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PREFACE 

Man has the faculty of becoming completely absorbed in one subject, 
no matter how trivial and no subject is so trivial that it will not assume 
infinite proportions if one's entire attention is devoted to it. 

—Tolstoy, War and Peace 

The Twin Shining Stars 

The Fibonacci sequence and the Lucas sequence are the two shining stars in the 
vast array of integer sequences. They have fascinated both amateurs and professional 
mathematicians for centuries, and they continue to charm us with their beauty, their 
abundant applications, and their ubiquitous habit of occurring in totally surprising 
and unrelated places. They continue to be a fertile ground for creative amateurs and 
mathematicians alike. 

This book grew out of my fascination with the intriguing beauty and rich appli-
cations of the twin sequences. It has been my long-cherished dream to study and to 
assemble the myriad properties of both Fibonacci and Lucas numbers, developed over 
the centuries, and to catalog their applications to various disciplines in an orderly and 
enjoyable fashion. 

An enormous amount of information is available in the mathematical literature 
on Fibonacci and Lucas numbers; but, unfortunately, most of it is widely scattered 
in numerous journals, so it is not easily accessible to many, especially to non-
professionals. In this book, I have collected and presented materials from a wide 
range of sources, so that the finished volume represents, to the best of my knowledge, 
the largest comprehensive study of this area to date. 

Although many Fibonacci enthusiasts know the basics of Fibonacci and Lucas 
numbers, there are a multitude of discoveries about properties and applications that 

xi 
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may be less familiar. Fibonacci and Lucas numbers are also a source of great fun; 
teachers and professors often use them to generate excitement among students, who 
find that the sequences stimulate their intellectual curiosity and sharpen their mathe-
matical skills, such as pattern recognition, conjecturing, proof techniques, and problem-
solving. 

Audience 

This book is intended for a wide audience. College undergraduate and graduate 
students often opt to study Fibonacci and Lucas numbers because they find them 
challenging and exciting. Often many students propose new and interesting problems 
in periodicals. It is certainly delightful that students often pursue Fibonacci and Lucas 
numbers for their senior and master's theses. 

High school students have enjoyed exploring this material for a number of years. 
Using Fibonacci and Lucas topics, students at Framingham High School in 
Massachusetts, for instance, have published many of their Fibonacci and Lucas 
discoveries in Mathematics Teacher. 

I have also included a large amount of advanced material to challenge mathemati-
cally sophisticated enthusiasts and professionals in such diverse fields as art, biology, 
chemistry, electrical engineering, neurophysiology, physics, and music. It is my hope 
that this book will serve them as a valuable resource in exploring new applications 
and discoveries, and advance the frontiers of mathematical knowledge. 

Organization 

In the interest of manageability, the book is divided into forty-seven short chapters. 
Most conclude with numeric and theoretical exercises for Fibonacci enthusiasts to 
explore, conjecture, and confirm. I hope that the exercises are as exciting for readers 
as they are for me. Where the omission can be made without sacrificing the essence 
of development or focus, I have omitted some of the long, tedious proofs of theorems. 
The solutions to all odd-numbered exercises are given in the back of the book. 

Salient Features 

Salient features of this book include: a user-friendly, historical approach; a nonintim-
idating style; a wealth of identities, applications, and exercises of varying degrees of 
difficulty and sophistication; links to graph theory, matrices, geometry, and trigonom-
etry; the stock market; and relationships to geometry and information from everyday 
life. For example, works of art are discussed vis-à-vis the Golden Ratio, one of the 
most intriguing irrational numbers. 
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Interdisciplinary Appeal 

The book contains numerous and fascinating applications to a wide spectrum of 
disciplines and endeavors; These include art, architecture, biology, chemistry, chess, 
electrical engineering, geometry, graph theory, music, origami, poetry, physics, phys-
iology, psychology, neurophysiology, sewage/water treatment, snow plowing, stock 
market trading, and trigonometry. Most of the applications are well within the reach 
of mathematically sophisticated amateurs, although they vary in difficulty and sophis-
tication. 

Historical Perspective 

Throughout, I have tried to present historical background for the material, and to 
humanize the discourse by giving the name and affiliation of every contributor to 
the field, as well as the year of contribution. My apologies to any discoverers whose 
names or affiliations are missing; I would be pleased to hear of any such inadvertent 
omissions. 

Puzzles 

The book contains several numeric puzzles based on Fibonacci numbers. In addition, 
it contains several popular geometric paradoxes, again rooted in Fibonacci numbers, 
which are certainly a source of excitement and surprise. 

List of Symbols 

A glossary of symbols follows this preface. Readers can find a list of the fundamental 
properties from the theory of numbers and the theory of matrices in the Appendix. 
Those who are curious about their proofs will find them in my forthcoming book on 
number theory. 

I would be delighted to hear from Fibonacci enthusiasts about any possible inad-
vertent errors. If any reader should have questions, or should discover any additional 
properties and applications, I would be more than happy to hear about them. 

Acknowledgments 
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LEONARDO FIBONACCI 

Leonardo Fibonacci, also called Leonardo Pisano or Leonard of Pisa, was the most 
outstanding mathematician of the European Middle Ages. Little is known about his 
life except for the few facts he gives in his mathematical writings. Ironically, none of 
his contemporaries mention him in any document that survives. 

Fibonacci (Fig. 1.1) was born around 1170 into the Bonacci family of Pisa, a 
prosperous mercantile center. ("Fibonacci" is a contraction of "Filius Bonacci," son 
of Bonacci.) His father Guglielmo (William) was a successful merchant, who wanted 
his son to follow his trade. 

Around 1190, when Guglielmo was appointed collector of customs in the Algerian 
city of Bugia (now Bougie), he brought Leonardo there to learn the art of computation. 
In Bougie, Fibonacci received his early education from a Muslim schoolmaster, who 
introduced him to the Indo-Arabic numeration system and Indo-Arabic computational 
techniques. He also introduced Fibonacci to a book on algebra, Hisâb al-jabr w'al-
muqabâlah, written by the Persian mathematician, al-Khowarizmi (ca. 825). (The 
word algebra is derived from the title of this book.) 

As an adult, Fibonacci made frequent business trips to Egypt, Syria, Greece, 
France, and Constantinople, where he studied the various systems of arithmetic then 
in use, and exchanged views with native scholars. He also lived for a time at the court 
of the Roman Emperor, Frederick II (1194-1250), and engaged in scientific debates 
with the Emperor and his philosophers. 

Around 1200, at the age of about 30, Fibonacci returned home to Pisa. He was 
convinced of the elegance and practical superiority of the Indo-Arabic system over 
the Roman numeration system then in use in Italy. In 1202, Fibonacci published his 
pioneering work, Liber Abaci {The Book of the Abacus.) (The word abaci here does 
not refer to the hand calculator called an abacus, but to computation in general.) Liber 
Abaci was devoted to arithmetic and elementary algebra; it introduced the Indo-
Arabic numeration system and arithmetic algorithms to Europe. In fact, Fibonacci 

1 



2 LEONARDO FIBONACCI 

Figure 1.1. Fibonacci (Source: David Eugene Smith Collection, Rare Book and Manuscript Library, 
Columbia University.). 

demonstrated in this book the power of the Indo-Arabic system more vigorously 
than in any mathematical work up to that time. Liber Abaci's 15 chapters explain the 
major contributions to algebra by al-Khowarizmi and another Persian mathematician, 
Abu Kamil (ca. 900). Six years later, Fibonacci revised Liber Abaci and dedicated the 
second edition to Michael Scott, the most famous philosopher and astrologer at the 
court of Frederick II. 

After Liber Abaci, Fibonacci wrote three other influential books. Practica 
Geometriae {Practice of Geometry), written in 1220, is divided into eight chapters 
and is dedicated to Master Domonique, about whom little is known. This book 
skillfully presents geometry and trigonometry with Euclidean rigor and some origi-
nality. Fibonacci employs algebra to solve geometric problems and geometry to solve 
algebraic problems, a radical approach for the Europe of his day. 
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His next two books, the Flos (Blossom or Flower) and the Liber Quadratorum 
(The Book of Square Numbers) were published in 1225. Although both deal with 
number theory, Liber Quadratorum earned Fibonacci his reputation as a major number 
theorist, ranked between the Greek mathematician Diophantus (ca. 250 A.D.) and the 
French mathematician Pierre de Fermât (1601-1665). Flos and Liber Quadratorum 
exemplify Fibonacci's brilliance and originality of thought, which outshine the abil-
ities of most scholars of his time. 

In 1225 Frederick II wanted to test Fibonacci's talents, so he invited him to his 
court for a mathematical tournament. The contest consisted of three problems. The 
first was to find a rational number x such that both x1 — 5 and x2 + 5 are squares of 
rational numbers. Fibonacci gave the correct answer41/12: (41/12)2 — 5 = (31/12)2 

and(41/12)2 + 5 = (49/12)2. 
The second problem was to find a solution of the cubic equation x3 + 2x2 + 

IOJC — 20 = 0. Fibonacci showed geometrically that it has no solutions of the form 
Va + \fb, but gave an approximate solution, 1.3688081075, which is correct to nine 
decimal places. This answer appears in the Flos without any explanation. 

The third problem, also recorded in the Flos, was to solve the following: 

Three people share 1/2, 1/3, and 1/6 of a pile of money. Each takes some money from 
the pile until nothing is left. The first person then returns one- half of what he took, the 
second one-third, and the third one-sixth. When the total thus returned is divided among 
them equally, each possesses his correct share. How much money was in the original 
pile? How much did each person take from the pile? 

Fibonacci established that the problem was indeterminate and gave 47 as the smallest 
answer. In the contest, none of Fibonacci's competitors could solve any of these 
problems. 

The Emperor recognized Fibonacci's contributions to the city of Pisa, both as a 
teacher and as a citizen. Today, a statue of Fibonacci stands in a garden across the 
Arno River, near the Leaning Tower of Pisa. 

Not long after Fibonacci's death in about 1240, Italian merchants began to appre-
ciate the power of the Indo-Arabic system and gradually adopted it for business 
transactions. By the end of the sixteenth century, most of Europe had accepted it. 
Liber Abaci remained the European standard for more than two centuries and played 
a significant role in displacing the unwieldy Roman numeration system. 



THE RABBIT PROBLEM 

Fibonacci's classic book, Liber Abaci, contains many elementary problems, including 
the following famous problem on rabbits: 

Suppose there are two newborn rabbits, one male and the other female. Find the number 
of rabbits produced in a year if: 

1) each pair takes one month to become mature; 

2) each pair produces a mixed pair every month, from the second month on; and 

3) no rabbits die during the course of the year. 

Suppose, for convenience, that the original pair of rabbits was born on January 1. 
They take a month to become mature, so there is still only one pair on February 1. 
On March 1, they are two months old and produce a new mixed pair, a total of two 
pairs. Continuing like this, there will be three pairs on April 1, five pairs on May 1, 
and so on. See the last row of Table 2.1. 

TABLE 2.1. 
Number of Pairs 

Adults 
Babies 
Total 

Jan 

0 
1 
1 

Feb 

1 
0 
1 

Mar 

1 
1 
2 

Apr 

2 
1 
3 

May 

3 
2 
5 

Jun 

5 
3 
8 

Jul 

8 
5 

13 

Aug 

13 
8 

21 

4 
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Figure 2.1. Lucas (Source: H. C. Williams, Edouard Lucas and Primality Testing, New York: Wiley, 
1998. Copyright © 1998, reprinted with permission of John Wiley & Sons, Inc.). 

FIBONACCI NUMBERS 

The numbers in the bottom row are called Fibonacci numbers, and the number 
sequence 1, 1, 2, 3, 5, 8, . . . is the Fibonacci sequence. Table A.2 in the Appendix 
lists the first 100 Fibonacci numbers. 

The sequence was given its name in May of 1876 by the outstanding French mathe-
matician François-Edouard-Anatole-Lucas (Fig. 2.1),* who had originally called it 
"the series of Lamé," after the French mathematician Gabriel Lamé (1795-1870). It 
is a bit ironic that despite Fibonacci's numerous mathematical contributions, he is 
primarily remembered for this sequence that bears his name. 

'François-Edouard-Anatole-Lucas was born in Amiens, France, in 1842. After completing his studies at 
the École Normale in Amiens, he worked as an assistant at the Paris Observatory. He served as an artillery 
officer in the Franco-Prussian war and then became professor of mathematics at the Lycee Saint-Louis 
and Lycee Charlemagne, both in Paris, and he was a gifted and entertaining teacher. Lucas died of a freak 
accident at a banquet; his cheek was gashed by a shard that flew from a plate that was accidently dropped; 
he died from infection within a few days, on October 3, 1891. 

Lucas loved computing and developed plans for a computer, but it never materialized. Besides his 
contributions to number theory, he is known for his four-volume classic on recreational mathematics. Best 
known among the problems he developed is the Tower of Brahma. 
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The Fibonacci sequence is one of the most intriguing number sequences, and it 
continues to provide ample opportunities for professional and amateur mathemati-
cians to make conjectures and to expand the mathematical horizon. 

The sequence is so important that an organization of mathematicians, The Fibonacci 
Association, has been formed for the study of Fibonacci and related integer sequences. 
The association was founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) of 
San Jose State College (now San Jose State University), California, and Brother 
Alfred Brousseau (1907-1988) of St. Mary's College in California. The association 
publishes The Fibonacci Quarterly, devoted to articles related to integer sequences. 

A close look at the Fibonacci sequence reveals that it has a fascinating property: 
every Fibonacci number, except the first two, is the sum of the two immediately 
preceding Fibonacci numbers. (At the given rate, there will be 144 pairs of rabbits on 
December 1. This can be verified by extending Table 2.1 through December.) 

RECURSIVE DEFINITION 

This observation yields the following recursive definition of the nth Fibonacci number, 
F„: 

F\ = Fi = 1 ■*- Initial conditions -
F„ = F„_i + F„_2 n > 3 ■*- Recurrence relation 

We shall formally establish the validity of this recurrence relation shortly. 
It is not known whether Fibonacci knew of this relation. If he did, no record 

exists to that effect. In fact, the first written confirmation of the recurrence relation 
appeared four centuries later, when the great German astronomer and mathematician 
Johannes Kepler (1571-1630) wrote that Fibonacci must have surely noticed this 
recursive relationship. In any case, it was first noticed by the Dutch mathematician 
Albert Girard (1595-1632). 

However, according to P. Singh of Raj Narain College in Bihar, India, Fibonacci 
numbers and the recursive formulation were known in India several centuries before 
Fibonacci proposed the problem; they were given by Virahanka (between 600 and 
800 A.D.), Gopala (prior to 1135 A.D.), and Hemacandra (about 1150 A.D.). In fact, 
Fibonacci numbers also occur as a special case of a formula established by Narayana 
Pandita (1356 A.D.). 

The growth of the rabbit population can be displayed nicely in a tree diagram, as 
Figure 2.2 shows. Each new branch of the "dream-tree" becomes an adult branch in 
one month and each adult branch, including the trunk, produces a new branch every 
month. 

Table 2.1 shows several interesting relationships among the numbers of adult pairs, 
baby pairs, and total pairs. To see these relationships, let A„ denote the number of 
adult pairs and Bn the number of baby pairs in month«, where« > 1. Clearly, A\ = 0, 
and Ai = 1 = B\. 



RECURSIVE DEFINITION 

Month Total number of branches 

13 

Figure 2.2. A Fibonacci tree. 

Suppose n > 3. Since each adult pair produces a mixed baby pair in month n, the 
number of baby pairs in month n equals the number of adult pairs in the preceding 
month, that is, B„ = <4„_|. Then: 

/ Number of pairs \ _ / Number of adult pairs \ , f Number of baby pairs \ 
y in month n / ~~ \ in month n — 1 ) \ in month n — \ ) 

That is, 

A„ = A„_i + ß„_i 

= A„_| + An-i n > 3 

Thus A„ satisfies the same recurrence relation as the Fibonacci recurrence relation 
(FRR), where A2 = 1 = A3. Consequently, Fn = An+\, n > 1. 

Notice that: 

/ Total number of pairs \ _ f Number of adult pairs \ ,( Number of baby pairs \ 
y in month n ) \m month n ) \'m month n ) 

That is, Fn = A„ + B„ = An + A„-\, where n > 3. Thus Fn — F„_i + F„_2, n > 3. 
This establishes the Fibonacci recurrence relation observed earlier. 

Since Fn = An+\, where « > 1, every entry in row 1, beginning with the second 
element (February), is a Fibonacci number. In other words, the /th element in row 1 is 
F/_|, where i > 2. Likewise, since B„ = An-\ = F„_2, where n > 3, the /'th element 
in row 2 is F,_2, where ι > 3. 

The recursive definition of F„ yields a straightforward method for computing it, 
as Algorithm 2.1 shows. 
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F5 

/ \ 
FA F3 Λ / \ 

F3 F2 F2 F, 

F2 F, 

Figure 2.3. Tree diagram of recursive computing of F$. 

Algorithm Fibonacci(n) 
(* This algorithm computes 
using recursion. *) 
Begin (* algorithm *) 

if n = 1 or n = 2 then 
Fibonacci «- 1 

else (* gene 
Fibonacci «- Fibonacci 

End (* algorithm *) 

the 

* ba 

ral 
(n -

nth Fibonacci 

se cases *) 

^ase 
1) 

*) 

numbe 

+ Fibonacci(n — 

r 

2) 

Algorithm 2.1. 

The tree diagram in Figure 2.3 illustrates the recursive computing of F$, where 
each dot represents an addition. 

Using the recurrence relation (Eq. 2.1), we can assign a meaningful value to Fo. 
When n = 2, Eq. (2.1) yields F2 = Fi + F0, that is, 1 = 1 + F0, so F0 = 0. This fact 
will come in handy in our later discussions. 

In the case of a nontrivial triangle, it is well known that the sum of the lengths of 
any two sides is greater than the length of the third side. Accordingly, the FRR can be 
interpreted to mean that no three consecutive Fibonacci numbers can be the lengths 
of the sides of a nontrivial triangle. 

LUCAS NUMBERS 

Using the Fibonacci recurrence relation and different initial conditions, we can 
construct new number sequences. For instance, let Ln be the nth term of a sequence 
with L\ = 1, L2 = 3, and L„ = L„_i + L„_2, n > 3. The resulting sequence 1, 3, 
4, 7, 1 1 , . . . is called the Lucas sequence, after Edouard Lucas; L„ is the nth term of 
the sequence. Table A.2 also lists the first 100 Lucas numbers. 

We will see in later chapters that L„ and F„ are very closely related, and hence the 
title of this book. For instance, both L„ and F„ satisfy the same recurrence relation. 
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FIBONACCI AND LUCAS SQUARES AND CUBES 

Of the infinitely many Fibonacci numbers, some have special characteristics. For 
example, only two distinct Fibonacci numbers are perfect squares, namely, 1 and 
144. This was established in 1964 by J. H. E. Cohn of the University of London. In 
the same year, Cohn also established that 1 and 4 are the only Lucas squares (see 
Chapter 34). 

In 1969, H. London of McGill University and R. Finkelstein of Bowling Green 
State University proved that there are exactly two distinct Fibonacci cubes, namely, 
1 and 8, and that the only Lucas cube is 1. 

A UBIQUITOUS FIBONACCI NUMBER 
AND ITS CONSTANT LUCAS COMPANION 

Another Fibonacci number that appears to be ubiquitous is 89. 

• Since 1/89 is a rational number, its decimal expansion is periodic: 

^- = 0.011235955056179775280(89)887640449438202247191 
89 j-

The period is 44, and a surprising number occurs in the middle of a repeating 
block. 

• It is the eleventh Fibonacci number, and both 11 (the fifth Lucas number) and 89 
are prime numbers. While 89 can be viewed as the (8 + 3)rd Fibonacci number, 
it can also be looked at as the (8 · 3)rd prime. 

. Concatenating 11 and 89 gives the number 1189. Since 11892 = ( 1 + 2 + 
3 H h 1681)/2, it is also a triangular number. Interestingly enough, there are 
1189 chapters in the Bible, of which 89 are in the four gospels. 

. Eighty-nine is the smallest number to stubbornly resist being transformed into 
a palindrome by the familiar "reverse the digits and then add" method. In this 
case, it takes 24 steps to produce a palindrome, namely, 8813200023188. 

• 8 + 9 is the sum of the four primes preceding 11, and 8 · 9 is the sum of the four 
primes succeeding it: 17 = 2 + 3 + 5 + 7 and 72 = 13 + 17 + 19 + 23. 

. The most recent year divisible by 89 is 1958: 1958 = 2 1 1 - 89. Notice the 
prominent appearance of 11 again. 

• The next year divisible by 89 is 2047 = 2 " — 1. Again, 11 makes a con-
spicuous appearance. It is, in fact, the smallest number of the form 2P — 
1, which is not a prime, where p is of course a prime. Primes of the form 
2P — 1 are called Mersenne primes, after the French Franciscan priest Marin 
Mersenne (1588-1648), so 2047 is the smallest Mersenne number that is not 
a prime. 
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On the other hand, 289 — 1 is a Mersenne prime; in fact, it is the tenth Mersenne 
prime, discovered in 1911 by R. E. Powers. Its decimal value contains 27 digits 
and looks like this: 

->89 1 =6189700196··-11 

The first three digits are significant because that they are the first three 
decimal digits of an intriguing irrational number we shall encounter in 
Chapters 20-27. Once again, note the surprising appearance of 11 at 
the end. 

• Multiply the two digits of 89; add its digits again; and their sum is again 
89: (8 · 9) + (8 + 9) = 89. (It would be interesting to check if there are 
other numbers that exhibit this remarkable behavior.) Also, 8/9 % 0.89. 

• There are only two consecutive positive integers, one of which is a square and 
the other a cube: 8 = 23 and 9 = 32. 

. Square the digits of 89 and add them to obtain 145. Add the squares of its digits 
again. Continue like this. After eight iterations, we return to 89: 

89 -»· 145 -» 42 -> 20 -► 4 -* 16 -> 37 -> 58 -* 89 

In fact, if we apply this "sum the squares of the digits" method to any number, 
we will eventually attain 89 or 1. 

• On 8/9 in 1974, an unfortunate and unprecedented event occurred in the history 
of the United States—the resignation of President Richard M. Nixon. Strangely 
enough, if we swap the digits of 89, we get the date on which Nixon was pardoned 
by his successor, President Gerald R. Ford. 

All these fascinating observations about 11 and 89 were made in 1996 by M. J. Zerger 
of Adams State College, Colorado. 

Soon after these Fibonacci curiosities appeared in Mathematics Teacher, 
G. J. Greenbury of England (private communication, 2000) contacted Zerger with 
two curiosities involving the decimal expansions of two primes: 

— = 0.0344827586206(89)6551724137931 

1 
— = 0. 0169491525423728813559322022033(89)8305084745762711864406779661 

Curiously enough, 89 makes its remarkable appearance in the repeating block of each 
expansion. 

R. K. Guy of the University of Calgary, Canada, in his fascinating book, Unsolved 
Problems in Number Theory, presents an interesting number sequence [x„). It has a 
quite remarkable and not immediately obvious relationship with 89. The sequence is 
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defined recursively as follows: 

x0 = 1 

_ l + ^ + ^ + . - . - t - . ^ , 
xn — 

n 

For example, *0 = 1, ΛΓ, = (1 + 13)/1 = 2, and^2 = (1 + l3 + 23)/2 = 5. 
Surprisingly enough, x„ is integral for 0 < n < 89, but x& is not. 

FIBONACCI AND PRIMES 

Zerger also observed that the product F^^Fg Fg is the product of the first seven prime 
numbers: F6F1FiF9 = 13-21-34-55 = 510, 510 = 2-3-5-7-ll-1317.Interestingly 
enough, 510 is the Dewey Decimal Classification Number for Mathematics. 

FIBONACCI AND LUCAS PRIMES 

Many Fibonacci and Lucas numbers are indeed primes. For example, the Fibonacci 
numbers 2,3,5, 13, 89, 233, and 1597 are primes, and so are the Lucas numbers 3,7, 
11,29,47,199, and 521. Although it is widely believed that there are infinitely many 
Fibonacci and Lucas primes, their proofs still remain elusive. 

The largest known Fibonacci prime is F9311, and the largest known Lucas prime 
is Z-14449. Discovered in 1999 by H. Dubner and W. Keller, they are 1946 and 3020 
digits long, respectively. (Chapter 5 discusses a method for determining the number 
of digits in both F„ and Ln.) 

Table A.3 lists the canonical prime factorizations of the first 100 Fibonacci num-
bers. Lucas had found the prime factorizations of the first 60 Fibonacci numbers 
before March 1877 and most likely even earlier. Boldface type in the table indicates 
the corresponding prime factor's first appearance in the list. For instance, the largest 
prime among the first 100 Fibonacci numbers is F%?,. 

Table A.4 gives the complete prime factorizations of the first 100 Lucas numbers. 

CUNNINGHAM CHAINS 

A Cunningham chain, named after Lt. Col. Allan J. C. Cunningham (1842-1928), 
an officer in the British Army, is a sequence of primes in which each element is one 
more than twice its predecessor. Interestingly enough, the smallest six-element chain 
begins with 89: 89, 179, 359, 719, 1439, 2879. 

Are there Fibonacci and Lucas numbers that are one more than or one less than a 
square? A cube? We shall find the answers shortly. 
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FIBONACCI AND LUCAS NUMBERS w2 ± 1, w > 0 

In 1973, R. R Finkelstein of Bowling Green State University, Ohio, established yet 
another curiosity: The only Fibonacci numbers of the form w2 + 1, where w > 0, are 
1, 2, and 5: 1 = 02 + 1, 2 = l2 + 1, and 5 = 22 + 1. 

Two years later, Finkelstein proved that the only Lucas numbers of the same form 
are 2 and 1: 2 = l2 + 1 and 1 = 02 + 1. 

In 1981, N. R. Robbins of Bernard M. Baruch College, New York, proved that the 
only Fibonacci numbers of the form w2 — 1, where ιυ > 0, are 3 and 8: 3 = 22 — 1 
and 8 = 32 — 1. The only such Lucas number is 3. 

FIBONACCI AND LUCAS NUMBERS u>3 ± 1, w > 0 

In the same year, Robbins also determined all Fibonacci and Lucas numbers of the 
form u>3 ± 1, where w > 0. There are two Fibonacci numbers of the form ui3 + 1, 
namely, 1 and 2: 1 = 03 + 1 and 2 — l3 + 1. There are two Lucas numbers of the 
same form: 1 and 2. 

There are no Fibonacci numbers of the form u>3 — 1, where w > 0. But there is 
exactly one such Lucas number, namely, 7: 7 = 23 — 1. 

FIBONACCI NUMBERS (α3 ± *3)/2 

Certain Fibonacci numbers can be expressed as one-half of the sum or difference of 
two cubes. For example, 1 = ( l3 + l3) /2,8 = (23 + 23)/2, and 13 = (33 - l3) /2. In 
fact, at the 1969 Summer Institute on Number Theory, held at Stony Brook, New York, 
H. M. Stark of the University of Michigan at Ann Arbor asked: Which Fibonacci 
numbers have this distinct property? This problem is linked to the finding of all 
complex quadratic fields with class 2. In 1983, J. A. Antoniadis tied such fields to 
solutions of certain diophantine equations. 

FIBONACCI AND LUCAS TRIANGULAR NUMBERS 

A triangular number is a positive integer of the form n(n + l ) /2. The first five 
triangular numbers are 1, 3, 6, 10, and 15; they can be represented geometrically, as 
Figure 2.4 shows. 

In 1963, M. H. Tallman of Brooklyn, New York, observed that the Fibonacci 
numbers 1, 3, 21, and 55 are triangular numbers: 

, 1 2 -X 2 ' 3 1 ! 6 ' 7 A « I » " 
1 = ——, 3 = ——, 21 = ——-, and 55 = 

2 2 2 2 
He asked if there were any other Fibonacci number that is also triangular. 
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• · · · · · 

· · · · · · · · · 

1 3 6 10 15 

Figure 2.4. The first five triangular numbers. 

Twenty-two years later, S. R. Wall of Trident Technical College, South Carolina, 
established that there are no other triangular numbers in the first one billion Fibonacci 
numbers. In fact, he conjectured that there are no other such Fibonacci numbers. 

In 1976, Finkelstein proved that 1, 3, 21, and 55 are the only triangular Fibonacci 
numbers of the form Fin. 

In fact, eleven years later, L. Ming of Chongqing Teachers' College, China, proved 
conclusively that 1, 3, 21, and 55 are the only Fibonacci triangular numbers. This 
result is a byproduct of the two following results by Ming: 

• 8F„ + 1 is a perfect square if and only if n — 0, ± 1 , 2, 4, 8, 10. 

• F„ is triangular if and only if n = ± 1, 2,4,8, 10. 

Are there Lucas numbers that are also triangular? Obviously, 1 and 3 are. In 
fact, in 1990, Ming also established that the only such Lucas numbers are 1, 3, and 
5778: 

1 2 „ 2 - 3 , ,„„„ 107 ■ 108 
1 = , 3 = , and 5778 = 

2 2 2 

FIBONACCI AND THE BEASTLY NUMBER 

In 1989, C. Singh of St. Laurent's University in Quebec, Canada, discovered some 
mystical relationships between the infamous beastly number, 666, and Fibonacci 
numbers F„: 

. 666 = F15 + Fn - Fg + Fu where 1 5 + 1 1 - 9 + 1 = 6 + 6 + 6. 

• 666 — F 3 + F2
3 + F4

3 + F5
3 + F6

3, where the sum of the subscripts equals 

1 + 2 + 4 + 5 + 6 = 6 + 6 + 6 

. 666 = [F3 + (F2 + F3 + F4 + F5)3]/2. 
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EXERCISES 2 

1. Compute the first 20 Fibonacci numbers. 

2. Compute the first 20 Lucas numbers. 

3. Determine the value of LQ. 

4. Using the FRR (Eq. 2.1), compute the value of F_„, where 1 < n < 10. 

5. Using Exercise 4, predict the value of F_„ in terms of F„. 

6. Compute the value of L_„, where 1 < n < 10. 
7. Using Exercise 6, predict the value of L_„ in terms of L„. 

To commemorate the publication of the maiden issue of the Journal of Recreational 
Mathematics, L. Bankoff of Los Angles published his discovery that F2Q — F\g— 
F\5 — F$ — F\ = Fn + F\3 + F\\ + Fg + FT + Fi and that each sum gives the year. 

8. Find the year in which the journal was first published. 
9. Verify that the sums of the subscripts of the Fibonacci numbers on either side 

are equal. 

Compute the sum Σ Fi for each value of n. 
1 

10. 3 
11. 5 
12. 7 
13. 8 

n 
14. Using Exercises 10-13, predict a formula for Σ F-

1 
n 

15-18. Compute the sum Σ Li for each value of M in Exercises 10-13. 
1 

n 
19. Using Exercises 15-18, predict a formula for Σ L,. 

i 
n 

20-23. Compute the sum Σ Ff for each value oin in Exercises 10-13. 
1 

n 

24. Using Exercises 20-23, predict a formula for the sum Σ Ff. 
1 

n 

25-28. Compute the sum Σ L? for each value of« in Exercises 10-13. 
1 

n 

29. Using Exercises 20-23, predict a formula for the sum Σ L]. 
1 

30. Verify that F2n = FnLn for n = 3 and n = 8. 
31. Verify that L„ = F„_, + Fn+i for n = 4 and n = 1. 

Let an denote the number of additions needed to compute F„ by recursion: 
32. Define an recursively. 
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33. Show that a„ = F„ — l,n > \. 
34. Prove that Fn < 1.75" for every positive integer M (LeVeque, 1962). 

35. Show that there are no four distinct Fibonacci numbers in arithmetic progres-
sion (Silverman, 1964). 

36. Let /„ = f0 x'^'dx, where n > 2 and I\ = f0 x dx. Evaluate /„ (Lind, 
1965). 

37. If Fn < x < Fn+\ < y < Fn+i, then x + y cannot be a Fibonacci number 
(Hoggatt, 1982). 

Suppose we introduce a mixed pair of 1-month-old rabbits into a large enclosure on 
the first day of a certain month. By the end of each month, the rabbits become mature 
and each pair produces k — 1 mixed pairs of offspring at the beginning of the following 
month. (Note: k > 2.) For instance, at the beginning of the second month, there is 
one pair of 2-month-old rabbits and k — 1 pairs of 0-month-olds; at the beginning 
of the third month, there is one pair of 3-month-olds, k — 1 pairs of 1-month-olds, 
and k(k — 1) pairs of 0-month-olds. Assume the rabbits are immortal. Let a„ denote 
the average age of the rabbit-pairs at the beginning of the nth month (Filipponi and 
Singmaster, 1990). 

**38. Define a„ recursively. 

**39. Predict an explicit formula for a„. 
**40. Prove the formula in Exercise 39. 

41. (For those familiar with the concept of limits) Find lim a„. 
n—*oo 



FIBONACCI NUMBERS 
IN NATURE 

Come forth into the light of things, 
let Nature be your teacher. 

—William Wordsworth 

Interestingly enough, the amazing Fibonacci numbers occur in quite unexpected 
places in nature. 

FIBONACCI AND THE EARTH 

Do Fibonacci numbers also appear elsewhere? Zerger observed that the equatorial 
diameter of the earth in miles is approximately the product of two alternate Fibonacci 
numbers, and that this in kilometers is approximately the product of three consecutive 
Fibonacci numbers: 

55 · 144 = 7920miles and 89 · 144 = 12,816kilometers 

For the curious-minded, the earth's diameter, according to The 2000 World Almanac 
and Book of Facts, is 7928 miles and 12,756 kilometers; the polar diameter is 7901 
miles. The diameter of Jupiter, the largest planet, is 11 times that of the earth. 

FIBONACCI AND ILLINOIS 

In 1992, Zerger discovered some astonishing occurrences of Fibonacci numbers in 
relation to the state of Illinois: 

16 
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• Illinois was admitted to the Union on the 3rd of December. 
• Illinois is the fifth largest state, according to the 1990 census. 
• Illinois' name consists of 8 letters. 

• Illinois is the thirteenth state, when the states are arranged alphabetically. 

• Illinois was the twenty-first state admitted to the Union. The postal abbreviation 
IL is formed with the ninth and twelfth letters: 9 + 12 = 21. 

• Interstate 55 begins in Chicago and roughly follows the 89th parallel to 
New Orleans. 

FIBONACCI AND FLOWERS 

The number of petals in many flowers is often a Fibonacci number. For instance, count 
the number of petals in the flowers pictured in Figure 3.1. Enchanter's nightshade 
has two petals, iris and trillium three, wild rose five, and delphinium and cosmos 
eight. Most daisies have 13, 21, or 34 petals; there are even daisies with 55 and 89 
petals. Table 3.1 lists the Fibonacci number of petals in an assortment of flowers. 
Although some plants, such as buttercup and iris, always display the same number of 
petals, some do not. For example, delphinium blossoms sometimes have 5 petals and 
sometimes 8 petals, and some Michaelmas daisies have 55 petals, while some have 
89 petals. 

The cross section of an apple reveals a pentagonal shape with five pods. The 
starfish, with five limbs, also exhibits a Fibonacci number (see Fig. 3.2). 

Nightshade Trillium Bluet Wild Rose 

Hepatica Bloodroot Cosmos 

Figure 3.1. Flowers. 
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TABLE 3.1. 

Plant 

Enchanter's nightshade 
Iris, lilly 
Buttercup, columbine, delphinium, larkspur, wall lettuce 
Celandine, delphinium, field senecio, squalid senecio 
Chamomile, cineraria, corn marigold, double delphinium, globeflower 
Aster, black-eyed Susan, chicory, doronicum, helenium, hawkbit 
Daisy, gailliardia, plantain, pyrethrum, hawkweed 

Number of Petals 

2 
3 
5 
8 

13 
21 
34 

(a) 

(b) 

Figure 3.2. (a) Cross section of an apple; (b) Starfish. 
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FIBONACCI AND TREES 

Fibonacci numbers are also found in some spiral arrangements of leaves on the twigs 
of plants and trees. From any leaf on a branch, count up the number of leaves until 
you reach the leaf directly above it; the number of leaves is often a Fibonacci number. 
On basswood and elm trees, this number is 2; on beech and hazel trees, it is 3; on 
apricot, cherry, and oak trees, it is 5; on pear and poplar trees, it is 8; and on almond 
and willow trees, it is 13 (see Fig. 3.3). 

Here is another intriguing fact: The number of turns, clockwise or counterclock-
wise, we can take from the starting leaf to the terminal leaf is also usually a Fibonacci 
number. For example, on basswood and elm trees, it takes one turn; for beech and 
hazel trees, it is also 1 ; for apricot, cherry, and oak trees, it is 2; for pear and poplar 
trees, it is 3; and on almond and willow trees, it is 5. 

The arrangement of leaves on the branches of phyllotaxis* Accordingly, the ratio 
of the number of turns to the number of leaves is called the phyllotactic ratio of the 
tree. Thus, the phyllotactic ratio of basswood and elm is 1/2; for beech and hazel, 
it is 1/3; for apricot, cherry, and oak, it is 2/5; for pear and poplar, it is 3/8; and 
for almond and willow, it is 5/13. These data are summarized in Table 3.2. As an 
example, it takes 3/8 of a full turn to reach from one leaf to the next leaf on a 
pear tree. 

FIBONACCI AND SUNFLOWERS 

Mature sunflowers display Fibonacci numbers in a unique and remarkable way. The 
seeds of the flower are tightly packed in two distinct spirals, emanating from the center 
of the head to the outer edge (Figs. 3.4 and 3.5). One goes clockwise and the other 
counterclockwise. Studies have shown that although there are exceptions, the number 
of spirals, by and large, is adjacent Fibonacci numbers; usually, they are 34 and 55. 
Hoggatt reports a large sunflower with 89 spirals in the clockwise direction and 55 
in the opposite direction, and a gigantic flower with 144 spirals clockwise and 89 
counterclockwise. 

It is interesting to note that Br. Alfred Brousseau once gave Hoggatt a sunflower 
with 123 clockwise spirals and 76 counterclockwise spirals, two adjacent Lucas 
spirals. 

In 1951, John C. Pierce of Goddard College in Massachusetts reported in The 
Scientific Monthly that the Russians had grown a sunflower head with 89 and 144 
spirals. After reading his article on Fibonacci numbers, Margaret K. O'Connell and 
Daniel T. O'Connell of South Londonderry, Vermont, examined their sunflowers, 
raised from seeds from Burpee's. They found heads with 55 and 89 spirals, some with 
89 and 144 spirals, and one giant head with 144 and 233 spirals. The latter seems to 
be a world record. 

*The word phyllotaxis is derived from the Greek words phyllon, meaning leaf, and taxis, meaning 
arrangement. 
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From Fibonacci Numbers in Nature (poster). Copyright © 1988 by Dale Seymour 
Publications. Used with permission of Pearson Education. 

FIBONACCI, PINECONES, ARTICHOKES, AND PINEAPPLES 

The scale patterns on pinecones, artichokes, and pineapples provide excellent 
examples of Fibonacci numbers. The scales are in fact modified leaves closely packed 
on short stems, and they form two sets of spirals, called parastichies* Some spirals 

'The word parastichies is derived from the Greek words para, meaning beside and stichos, meaning row. 


