mutually exclusive?

1.3.3 A bowl contains five balls numbered 1, 2, 3, 4, 5. One ball is drawn randomly,
that ball is replaced, balls with larger numbers are withdrawn, then a second
ball is drawn randomly.


