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Preface

Heavy-tailed distributions are typical of phenomena in complex multi-component
systems such as biometry, economics, ecological systems, sociology, Web access
statistics and Internet traffic, bibliometrics, finance and business. Typical examples
of such distributions are Pareto, Weibull with shape parameter less than 1, Cauchy,
and Zipf–Mandelbrot law. Heavy-tailed distributions have been accepted as realistic
models for various phenomena: WWW session and TCP flow characteristics
(e.g., sizes and durations), on/off-periods of packet traffic, file sizes, service
time and input in queuing models, flood levels of rivers, major insurance
claims, extreme levels of ozone concentration, high wind-speed values, wave
heights during a storm, and low and high temperatures. Examples of applications
can be found in the books by Embrechts et al. (1997), Adler et al. (1998),
Coles (2001), Beirlant et al. (2004), Reiss and Thomas (2005), McNeil et al.
(2005), and Castillo et al. (2006). In both populations of living individuals
and inanimate objects such as automobile motors a common tendency has been
discovered: the mortality risk for living objects (or the hazard rate for inanimate
objects) decreases at infinity, which corresponds to heavy-tailed distributions
(Yashin et al., 1996). Insurance company disasters caused by large claims, the
overloading of computers by large files and of energy networks by strong deviations
of weather and climate phenomena from the average behavior are rare and
dangerous events. The methodology described in the book is therefore of current
interest.

The analysis of heavy-tailed distributions requires special methods of estimation
because of their specific features: slower than exponential decay to zero, violation
of Cramér’s condition, possible nonexistence of some moments, and sparse
observations at the tail domain of the distribution. For example, the central limit
theorem, which states the convergence of sums of independent and identically
distributed (i.i.d.) random variables (r.v.s) to a Gaussian limit distribution, holds for
a large variety of distributions: all we need is a finite variance of the summands.
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If this variance is infinite, then we get so-called stable distributions as limit
distributions of the normalized sums (Lévy, 1925; Khintchine and Lévy, 1936).
Cramér’s condition, which states the existence of the moment generating function,
is violated for heavy-tailed distributions. Therefore, many results of the large
deviation theory that require Cramér’s condition (e.g., Cramér’s theorem, which
states the convergence of the tail of the finite sum of i.i.d. r.v.s to a Gaussian
tail) are violated (Petrov, 1975). A linear approximation of the renewal function
(RF) for large time intervals of observation changes for an infinite second moment
as well.

The statistical analysis of heavy-tailed distributions requires special methods
that differ from classical tools due to the sparse observations in the tail domain of
the distribution. For example, the histogram is a powerful tool of visual statistical
data analysis. Small isolated bars often arise in histogram plots. The data which
correspond to such bars are called ‘outliers’ and the compact mass of the bars
is called the ‘body’ of the distribution. In classical textbooks the ‘outliers’ are
considered as trash, deemed to be present in the sample as a result of some mistake.
The usual recommendation is to remove them before any serious analysis or to use
robust methods which are stable with respect to contamination of the data. But in
many cases the ‘outliers’ are a vital part of the data; for example, the size of files
transported by a network during the transfer of some firm’s home page may vary
from kilobytes to megabytes (see Crovella et al., 1998). In a histogram large sizes
will be viewed as apparent ‘outliers’. A network administrator who controls the
operation of the network must take into account the existence of such files to avoid
network overload. Theoretically, those data where the ‘outliers’ play a significant
role are described by heavy-tailed distributions (Sigman, 1999).

For compactly supported and light-tailed distributions (i.e., those without heavy
tails) the histogram is a good estimate of the corresponding probability density
function (PDF). But if the distribution is heavy-tailed, the histogram provides
misleading peaks in the ‘tail’ domain or oversmoothes the ‘body’ of the PDF.
The same is true for most of the common nonparametric PDF estimates such as
kernel, projection and spline estimates (Čencov, 1982; Silverman, 1986; Devroye
and Györfi, 1985).

Usually, quantiles can be estimated by means of an empirical distribution
function or weighted estimators based on sample order statistics. However, high
quantiles (e.g., 99% or 99.9%) cannot be calculated in the usual way, since the
empirical distribution function is equal to 1 outside the range of the sample.

The hazard rate function decays to zero at infinity for heavy-tailed distributions,
whereas it increases at infinity for light-tailed distributions and is constant for the
exponential distribution. Hence, its estimation has to be different for various classes
of distributions.

Ignoring heavy tails in the data may lead to serious distortions of the estimation
and errors in system control.

This book focuses mainly on nonparametric methods of the statistical analysis
of univariate heavy-tailed i.i.d. r.v.s from samples of moderate sizes. However, the
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methods are widely useful for dependent data. Dependence detection, the estimation
of the PDF from dependent data and elements of bivariate analysis are therefore
also considered.

The estimation of the PDF from empirical data is a central problem in
mathematical statistics. The PDF is used for the description of the sample,
classification, failure time detection, the construction of generators of random
numbers, and the estimation of different functionals of the PDF such as the hazard
rate function. The estimation of marginal distributions is the first step towards a
multivariate analysis.

Traditionally, two main sets of methods, the block maxima method and
the peaks over thresholds (POT) method have been developed to estimate tail
measures of the risk such as probabilities of exceeding high levels, high quantiles
(called value-at-risk (VaR) in finance), and expected shortfall (Embrechts et al.,
1997; Coles, 2001; Beirlant et al., 2004; McNeil et al., 2005). The block
maxima (i.e., a set of maximal values selected in the blocks of data) are
modelled by a generalized extreme value (GEV) distribution with distribution
function (DF) G�x� = exp�− �1+��x−��/��−1/�

+ �. In the POT method the values
which are larger than some thresholds are modelled by the generalized Pareto
distribution (GPD) with DF 	�
��x� = 1 − �1+�x/��−1/�

+ . The parameters in
these models (in particular the tail index 1/�) are estimated from a sample using
nonparametric methods (e.g., Hill’s method) or parametric methods (e.g., maximum
likelihood).

In practice, we often need an estimate of the whole PDF or DF, both the ‘tail’
and the ‘body’, for example for classification or the estimation of the expectation.
Another example is given by the copula technique (and, generally, multivariate
analysis) which suggests the estimation of marginal distributions based on all data
(Mikosch, 2006). The parametric tail models considered are not a good fit for the
whole DF and the PDF and, hence, are not appropriate for such aims. Therefore, in
this book, much attention is devoted to the nonparametric estimation of heavy-tailed
PDFs.

We consider three sets of estimators of the whole heavy-tailed PDF that are
purely or partly nonparametric. These are variable bandwidth kernel estimators,
combined estimators that fit the ‘tail’ and the ‘body’ of the PDF by parametric
and nonparametric models respectively, and estimators based on the transformation
approach.

The need for different amounts of smoothing at different locations of heavy-
tailed PDFs leads to the usage of kernel estimators with window width (or, roughly
speaking, the ‘width’ of the kernel) varying from one point to another, that is,
variable bandwidth kernel estimators (Abramson, 1982; Hall, 1992; Silverman,
1986). However, these estimators, at least with compactly supported kernels, are
not intended for the estimation of a heavy-tailed PDF in the ‘tail’ domain, where
the observations are sparse. This is because the latter estimators are defined on
finite intervals. These are approximately the same as the ranges of the samples.
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Application of heavy-tailed kernels for variable bandwidth kernel estimators has
yet to be investigated in the literature.

It is obvious that nonparametric PDF estimates with good behavior in the
‘tail’ domain are required. This feature is significant for classification (pattern
recognition) purposes when the PDFs of many populations are compared. If one
uses an empirical Bayesian classification algorithm, then the observations will be
classified by the comparison of the corresponding PDF estimates of each class.
Since the object can arise in the ‘tail’ domain as well as in the ‘body’, a tail
estimator with good properties is of primary importance for classification.

To improve the PDF estimation at infinity a transform–retransform scheme
is considered here. This scheme implies a preliminary transformation of the data
to a finite interval, that is, to a sample with a PDF that is more convenient for
the estimation. Then one can estimate the PDF of a new r.v. obtained by the
transformation by means of some nonparametric method and get the PDF of the
original data by the reverse transformation of the PDF estimate of the transformed
data. Furthermore, the back-transformed PDF estimates with fixed smoothing
parameters work like location-adaptive estimates and allow the estimation of the
PDF to be improved on the entire domain on which it is defined. Logarithmic
transformations are a popular choice with this approach.

In this book, combinations of data transformations and nonparametric estimates
are considered that provide accurate PDF estimation and have decay rates at infinity
close to those of the original PDFs. In this respect, a good deal of attention is
devoted to a so-called adaptive transformation to a finite interval, which uses
essentially the asymptotic distribution of the maximum of the sample as a model
of the distribution behavior at infinity. The latter idea is followed throughout the
book: an adaptive transformation may be applied to the PDF, and high quantile and
hazard rate estimation to classification.

A parametric–nonparametric estimation combines the advantages of parametric
tail models to describe the ‘tail’ well enough and nonparametric methods to describe
the ‘body’ domain (i.e., that limited area of relatively small values of an underlying r.v.)
better. A similar idea was proposed in Barron et al. (1992), where a parametric model
of the ‘tail’ of the PDF is superimposed on a histogram estimate of the ‘body’. Despite
its ease of application, it is extremely sensitive to the correct choice of the parametric
family and may provide a poor fit of the ‘body’ of a PDF in the case of moderate
sample sizes. In practice, we often observe r.v.s governed by multimodal heavy-tailed
distributions. Hence, it is important to use combined estimators aimed at accurately
fitting both the multimodal ‘body’ and the ‘tail’ of the PDF.

For practical needs, it is more important to provide such estimates of the PDF
that are more suited to the tasks in hand. That is why another topic of the book
concerns the investigation of the capacities of the PDF estimates considered with
regard to the pattern recognition problem. Many methods of classification that use
PDF estimates are known (Silverman, 1986; Aivazyan et al., 1989). We consider
a procedure that allows increased influence of ‘outliers’ in the tail domain on the
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quality of the classification, thus preventing large misclassification losses by rare
events.

High quantile estimates for heavy-tailed distributions are applied to determine
the values of characteristics of observed objects that may lead to rare but large
losses. High quantiles indicate the VaRs in finance or the thresholds of parameters
in complex systems such as the Internet (e.g., the 99.9% quantile can provide the
maximal threshold for the file size) or atomic power stations. In this book, we
discuss some but not all known high quantile estimators.

The tail index is a key characteristic of heavy-tailed data. It shows the shape of
the tail of the distribution without making any assumption regarding the parametric
form of the tail. By means of the tail index, one can identify a heavy tail in
measurements and the number of finite moments. All characteristics of heavy-tailed
r.v.s are based on the tail index. In this book, many well-known estimators of the
tail index such as Hill’s, POT, moment, UH, and ratio estimators are considered.
Furthermore, a relatively new tail index estimator, proposed in Davydov et al.
(2000) – called the group estimator here – is described. It has the essential advantage
that it can be calculated recursively. The latter property is convenient for on-line
estimation.

The mortality risk function plays a significant role in population analysis. It is
connected with the finding of causes of certain events in the population such as
morbidity and mortality. This function is called the hazard rate if the reliability
of technical systems is under investigation. Hitherto, most analysts have used
the parametric approach for mortality risk estimation from empirical data. This
means that before carrying out the estimation one decides what kind of function
the mortality risk is expected to be. However, it might be difficult to describe
the data by means of these models sufficiently accurately applying the cause
factors as parameters. The parametric approach is problematic for the analysis of
population processes by means of semi-Markov models when the intensity of the
appearance of events is interpreted as an intensity of the transition from one state
to another. An alternative approach is to use nonparametric models, when only
general information about the estimated function is available. For the estimation
of the hazard rate, however, the nonparametric approach is rarely used: in the
literature, the preliminary estimation of the PDF and the DF by kernel or histogram-
type estimators (Prakasa Rao, 1983) and regularized estimates (Stefanyuk, 1992)
has been considered. One reason for this is a specific difficulty arising from the
different asymptotic behavior of this function in the right-hand part of its domain
for light- and heavy-tailed distributions. Hence, its estimation has to be different for
various classes of distributions. In this book, the data transformation approach to a
finite interval is considered to estimate the hazard rates corresponding to compactly
supported distributions by nonparametric methods. The estimation of the hazard rate
is presented as an inverse ill-posed problem involving Volterra’s integral equation,
and a so-called regularization method, (Tikhonov and Arsenin, 1977) is used to
find its approximation. The estimation of the hazard rate and the hazard rate ratio
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is considered for a biological application (the problem of hormesis detection) and
for teletraffic problems.

For the purposes of warranty control, reliability analysis of technical systems,
and particularly of telecommunication networks, one often needs to estimate the
RF. This function is equal to the mean number of arrivals of the relevant events
before a fixed time. Usually, measurement facilities count the events of interest,
for example, the number of requested and transferred Web pages, incoming or
outgoing calls in consecutive time intervals of fixed length. To estimate the RF,
several realizations of the counting process (e.g., observations of number of calls
over several days) may be required, with further averaging inside the corresponding
time interval. However, it may be that the RF has to be estimated using only
one set of inter-arrival times between events. This applies particularly to warranty
control or when it would be too expensive to obtain numerous observations of the
process. Explicit forms of the RF are obtained only for a few inter-arrival time
distributions such as the uniform, exponential, Erlang or normal (Asmussen, 1996).
The preliminary estimation of the DF or the PDF, if the latter exists, may become
a more complicated problem than direct estimation of the RF. Here, the main
attention is devoted to the nonparametric estimation of the RF from a sample of
the i.i.d. inter-arrival times between events of moderate size. A few known results
in this area (Frees, 1986a, 1986b; Grübel and Pitts, 1993; Schneider et al., 1990;
Markovitch and Krieger, 2002b; Markovich and Krieger, 2006a) are discussed in
this book. The well-known Frees estimate requires a huge amount of calculation
even if one operates with samples as small as 20–30 observations. A sufficiently
accurate estimate of the RF from empirical data is discussed that is also feasible for
large samples. As always, the key problem of nonparametric estimates is the choice
of the parameter that is responsible for the smoothing. Hence, the data-dependent
selection of a smoothing parameter of the RF estimates is the main object of interest
here.

The main methodology
The statistical tools considered are based on the results of probability theory,
mathematical statistics, extreme value theory, and the theory of the solution of
ill-posed operator equations. The statistical methodology considered in this book is
elaborated for the evaluation of characteristics of heavy-tailed r.v.s from samples
of moderate size.

Due to the lack of information beyond the range of the sample, nonparametric
statistical estimation is based essentially on the asymptotic distribution of sample
maxima as a model of the distribution behavior at infinity. The basic result
of extreme value theory concerning the asymptotic behavior of the marginal
distribution of the sample maxima (a GEV distribution) was provided by Gnedenko
(1943). This result was extended to multivariate extreme value distributions by
Galambos (1987).
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The asymptotical tail distribution is the only realistic knowledge regarding the
behavior of the distribution beyond the range of the sample. A data transformation
approach that is discussed at length in the book essentially uses these asymptotic
results. This approach allows us to transform the initial r.v. that is assumed to be
GEV distributed into a new one. The latter may be located in a finite interval. That
may both simplify the estimation (e.g., the estimation of the PDF) and allow us to
apply some relevant estimators such as the histogram, or projection estimators that
are applicable just for distributions with compact supports. The data transformations
can be useful for the further development and the identification of models of
multivariate distributions. It is known that such tools as copulas are invariant
with respect to monotone transformations of r.v.s. That may give rise to construct
dependence measures and models for ‘conveniently distributed’ r.v.s just using
reliable transformations.

Another methodology considered in the book is given by a statistical
regularization method. This has evolved from Tikhonov’s regularization theory
(Tikhonov and Arsenin, 1977). The latter theory was intended for the solution of
deterministic linear and nonlinear operator equations. Due to the uncertainties in
the availability of an operator and the right-hand part of the operator equation,
the solution may be related to an ill-posed problem. Unlike Tikhonov’s method
the method considered deals with stochastic operator equations. This approach
was elaborated in Vapnik and Stefanyuk (1979), Vapnik (1982), and Stefanyuk
(1986), and applied to population analysis in Markovich and Michalski (1995) and
Markovich (1995, 2000) and to the analysis of teletraffic systems in Markovitch
and Krieger (1999). Regularization is a developing area and is not restricted by the
framework of Tikhonov’s scheme. The next step could be a wider application of
other regularization schemes to statistical applications.

In this book, the nonparametric estimation of characteristics of r.v.s plays a
significant role. A smoothing of nonparametric estimates, for instance, the choice
of the bin width in a histogram or the bandwidth in kernel estimators of the
PDF, is key to an accurate approximation. The values of smoothing parameters
recommended by theory usually minimize the mean squared error of the estimate or
its asymptotic analog. This gives the values that are functions of a sample size. In
practice, where one deals with samples of moderate sizes such values of parameters
can provide unsatisfactory estimates. That is why, in this book, much attention is
focused on data-dependent methods such as a cross-validation (Wahba, 1981) and
the discrepancy method (Markovich, 1989; Vapnik et al., 1992). The stochastic
version of the discrepancy method has evolved from the discrepancy method for
deterministic operator equations (Morozov, 1984).

Another approach is based on the minimization of an empirical bootstrap
estimate of the mean squared error of the estimate by an unknown parameter.
Bootstrapping is a tool for obtaining a reasonable value of an unknown smoothing
parameter.
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What is new?
The book contains many results from the author’s advanced research material that
are presented for the first time. These are:

(i) the combined parametric–nonparametric estimator of a PDF;

(ii) the adaptive data transformation that allows the PDF to be fitted at infinity
better than a pure nonparametric estimate;

(iii) the discrepancy method as a data-dependent smoothing tool of nonparametric
PDF estimates;

(iv) the application of the retransformed PDF estimates for classification;

(v) on-line recursive estimation of the tail index;

(vi) a modification of Weissman’s estimator of high quantiles that has smaller
mean squared error;

(vii) regularized estimates of the hazard rate function and hazard rate ratio;

(viii) the estimator of the RF at finite time intervals from samples of inter-arrival
times of moderate sizes;

(ix) the bootstrap and plot methods as data-dependent smoothing tools for
selecting a smoothing parameter in the RF estimator.

Many practical recommendations for the implementation of the presented estimators
are given, namely:

(i) the use of nonparametric PDF estimates in finance, telecommunication,
population analysis, and multivariate analysis;

(ii) the usage of the classification methodology for the clustering of Internet data
and Web prefetching;

(iii) the usage of high quantile estimates in finance and the identification of
parameter bounds in technical systems;

(iv) the application of the hazard rate function in teletraffic (e.g., retrial call rate
estimation);

(v) the application of the hazard rate ratio in population analysis (e.g., hormesis
detection) and for failure time detection;

(vi) the application of RF estimates for overload control of telecommunication
systems and warranty control;

(vii) the rough detection of heavy tails and dependence in data and the application
of these methods to Web traffic and TCP flow data by way of illustration.
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The reader can easily learn how to do a rough and more advanced statistical analysis
of the data.

Content and general outline of the book
The book gives a detailed survey of classical results and recent developments in
the theory of nonparametric estimation of the PDF, the tail index, high quantiles,
the hazard rate and the renewal function assuming the data come from i.i.d. random
variables with heavy tails. Both asymptotic results such as convergence rates of
the estimates and results for samples of moderate sizes supported by Monte Carlo
investigation are considered. Special comments are also made on the application
of the methods considered to dependent data. Observations that serve to clarify the
main line of the exposition are located in footnotes.

In Chapter 1 definitions and basic properties of classes of heavy-tailed
distributions are considered. Tail index estimation and methods for the selection
of the number of largest order statistics in Hill’s estimator are presented. Rough
methods for the detection of heavy tails and the number of finite moments as
well as dependence detection and simple bivariate analysis provide the ideas for
a preliminary statistical data analysis. The methods considered are applied to
measurements of Web traffic and TCP flows.

Chapter 2 is devoted to PDF estimation. The main principles and the links
between them are presented. Classical nonparametric estimators of the PDFs
and smoothing methods are considered. PDF estimation using dependent data is
discussed. Examples of the applications of PDF estimates are given.

Chapter 3 describes three classes of heavy-tailed PDF estimation methods. These
are methods that ‘paste’ together the parametric tail models and nonparametric
estimates of the main part of the PDF (e.g., the combined parametric–nonparametric
method and Barron’s estimator), the variable bandwidth kernel estimators, and the
retransformed nonparametric estimators that use transformations of the data.

In Chapter 4 so-called fixed and adaptive transformations are proposed. The
difference between them is that fixed transformations do not depend on the
distribution, in contrast to adaptive transformations. These transformations are
applied to improve the estimation of heavy-tailed PDFs. Special boundary kernels
are considered to improve the behavior of retransformed kernel estimates at
infinity. The key problem of any nonparametric estimator is the choice of a
smoothing parameter that determines the accuracy of the estimation. Data-dependent
discrepancy methods are investigated both for nonvariable and variable bandwidth
kernel estimators as well as for a projection estimator. The mean squared errors of
these estimates are proved to be optimal.

In Chapter 5 the application of the retransformed PDF estimates described in the
previous chapter to the classification problem is considered. An empirical Bayesian
algorithm is used. Then any new observation is classified by the comparison of
the corresponding PDFs of each class. The retransformed kernel and polygram
estimators are used to estimate heavy-tailed PDFs of each class. The accuracy of
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the classifiers obtained is compared by a simulation study. Possible applications of
this classification technique to Web traffic data analysis and Web prefetching are
considered.

Chapter 6 contains estimators of the high quantiles for heavy-tailed distributions.
The estimates are compared by a Monte Carlo study using simulated r.v.s. The
distribution of the logarithm of the ratio of Weissman’s estimate to the true value
of the quantile is proved to be asymptotically normal. The same result is obtained
for the modification of Weissman’s estimate. An application to WWW traffic data
is considered.

Chapter 7 elaborates the nonparametric estimation of the hazard rate function in
light- and heavy-tailed cases. The statistical regularization method and its theoretical
background are presented. The application of the hazard rate and hazard rate ratio
to telecommunication and population analysis is discussed.

Finally, Chapter 8 includes the estimation of the renewal function within finite
and infinite time intervals. Nonparametric estimators for finite intervals, their
asymptotical theoretical properties and smoothing methods are considered.

The companion website for the book is http://www.wiley.com/go/nonparametric

Audience
This book is intended as a practical manual on the statistical theory of heavy-
tailed data. The exposition is accompanied by numerous illustrations and examples
motivated by applications in telecommunication, population analysis, and finance.
Each chapter is provided with exercises. These may help the reader to understand
the application of the statistical methods presented. The book assumes only an
elementary knowledge of probability theory and statistical methods. Sometimes the
subject requires the use of intermediate mathematical techniques such as probability
theory, statistics, and mathematical analysis.

The book is aimed at a relatively broad audience including students, prac-
titioners, and engineers who are faced with analyzing heavy-tailed empirical
data and are interested in the rough methodology and algorithms for numerical
calculations related to the analysis of heavy-tailed data, as well as researchers
and PhD students who are looking for new approaches and fundamental results,
supported by proofs. Readers are expected to have diverse backgrounds including
computer science, performance evaluation engineering, statistics, economics,
demography, and population analysis. Readers with an interest in applied areas can
skip the proofs of the theorems located in the appendices.
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1

Definitions and rough
detection of tail heaviness

In this chapter, the basic definitions and properties of heavy-tailed distributions
are presented. Tail index estimation and methods for selecting the number of
largest order statistics in the Hill estimator are discussed. Rough methods for the
detection of heavy tails, the number of finite moments, dependence and long-range
dependence are described. Elements of bivariate analysis are presented: estimation
of the Pickands function and bivariate quantiles. The latter methods are applied to
the analysis of telecommunication data.

1.1 Definitions and basic properties of classes of
heavy-tailed distributions

We start with the common definitions.

Definition 1 The set �����P� is called the probability space, where � is the
space of elementary events, � is a �-algebra of subsets of �, and P is a probability
measure on �.

Let ����� be some measurable space, �R���R�� be the real line with the
�-algebra ��R� of Borelian sets on R.

Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice N. Markovich
© 2007 John Wiley & Sons, Ltd
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Definition 2 The real-valued function X = X��� defined on �����, is called a
random variable (r.v.), if for any B ⊆ ��R� �� 	 X��� ∈ B
⊆ � holds.

Definition 3 The function FX�x� = P�� 	 X��� ≤ x
, x ∈ R, is called the
distribution function (DF) of the r.v. X.

Definition 4 Let a nonnegative real-valued function f�t�, t ∈ R, exist such that
for all x ∈ R,

FX�x�=
∫ x

−�
f�t�dt�

The function f�t�, t ∈ R, is called the probability density function (PDF) of r.v. X.

Definition 5 The r.v.s X1�X2� � � � �Xn (Xi ∈ Bi ⊆ R, Bi is a finite set) are called
independent if, for any x1� x2� � � � � xn ∈ R,

P�X1 = x1� � � � �Xn = xn
= P�X1 = x1
� � � P�Xn = xn


or equivalently, for any B1� � � � �Bn ∈ ��R�,

P�X1 ∈ B1� � � � �Xn ∈ Bn
= P�X1 ∈ B1
� � � P�Xn ∈ Bn
�
In terms of DFs and PDFs, independence means that

F�x1� x2� � � � � xn�= F1�x1�F2�x2�� � � Fn�xn��

and

f�x1� x2� � � � � xn�= f1�x1�f2�x2�� � � fn�xn��

where Fk�xk� and fk�xk� are the DF and PDF of the r.v. Xk.
The definition of heavy-tailed distributions may be derived from the extreme

value theory. Let Xn = �X1� � � � �Xn
 be a sample of independent and identically
distributed (i.i.d.) r.v.s with DF F�x�= P�X1 ≤ x
 and Mn = max�X1�X2� � � � �Xn�.
It is known (Gnedenko, 1943; David, 1981) that if the limit distribution of maxima
Mn exists then there exist normalizing constants an� bn such that

P��Mn−bn�/an ≤ x
= Fn�bn+anx�→n→� H�x�� x ∈ R� (1.1)

and an extreme value DF H�x� belongs to one of the following types of distribution
function:1

H�x�=
⎧⎨⎩

exp�−x−1/�� x > 0�  > 0 (Fréchet)�
exp�−�−x�−1/�� x < 0�  < 0 (Weibull)�
exp�−e−x��  = 0� x ∈ R (Gumbel)�

(1.2)

The distribution H�x� can also be rewritten as

H�x�=
{

exp�−�1+x�−1/��  �= 0�

exp�−e−x��  = 0�
(1.3)

1 This result remains true if X1� � � � �Xn are weak dependent (Leadbetter et al., 1983).
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where 1+x > 0 (Jenkinson–von Mises representation). H�x� is called a standard
generalized extreme value (GEV) distribution.

Example 1 (Coles, 2001) If Xn is a sequence of independent standard exponential
r.v.s with DF F�x�= 1−exp�−x� for x> 0 then, letting an = 1 and bn = n in (1.1),
the limit distribution of Mn as n→ � is the Gumbel distribution. In the case of
standard Fréchet r.v.s with DF F�x�= exp�−1/x� and an = n and bn = 0, the limit
distribution of Mn is precisely the standard Fréchet distribution with  = 1 in (1.2).
Let Xn be a sequence of independent uniform r.v.s on �0�1� with DF F�x�= x for
x ∈ �0�1� and an = 1/n and bn = 1. Then the limit distribution of Mn is of Weibull
type with  = −1.

Definition 6 The parameter  is called the extreme value index (EVI) and defines
the shape of the tail of the r.v. X. The parameter � = 1/ is called the tail
index.

Definition 7 We say that the r.v. X and its distribution F belong to the maximum
domain of attraction of H�x� if (1.1) is fulfilled. We write X ∈ MDA�H� (F ∈
MDA�H�).

We shall consider only nonnegative r.v.s.

Definition 8 A DF F�x� (or the r.v. X) is called heavy-tailed if its tail F̄ �x� =
1−F�x� > 0, x ≥ 0, satisfies, for all y ≥ 0,

lim
x→�P�X > x+y	X > x
= lim

x→� F̄ �x+y�/F̄ �x�= 1�

This intuitively implies that if X exceeds a large value then it will most probably
exceed any larger value, too.

Roughly speaking, heavy-tailed distributions belong to the class of those
long-tailed distributions whose tails decay to 0 slower than an exponential tail
(Figure 1.1). The exponential distribution is often considered as a boundary between
classes of heavy-tailed and light-tailed distributions. Typical examples of heavy-
and light-tailed distributions are given in Table 1.1.

The class of heavy-tailed distributions comprises the subexponential class of
distributions (S) and its subset, that is, distributions with regularly varying tails.

Definition 9 The DF F�x� (or the r.v. X), defined on �0���, is called
subexponential (F ∈ S (X ∈ S)), if

P�Sn > x
∼ nP�X1 > x
∼ P�Mn > x
 as x→ ��2

for some n≥ 2, where Sn = X1 + � � � +Xn, Mn = maxi=1� � � � �n�Xi
.

2 For any positive functions f and g, f ∼ g as x→ x1 means that limx→x1
f�x�/g�x�= 1.
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Figure 1.1 Comparison of tail behavior: exponential distribution (solid line), Pareto
distribution (dotted line).

Table 1.1 Examples of heavy- and light-tailed distributions.

Heavy-tailed Subexponential:
distributions Pareto, lognormal, Weibull with shape parameter less than 1

With regularly varying tails:
Pareto, Cauchy, Burr, Fréchet, Zipf–Mandelbrot law

Light-tailed exponential, gamma, Weibull with shape parameter greater than 1,
distributions normal, compactly supported distributions

Intuitively, subexponentiality means that the only way the sum can be large is by
one of the summands getting large (in contrast to the light-tailed case, where all
summands are large if the sum is so).

Definition 10 The DF F (or r.v. X) is called a regularly varying distribution at
infinity of index �= 1/,  > 0 (X ∈ R−1/), if

P�X > x
= x−1/��x�� ∀x > 0� (1.4)

where ��x� is called a slowly varying function (��x� ∈ R0).

Definition 11 A positive, Lebesgue measurable function ��x� on �0��� is called
a slowly varying function at infinity if limx→� ��tx�/��x�= 1�∀t > 0 (Feller, 1968;
Sigman, 1999).

Examples of ��x� are given by c ln x, c ln�ln x� and all functions converging to
positive constants. Using different functions ��x�, one can get a great variety of tails.

For light-tailed distributions all moments E��X+�k� exist and are finite. In
contrast, for regularly varying distributions the moments EX� are finite only if
� < 1/.
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Basic properties of regularly varying distributions (Breiman, 1965; Bingham
et al., 1987; Feller, 1971; Mikosch, 1999; Resnick, 2006) are summaryzed in the
following lemma.

Lemma 1 Let X ∈ R−�. Then,

(i) X ∈ S.

(ii) E�X�
 <� if � < �, E�X�
= � if � > �.

(iii) If � > 1, then Xr ∈ R1−� and P�Xr > x
 ∼ ��x�x1−�/���− 1�E�X
� as
x→ �.

(iv) If Y is nonnegative and independent of X such that P�Y > x
= �2�x�x
−�2 ,

then X+Y ∈R−min����2�
and P�X+Y> x
∼P�X> x
+P�Y> x
 as x→ �.

(v) (Breiman’s theorem) If Y is nonnegative and independent of X such that
E�Y �+�
 <� for some � > 0, then XY ∈ R−� and

P�XY > x
∼ E�Y �
P�X > x
 as x→ ��

Heavy-tailed distributions differ strongly from the normal or exponential
distributions; for example, the exponential distribution function F�x�= 1−e−�x� x≥
0, satisfies

F�x+y�/F�x�= exp�−�y�� x ≥ 0� y ≥ 0�

and hence it is not heavy-tailed.
An important property of heavy-tailed distribution is given by the violation

of Cramér’s condition. This means that the moment generating function does not
satisfy E�e�x� <�, � > 0. Many results of the large deviation theory require the
fulfillment of Cramér’s condition. Otherwise, for example, Cramér’s theorem on
the convergence of P�Sn > x
 (Sn is the sum of n independent r.v.s) to the tail of
a normal distribution is violated. Intervals of normal convergence of heavy-tailed
distributions are presented in Mikosch and Nagaev (1998).

In practice, a tail function F̄�x� is often fitted by the generalized Pareto
distribution. The latter is based on Pickands’ theorem (Pickands, 1975):

Theorem 1 Let X1� � � � �Xn be an i.i.d. random sequence. The limit distribution
of the excess of the Xi over the threshold u is necessarily of generalized Pareto
form,

lim
u↑xF �u+x<xF

P �X1 −u > x	X1 > u�→ �1+x�−1/
+ � x ∈ R�

where

xF = sup�x ∈ R 	 F�x� < 1


is the right endpoint of the distribution F�x�, the shape parameter  ∈ R, and
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�x�+ =
{
x� x > 0�

0� x ≤ 0�

1.2 Tail index estimation
The tail index reflects the shape of the distribution tail (with no assumption on the
parametric form of the tail) and, therefore, plays a key role in the analysis of heavy-
tailed measurements. The tail index is used for the estimation of high (99%, 99.9%)
quantiles of observed r.v.s, the estimation of the PDF of the r.v. (Markovitch and
Krieger, 2002a) and, hence, for classification (Maiboroda and Markovich, 2004).
It allows one to identify roughly whether the distribution is heavy-tailed or not as
well as to determine the number of finite moments.

There are numerous estimators of the EVI . Let Xn = �X1� � � � �Xn
 be i.i.d.
r.v.s with common DF F�x�.

1.2.1 Estimators of a positive-valued tail index

Hill’s estimator for � = 1/�> 0

We assume that F�x� belongs to the class of regularly varying distributions (see
Definition 10). For many applications, it is important to know �. For example, if
�< 2, than EX2

1 = � holds. Hill’s estimator (Hill, 1975), used for  = 1/� > 0, is
determined by

̂H �n� k�= 1
k

k∑
i=1

logX�n−i+1�− logX�n−k�� (1.5)

where X�1� ≤ X�2� ≤ � � � ≤ X�n� are the order statistics of the sample Xn =
�X1�X2� � � � �Xn
 and k is a further smoothing parameter.

It is a remarkable feature that the estimator (1.5) may be obtained in several
ways – for example, by the maximum likelihood (ML) method assuming F ∈R−1/

(Hill, 1975), by the regularly varying approach (de Haan, 1994), by the regression
approach (Beirlant et al., 1999), or by using quantiles (Beirlant et al., 2004). For
detailed discussion, see Embrechts et al. (1997) and Resnick (2006, Section 4.4).

Hill’s estimator is weakly consistent if

k→ �� k/n→ 0 as n→ � (1.6)

(Mason, 1982), and asymptotically normal with mean  and variance 2/k,
√
k
(̂
H �n�k�−)→d N�0� 2�

(Häusler and Teugels, 1985). In practice, the accuracy of the estimate depends on
the selection of k. If the r.v. X ∈R−1/ , then the slowly varying function ��x�, which
is usually unknown, influences the estimation. Hill’s estimator does not work well
if the r.v. X does not belong to class R−1/ . Plots of Hill’s estimates against k are
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Figure 1.2 Hill’s estimate against k for 15 realizations of the Weibull distribution (left),
Pareto (middle) and Fréchet (right) distributions, each with parameter �= 0�5 (dotted line).
The sample size is n= 1000.

shown in Figure 1.2 for 15 realizations of Weibull, Pareto and Fréchet distributions,
each with parameter �= 0�5.

The ratio estimator

The ratio estimator

an = an�xn�=
n∑
i=1

ln�Xi/xn�1�Xi > xn
/
n∑
i=1

1�Xi > xn
 (1.7)

is a generalization of Hill’s estimator in the sense that we use an arbitrary threshold
level xn instead of an order statistic xn = X�n−k� in (1.5) (Goldie and Smith, 1987).
Here, 1�A� is the indicator function of the event A. The statistic (1.7) seems to
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be among a few tail index estimators whose bias and mean squared error (MSE)
asymptotics are known (Novak, 1996).

Note that Hill’s estimator and the ratio estimator may also be applied to
dependent data (Novak, 2002; Resnick and Stǎricǎ, 1999). Hill’s estimator is very
sensitive with respect to dependence in the data (see Ebmrechts et al., 1997). The
asymptotic normality of the ratio estimator under the specific mixing condition that
is fulfilled in many parametric models (e.g., ARCH and GARCH) is proved in
Novak (2002).

1.2.2 The choice of k in Hill’s estimator

Visual choice of k

The parameter k may be estimated visually by means of the exceedance plot, that
is, the plot ��u� e�u�� 	 X�1� < u < X�n�
. Here

e�u�=
n∑
i=1

�Xi−u�1�Xi > u
/
n∑
i=1

1�Xi > u
 (1.8)

is the empirical mean excess function over threshold u of a given sample Xn.
The linearity of e�u� over some level u corresponds to a Pareto mean eP�u� =
�1 +u�/�1 −�. Then the number of the order statistic that is the closest to u is
accepted as the estimate of n−k.

Alternatively, one can estimate k from the Hill plot �k� ̂H�n� k� 	 k = 1� � � � �
n− 1
. The estimate of k is selected from the interval �k−� k+� of stability of
the function ̂H�n� k�. The latter approach is based on the consistency of Hill’s
estimator. One may take the mean estimate (1.5) in �k−� k+� as the estimate of
, that is, ̂H�n� k� ≈  for all k ∈ �k−� k+�, and k corresponding to this  as the
optimal value.

Methods of selecting k from empirical data are mostly based on the choice of
a trade-off between the bias and the variance of Hill’s estimate. The bias increases
and the variance decreases, as k increases.

It was proved in Hall and Welsh (1985) that the asymptotical MSE of Hill’s
estimate is minimal for

kopt
n ∼

(
C2���+1�2

2D2�3

)1/�2�+1�

n2�/�2�+1��

if the distribution function satisfies the so-called Hall’s condition

1−F�x�= Cx−1/�
(
1+Dx−�/�+o�x−�/��

)
�

Since parameters �> 0, C> 0 and D �= 0 are unknown, this result cannot be applied
directly to estimate k.

Among adaptive procedures for the automatic choice of k one can mention
the bootstrap methods (Hall, 1990; Danielsson et al., 1997; Caers and Van Dyck,
1999), which minimize the asymptotic MSE of the EVI, and the so-called sequential
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procedure (Drees and Kaufmann, 1998), based on the fact that the maximal deviation
of the statistic

√
i�̂H�n� i�−�, 2 ≤ i ≤ k, is of order �log logn�1/2, that is,

max
2≤i≤kn

√
i�̂H�n� i�−−bn�i�= O��log logn�1/2�

in probability, for all intermediate sequences kn, where bn�i ∈ R are Hill estimator
bias terms (Mason and Turova, 1994).

Bootstrap method for selection of k

The number k of retained data that are fitted to the tail corresponds to the minimum
of the mean squared error (MSE),

MSE�̂�= E �̂−�2 = bias2�̂�+variance�̂�→ min
k
�

Here the bias is given by

b�n�k�= ÊH�n�k�−�
and the variance is determined by

var�n� k�= E
(̂
H�n�k�−ÊH�n�k�)2

�

We assume that Hill’s estimate ̂H�n� k� is used as ̂.
Since  is unknown and MSE cannot be evaluated, the bootstrap approach

proposes replacing  in the MSE by an average calculated over some amount of
resamples. These resamples are drawn from the initial sample Xn randomly with
replacement. This implies that some observations from Xn will be represented in a
resample with repetitions and others will not be represented at all.

As a result, in order to estimate k one takes the value that minimizes a bootstrap
empirical estimate of the MSE. More precisely, the bootstrap estimate of the bias
is given by

b∗�n1� k1�= E�̂∗H�n1� k1�	Xn
− ̂H�n� k��
and the bootstrap estimate of the variance is determined by

var∗�n1� k1�= E
{(̂
∗H�n1� k1�−E�̂∗H�n1� k1�	Xn


)2 	Xn
}
�

To construct these estimates, a smaller sample size n1 ≤ n is used and

̂∗H �n1� k1�= 1
k1

k1∑
i=1

logX∗
�n1−i+1�− logX∗

�n1−k1�

is Hill’s estimate of . It is determined by the resample Xn1∗ = �X∗
1 � � � � �X

∗
n1



drawn randomly from Xn with replacement, where X∗
�1� ≤ � � � ≤ X∗

�n1�
are the order

statistics of the sample Xn1∗ . In the bootstrap estimates considered Xn is fixed and
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Figure 1.3 Classical bootstrap: resamples of the same size n as the sample Xn are used
(left). Nonclassical bootstrap: resamples of smaller size n1 = n��0< �< 1, than n are used
(right).

the expectation is calculated among all theoretically possible resamples Xn1∗ . In
practice, the expectation is replaced by the average over the underlying resamples.

The reason for using smaller resamples is that the classical bootstrap with
resamples of the same size n as the initial sample leads to underestimates of the
bias. Using a smaller sample size n1 ≤ n and k1 data may help to avoid the situation
where the bootstrap estimate of the bias is equal to zero regardless of the true bias
of the estimate (Figure 1.3). Such situations arise particularly when linear estimates
such as linear regressions or kernel estimates are used (Hall, 1990).3

Example 2 (Hall, 1990) Suppose �̂ is a linear function �̂ = ∑n
i=1 ��Xi� of

data X1� � � � �Xn, and �∗ =∑n
i=1 ��X

∗
i � is the same function constructed from the

resample X∗
1 � � � � �X

∗
n . Then E��∗	Xn
 = nE���X∗

i �	Xn
 = n
∑n

i=1 n
−1��Xi� = �̂,

since X∗
i may be selected in n ways from Xn. This implies that the bias of the

bootstrap estimate is bias∗ = E��∗	Xn
− �̂ = 0, but the bias of �̂ is E��̂
−� �= 0.
Note that bias∗ is random. Hence, it is not a bias in the usual sense.

3 It seems that the problems with the classical bootstrap are even greater. It is proved in Bickel and
Sakov (2002) that the statistic

an�Fn� �max�X∗
1 � � � � �X

∗
n�−bn�Fn��

(where an� bn are normalyzed constants, see (1.1)) does not converge to H�x� for the bootstrap with
resamples of size n. If resamples of smaller size n1 < n are used, n1 → �, n1/n→ 0 and von Mises’
condition

x
f�x�

1−F�x� →x→�
1


is satisfied, then

an1
�Fn�

(
max�X∗

1 � � � � �X
∗
n1
�−bn1

�Fn�
)

→H�x��


