


This page intentionally left blank



Average Case Analysis 
of Algorithms on Sequences 



WILEY-INTERSCIENCE 
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION 

ADVISORY EDITORS 

RONALD L. GRAHAM 
AT & T Laboratories, Florham Park. New Jersey, U.S.A. 

JAN KAREL LENSTRA 
Department of Mathematics and Computer Science, 
Eindhoven University of Technology, Eindhoven, The Netherlands 

JOEL H. SPENCER 
Courant institute, New York, New York, U.S.A. 

A complete list of titles in this series appears at the end of this volume. 



Average Case Analysis 
of Algorithms on Sequences 

WOJCIECH SZPANKOWSKI 
Department of Computer Science 
Purdue University 

A Wiley-Interscience Publication 
JOHN WILEY & SONS, INC. 
New York · Chichester · Weinheim · Brisbane · Singapore · Toronto 



This book is printed on acid-free paper. @ 

Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved. 

Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as 
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the 
prior written permission of the Publisher, or authorization through payment of the appropriate 
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 
750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, 
(212) 850-6011, fax (212) 850-6008. E-Mail: PERMREQ@WILEY.COM. 

For ordering and customer service, call 1-800-CALL-WILEY. 

Library of Congress Cataloging-in-Publication Data is available. 
Szpankowski, Wojciech, 1952-

Average case analysis of algorithms on sequences / Wojciech Szpankowski. 
p. cm. - (Wiley-Interscience series in discrete mathematics and optimization) 

Includes bibliographical references and index. 
ISBN 0-471-24063-X (cloth : alk. paper) 
1. Computer algorithms. I. Title. II. Series. 

QA76.9.A43 S87 2000 
005.1—DC21 00-042253 

10 9 8 7 6 5 4 3 2 1 



Ksiçzke te poswiecam Moim Rodzicom, 
Aleksandrze i Wincentemu, 

na ich 50-cio lecie malzeristwa, 
za ich nieustajçcç wiarç we mnie. 



This page intentionally left blank



Contents 

Forword xiii 

Preface xv 

Acknowledgments xxi 

PART I PROBLEMS ON WORDS 

1 Data Structures and Algorithms on Words 3 

1.1 Digital Trees 4 
1.2 Data Compression: Lempel-Ziv Algorithms 9 

1.2.1 Lempel-Ziv'77 Algorithm 10 
1.2.2 Lempel-Ziv'78 Algorithm 11 
1.2.3 Extensions of Lempel-Ziv Schemes 12 

1.3 Pattern Matching 15 
1.4 Shortest Common Superstring 17 
1.5 String Editing Problem 20 
1.6 Optimization Problems 22 
1.7 Exercises 23 

2 Probabilistic and Analytical Models 25 

2.1 Probabilistic Models of Strings 26 
2.2 Review of Probability 30 

2.2.1 Some Useful Inequalities 30 
2.2.2 Types of Stochastic Convergence 32 

2.3 Review of Complex Analysis 35 
2.4 Special Functions 39 

2.4.1 Euler's Gamma Function 40 
2.4.2 Riemann's Zeta Function 44 

2.5 Extensions and Exercises 46 



vili Contents 

PART II PROBABILISTIC AND COMBINATORIAL TECHNIQUES 

3 Inclusion-Exclusion Principle 51 

3.1 Probabilistic Inclusion-Exclusion Principle 52 
3.2 Combinatorial Inclusion-Exclusion Principle 56 
3.3 Applications 59 

3.3.1 Depth in a Trie 60 
3.3.2 Order Statistics 61 
3.3.3 Longest Aligned Word 64 

3.4 Extensions and Exercises 69 

4 The First and Second Moment Methods 73 

4.1 The Methods 74 
4.2 Applications 80 

4.2.1 Markov Approximation of a Stationary Distribution 80 
4.2.2 Excursion into Number Theory 82 
4.2.3 Height in Tries 84 
4.2.4 Height in PATRICIA Tries 94 
4.2.5 Height in Digital Search Trees 97 
4.2.6 Height in a Suffix Tree 99 

4.3 Extensions and Exercises 103 

5 Subadditive Ergodic Theorem and Large Deviations 106 

5.1 Subadditive Sequence 107 
5.2 Subadditive Ergodic Theorem 113 
5.3 Martingales and Azuma's Inequality 116 
5.4 Large Deviations 125 
5.5 Applications 134 

5.5.1 Edit Distance 134 
5.5.2 Knuth-Morris-Pratt Pattern Matching Algorithms 136 
5.5.3 Large Deviations of a Random Sequence 141 

5.6 Extensions and Exercises 144 

6 Elements of Information Theory 149 

6.1 Entropy, Relative Entropy, and Mutual Information 151 
6.2 Entropy Rate and Rényi's Entropy Rates 154 

6.2.1 The Shannon-McMillan-Breiman Theorem 154 
6.2.2 Rényi's Entropy Rates 157 

6.3 Asymptotic Equipartition Property 159 
6.3.1 Typical Sequences 159 



IX 

6.3.2 Jointly Typical Sequences 161 
6.3.3 AEP for Biased Distributions 163 
6.3.4 Lossy Generalizations of AEP 165 

6.4 Three Theorems of Shannon 172 
6.4.1 Source Coding Theorem 172 
6.4.2 Channel Coding Theorem 176 
6.4.3 Rate Distortion Theorem 181 

6.5 Applications 187 
6.5.1 Phrase Length in the Lempel-Ziv Scheme and Depth 

in a Suffix Tree 187 
6.5.2 Shortest Common Superstring Problem 195 
6.5.3 Fixed-Database Lossy Lempel-Ziv Algorithm 200 

6.6 Extensions and Exercises 204 

PART III ANALYTIC TECHNIQUES 

7 Generating Functions 213 

7.1 Ordinary Generating Functions 215 
7.1.1 Formal Power Series 215 
7.1.2 Combinatorial Calculus 218 
7.1.3 Elements of Analytic Theory 222 
7.1.4 Generating Functions Over an 

Arithmetic Progression 227 
7.2 Exponential Generating Functions 229 

7.2.1 Elementary Properties 229 
7.2.2 Labeled Combinatorial Structures 231 

7.3 Cauchy, Lagrange and Borei Formulas 235 
7.3.1 Cauchy Coefficient Formula 235 
7.3.2 Lagrange Inversion Formula 236 
7.3.3 Borei Transform 242 

7.4 Probability Generating Functions 243 
7.5 Dirichlet Series 246 

7.5.1 Basic Properties 247 
7.5.2 Euler Products 249 
7.5.3 Perron-Mellin Formula 251 

7.6 Applications 256 
7.6.1 Recurrences Arising in the Analysis of Digital Trees 256 
7.6.2 Pattern Occurrences in a Random Text 262 
7.6.3 Delange's Formula for a Digital Sum 272 

7.7 Extensions and Exercises 275 



Contents 

Complex Asymptotic Methods 278 

8.1 Introduction to Asymptotic Expansions 281 
8.1.1 Definitions and Notations 281 
8.1.2 From Taylor Expansion to Asymptotic Series 284 

8.2 Basic Methods 290 
8.2.1 Euler-Maclaurin Summation Formula 290 
8.2.2 Matched Asymptotics and the WKB Method 296 
8.2.3 Uniform Distribution of Sequences 304 

8.3 Small Singularities of Analytic Functions 312 
8.3.1 Polar Singularities 314 
8.3.2 Algebraic Singularities: Singularity Analysis 318 

8.4 Large Singularities: Saddle Point Method 331 
8.4.1 Laplace Method 332 
8.4.2 Method of Steepest Descent 337 
8.4.3 Local Central Limit Theorem and Large 

Deviations Revisited 350 
8.5 Finite Sums as Complex Integrals 353 
8.6 Limiting Distributions 362 

8.6.1 Discrete Limit Laws Through PGF 362 
8.6.2 Continuous Limit Laws by Integral Transforms 365 

8.7 Applications 372 
8.7.1 Variations on Approximate Self-Overlapping Words 372 
8.7.2 Redundancy Rate for Memoryless Sources 376 
8.7.3 Limiting Distribution of the Depth in Digital 

Search Trees 381 
8.8 Extensions and Exercises 388 

Melliti Transform and Its Applications 398 

9.1 Basic Properties 400 
9.2 Asymptotic Properties of the Mellin Transform 407 
9.3 Extension to the Complex Plane 417 
9.4 Applications 421 

9.4.1 Variance of the Depth in a Generalized Digital 
Search Tree 421 

9.4.2 Redundancy of Renewal Processes 425 
9.5 Extensions and Exercises 435 

Analytic Poissonization and Depoissonization 442 

10.1 Analytic Poissonization and the Poisson Transform 446 
10.1.1 Poisson Transform 446 
10.1.2 Asymptotic Poissonization 449 



Contents χι 

10.2 Basic Depoissonization 453 
10.2.1 Algebraic Depoissonization 454 
10.2.2 Asymptotic Depoissonization 455 

10.3 Generalizations of Depoissonization 466 
10.3.1 A Full Asymptotic Depoissonization 466 
10.3.2 Exponential Depoissonization 472 
10.3.3 General Depoissonization Tool 475 

10.4 Moments and Limiting Distributions 480 
10.4.1 Moments 481 
10.4.2 Limiting Distributions 482 

10.5 Applications 485 
10.5.1 Leader Election Algorithm 486 
10.5.2 Depth in a fc-Digital Search Tree for the Biased 

Memory less Model 491 
10.5.3 Depth in a Digital Search Tree with a 

Markovian Source 501 
10.6 Extensions and Exercises 512 

Bibliography 520 

Index 543 



This page intentionally left blank



Foreword 

Sequences—also known as strings or words—surface in many areas of science. 
Initially studied by combinatorialists in relation to problems of formal linguistics, 
they have proved to be of fundamental importance in a large number of computer 
science applications, most notably in textual data processing and data compres-
sion. Indeed, designers of large internet search engines acknowledge them to be 
huge algorithmic factories operating on strings. In a different sphere, properties 
of words are essential to the processing and statistical interpretation of biological 
or genetic sequences. There it is crucial to discern signal from noise and to do so 
in a computationally efficient manner. 

As its title indicates, Szpankowski's book is dedicated to the analysis of algo-
rithms operating on sequences. First, perhaps, a few words are in order regarding 
analysis of algorithms. The subject was founded by Knuth around 1963 and its 
aim is a precise characterization of the behaviour of algorithms that operate on 
large ensembles of data. A complexity measure (like execution time) is fixed and 
there are usually a few natural probabilistic models meant to reflect the data un-
der consideration. The analyst's task then consists in predicting the complexity to 
be observed. Average-case analysis focuses on expected performance; whenever 
possible, finer characteristics like variances, limit distributions, or large deviations 
should also be quantified. 

For a decade or so, it has been widely recognized that average-case analy-
ses tend to be far more informative than worst-case ones as the latter focus on 
somewhat special pathological configurations. Provided the randomness model is 
realistic, average-case complexity estimates better reflect what is encountered in 
practice—hence their rôle in the design, optimization, and fine tuning of algo-
rithms. In this context, for algorithms operating on words, properties of random 
sequences are crucial. Their study is the central theme of the book. 

"Give a man a fish and you feed him for the day; teach him to fish and you feed 
him for his lifetime." Following good precepts, Szpankowski's book has a largely 
methodological orientation. The book teaches us in a lucid and balanced fashion 
the two main competing tracks for analysing properties of discrete randomness. 
Probabilistic methods based on inequalities and approximations include moment 

xiii 



XIV Foreword 

inequalities, limit theorems, large deviations, as well as martingales and ergodic 
theory, all of which nicely suited to the analysis of random discrete structures. 
Analytic methods fundamentally rely on exact modelling by generating functions 
which, once viewed as transformations of the complex plane, begin to reveal their 
secrets. Singularity analysis, saddle point strategies, and Mellin transforms be-
come then instrumental. As Hadamard was fond of saying, the shortest path bet-
ween two truths on the real line passes through the complex domain. 

Throughout the book, the methodology is put to effective use in analysing 
some of the major problems concerning sequences that have an algorithmic or 
information-theoretic nature. In fact the book starts right away with a few easily 
stated questions that form recurrent themes; these are relative to digital trees, data 
compression, string editing, and pattern-matching. A great many more problems 
are thoroughly analysed in later chapters, including the celebrated leader elec-
tion problem of distributed computing, fast pattern matching, basic information 
theory, Lempel-Ziv compression, lossy compression. 

Analysis of algorithms is now a mature field. The time is ripe for books like this 
one which treat wide fields of applications. Szpankowski's book offers the first 
systematic synthesis on an especially important area—algorithms on sequences. 
Enjoy its mathematics! Enjoy its information theory! Enjoy its multi-faceted com-
putational aspects! 

PHILIPPE FLAJOLET 



Preface 

An algorithm is a systematic procedure that produces in a finite number of steps 
the solution to a problem. The name derives from the Latin translation Algoritmi 
de numero Indorum of the 9th-century Arab mathematician al-Khwarizmi's arith-
metic treatise Al-Khwarizmi Concerning the Hindu Art of Reckoning. The most 
obvious reason for analyzing algorithms, and data structures associated with them, 
is to discover their characteristics in order to evaluate their suitability for various 
applications or to compare them with other algorithms for the same application. 
Often such analyses shed light on properties of computer programs and provide 
useful insights of the combinatorial behaviors of such programs. Needless to say, 
we are interested in good algorithms in order to efficiently use scarce resources 
such as computer space and time. 

Most often algorithm designs are finalized toward the optimization of the 
asymptotic worst-case performance. Insightful, elegant, and useful constructions 
have been set up in this endeavor. Along these lines, however, the design of an 
algorithm is sometimes targeted at coping efficiently with unrealistic, even patho-
logical inputs and the possibility is neglected that a simpler algorithm that works 
fast on average might perform just as well, or even better in practice. This alter-
native solution, also called a probabilistic approach, was an important issue three 
decades ago when it became clear that the prospects for showing the existence of 
polynomial time algorithms for NP-hard problems were very dim. This fact, and 
the apparently high success rate of heuristic approaches to solving certain difficult 
problems, led Richard Karp in 1976 to undertake a more serious investigation of 
probabilistic algorithms. In the last decade we have witnessed an increasing inter-
est in the probabilistic analysis (also called average-case analysis) of algorithms, 
possibly due to a high success rate of randomized algorithms for computational 
geometry, scientific visualization, molecular biology, and information theory. 
Nowadays worst-case and average-case analyses coexist in a friendly symbiosis, 
enriching each other. 

The focus of this book is on tools and techniques used in the average-case 
analysis of algorithms, where average case is understood very broadly (e.g., it 

XV 



XVI Preface 

includes exact and limiting distributions, large deviations, variance, and higher 
moments). Such methods can be roughly divided into two categories: analytic 
and probabilistic. The former were popularized by D. E. Knuth in his monumen-
tal three volumes, The Art of Computer Programming, whose prime goal was to 
accurately predict the performance characteristics of a wide class of algorithms. 
Probabilistic methods were introduced by Erdôs and Rényi and popularized in 
the book by Erdôs and Spencer, Probabilistic Methods in Combinatorics. In gen-
eral, nicely structured problems are amenable to an analytic approach that usually 
gives much more precise information about the algorithm under consideration. 
As argued by Andrew Odlyzko: "Analytic methods are extremely powerful and 
when they apply, they often yield estimates of unparalleled precision." On the 
other hand, structurally complex algorithms are more likely to be first solved by 
probabilistic tools that later could be further enhanced by a more precise analytic 
approach. 

The area of analysis of algorithms (at least, the way we understand it) was 
born on July 27, 1963, when D. E. Knuth wrote his "Notes on Open Addressing" 
about hashing tables with linear probing. Since 1963 the field has been undergo-
ing substantial changes. We see now the emergence of combinatorial and asymp-
totic methods that allow the classification of data structures into broad categories 
that are amenable to a unified treatment. Probabilistic methods that have been so 
successful in the study of random graphs and hard combinatorial optimization 
problems play an equally important role in this field. These developments have 
two important consequences for the analysis of algorithms: it becomes possible 
to predict average behavior under more general probabilistic models; at the same 
time it becomes possible to analyze much more structurally complex algorithms. 
To achieve these goals the analysis of algorithms draws on a number of branches 
in mathematics: combinatorics, probability theory, graph theory, real and complex 
analysis, number theory and occasionally algebra, geometry, operations research, 
and so forth. 

In this book, we choose one facet of the theory of algorithms, namely, algo-
rithms and data structures on sequences (also called strings or words) and present 
a detailed exposition of the analytic and probabilistic methods that have become 
popular in such analyses. As stated above, the focus of the book is on techniques 
of analysis, but every method is illustrated by a variety of specific problems that 
arose from algorithms and data structures on strings. Our choice stems from the 
fact that there has been a resurgence of interest in algorithms on sequences and 
their applications in computational biology and information theory. 

Our choice of methods covered here is aimed at closing the gap between an-
alytic and probabilistic methods. There are excellent books on analytic methods 
such as the three volumes of D. E. Knuth and the recent book by Sedgewick and 
Flajolet. Probabilistic methods are discussed extensively in the books by Alon and 
Spencer, Coffman and Lueker, and Motwani and Raghavan. However, remarkably 



Preface xvii 

few books have been dedicated to both analytic and probabilistic analysis of al-
gorithms, with possible exceptions of the books by Hofri and Mahmoud. 

ABOUT THIS BOOK 

This is a graduate textbook intended for graduate students in computer science, 
discrete mathematics, information theory, applied mathematics, applied probabil-
ity, and statistics. It should also be a useful reference for researchers in these areas. 
In particular, I hope that those who are experts in probabilistic methods will find 
the analytic part of this book interesting, and vice versa. 

The book consists of three parts: Part I describes a class of algorithms (with 
associated data structures) and formulates probabilistic and analytic models for 
studying them. Part II is devoted to probabilistic methods, whereas Part III 
presents analytic techniques. 

Every chapter except the first two has a similar structure. After a general 
overview, we discuss the method(s) and illustrate every new concept with a simple 
example. In most cases we try to provide proofs. However, if the method is well 
explained elsewhere or the material to cover is too vast (e.g., the asymptotic tech-
niques in Chapter 8), we then concentrate on explaining the main ideas behind 
the methods and provide references to rigorous proofs. At the end of each chapter 
there is an application section that illustrates the methods discussed in the chapter 
in two or three challenging research problems. Needless to say, the techniques 
discussed in this book were selected for inclusion on exactly one account: how 
useful they are to solve these application problems. Naturally, the selection of 
these problems is very biased, and often the problem shows up in the application 
section because I was involved in it. Finally, every chapter has a set of exercises. 
Some are routine calculations, some ask for details of derivations presented in the 

chapter, and others are research problems denoted as Δ and unsolved problems 

marked as \/. 
Now we discuss in some detail the contents of the book. Part I has two chap-

ters. The first chapter is on the algorithms and data structures on words that 
are studied in this book: We discuss digital search trees (i.e., tries, PATRICIA 
tries, digital search trees, and suffix trees), data compression algorithms such 
as Lempel-Ziv schemes (e.g., Lempel-Ziv'77, Lempel-Ziv'78, lossy extensions 
of Lempel-Ziv schemes), pattern matching algorithms (e.g., Knuth-Morris-Pratt 
and Boyer-Moore), the shortest common superstring problem, string editing prob-
lem (e.g., the longest common subsequence), and certain combinatorial optimiza-
tion problems. Chapter 2 builds probabilistic models on sequences that are used 
throughout the book to analyze the algorithms on strings. In particular, we dis-
cuss memoryless, Markov, and mixing sources of generating random sequences. 



xviii Preface 

We also review some facts from probability theory and complex analysis. We 
finish this chapter with an overview on special functions (e.g., the Euler gamma 
function and the Riemann zeta function) that are indispensable for the analytic 
methods of Part III. 

Part II consists of four chapters. Chapter 3 is on the probabilistic and com-
binatorial inclusion-exclusion principle, the basic tool of combinatorial analysis. 
After proving the principle, we discuss three applications, namely, the depth in a 
trie, order statistics, and the longest aligned matching word. Chapter 4 is devoted 
to the most popular probabilistic tool, that of the the first and the second moment 
methods. We illustrate them with a variety of examples and research problems 
(e.g., Markov approximation of a stationary distribution and the height analysis of 
digital trees). In Chapter 5 we discuss both the subadditive ergodic theorem and 
the large deviations. We use martingale differences to derive the very powerful 
Azuma's inequality (also known as the method of bounded differences). Finally, 
in Chapter 6 we introduce elements of information theory. In particular, we use 
random coding technique to prove three fundamental theorems of Shannon (i.e., 
the source coding theorem, the channel coding theorem and the rate distortion 
theorem). In the applications section we turn our attention to some recent devel-
opments in data compression based on pattern matching and the shortest common 
superstring problem. In particular, we show that with high probability a greedy 
algorithm that finds the shortest common superstring is asymptotically optimal. 
This is of practical importance because the problem itself is NP-hard. 

Part III is on analytic methods and is composed of four chapters. Chapter 7 in-
troduces generating functions, a fundamental and the most popular analytic tool. 
We discuss ordinary generating functions, exponential generating functions, and 
Dirichlet series. Applications range from pattern matching algorithms to the De-
lange formula on a digital sum. Chapter 8 is the longest in this book and arguably 
the most important. It presents an extensive course on complex asymptotic meth-
ods. It starts with the Euler-Maclaurin summation formula, matched asymptotics 
and the WKB method, continues with the singularity analysis and the saddle point 
method, and finishes with asymptotics of certain alternating sums. In the applica-
tions section we discuss the minimax redundancy rate for memoryless sources and 
the limiting distribution of the depth in digital search trees. The next two chapters 
continue our discussion of asymptotic methods. Chapter 9 presents the Mellin 
transform and its asymptotic properties. Since there are good accounts on this 
method (cf. [132, 149]), we made this chapter quite short. Finally, the last chap-
ter is devoted to a relatively new asymptotic method known as depoissonization. 
The main thrust lies in an observation that certain problems are easier to solve 
when a deterministic input is replaced by a Poisson process. However, nothing is 
for free in this world, and after solving the problem in the Poisson domain one 
must translate the results back to the original problem, that is, depoissonize them. 
We cover here almost all known depoissonization results and illustrate them with 



Preface xix 

three problems: analysis of the leader election algorithm, and the depth in gen-
eralized digital search trees for memoryless and Markovian sources. The latter 
analysis is among the most sophisticated in this book. 

PERSONAL PERSPECTIVE 

I can almost pin down the exact date when I got interested in the analysis of al-
gorithms. It was in January 1983 in Paris during a conference on performance 
evaluation (at that time I was doing research in performance evaluation of mul-
tiaccess protocols and queueing networks). I came from a gloomy Poland, still 
under martial law, to a glamorous, bright, and joyful Paris. The conference was 
excellent, one of the best I have ever participated in. Among many good talks 
one stood out for me. It was on approximate counting, by Philippe Flajolet. The 
precision of the analysis and the brightness (and speed) of the speaker made a 
lasting impression on me. I wished I could be a disciple of this new approach to 
the analysis of algorithms. I learned from Philippe that he was influenced by the 
work of D. E. Knuth. For the first time I got a pointer to the three volumes of 
Knuth's book, but I could not find them anywhere in Poland. 

In 1984 I left Gdansk and moved to McGill University, Montreal. I had re-
ceived a paper to review on the analysis of conflict resolution algorithms. The 
paper was interesting, but even more exciting was a certain recurrence that amaz-
ingly had a "simple" asymptotic solution. I verified numerically the asymptotics 
and the accuracy was excellent. I wanted to know why. Luckily, Luc Devroye 
had just returned from his sabbatical and he pointed me again to Knuth's books. 
I found what I needed in volumes I and III. It was an illumination! I was flabber-
gasted that problems of this complexity could be analyzed with such accuracy. 
I spent the whole summer of 1984 (re)learning complex analysis and reading 
Knuth's books. I started solving these recurrences using the new methods that I 
had been learning. I was becoming a disciple of the precise analysis of algorithms. 

When I moved to Purdue University in 1985,1 somehow figured out that the 
recurrences I was studying were also useful in data structures called tries. It was 
a natural topic for me to explore since I moved from an electrical engineering 
department to a computer science department. I got hooked and decided to write 
to Philippe Flajolet, to brag about my new discoveries. In response he sent me a 
ton of papers of his own, solving even more exciting problems. I was impressed. 
In May 1987 he also sent to Purdue his best weapon, a younger colleague whose 
name was Philippe Jacquet. When Philippe Jacquet visited me I was working on 
the analysis of the so-called interval searching algorithm, which I knew how to 
solve but only with numerical help. Philippe got a crucial idea on how to push 
it using only analytic tools. We wrote our first paper [214]. Since then we have 



XX Preface 

met regularly every year producing more and longer papers (cf. Chapter 10; in 
particular, Section 10.5.3). We have become friends. 

Finally, in 1989 I again rediscovered the beauty of information theory after 
reading the paper [452] by Wyner and Ziv. There is a story associated with it. 
Wyner and Ziv proved that the typical length of repeated substrings found within 
the first n positions of a random sequence is with high probability y log n, where 
h is the entropy of the source (cf. Section 6.5.1 ). They asked if this result can be 
extended to almost sure convergence. My work on suffix trees (cf. Section 4.2.6) 
paid off since I figured out that the answer is in the negative [411] (cf. also Sec-
tion 6.5.1). The crucial intuition came from the work of Boris Pittel [337], who 
encouraged me to study it and stood behind me in the critical time when my anal-
ysis was under attack. It turned out that Ornstein and Weiss [333] proved that the 
Wyner and Ziv conjecture is true. To make the story short, let me say that fortu-
nately both results were correct since we analyzed slightly different settings (i.e., 
I analyzed the problem in the so-called right domain of asymptotics, and Ornstein 
and Weiss in the left domain). The reader may read more about it in Chapter 6. 
Since then I have found information theory more and more interesting. Philippe 
Jacquet and I have even coined the term analytic information theory for dealing 
with problems of information theory by using analytic methods, that is, those in 
which complex analysis plays a pivotal role. 



Acknowledgments 

There is a long list of colleagues and friends from whom I benefited through 
encouragement and critical comments. They helped me in various ways during my 
tenure in the analysis of algorithms. All I know about analytic techniques comes 
from two Philippes: Jacquet and Flajolet. And vice versa, what I do not know is, 
of course, their fault. On a more serious note, my direct contact with Philippe 
Jacquet and Philippe Flajolet has influenced my thinking and they have taught me 
many tricks of the trade. (I sometimes wonder if I didn't become French during 
numerous visits to INRIA, Rocquencourt; all except for mastering the language!) 
Many applications in this book are results of my work with them. Needless to 
say, their friendship and inspirations were invaluable to me. Merci beaucoup mes 
amis. 

I have been learning probabilistic techniques from masters: David Aldous, 
Alan Frieze, Tomasz Luczak, and Boris Pittel. Thanks. Thanks. Dziçkuje. Cna-
CH6O. 

I thank my numerous co-authors with whom I worked over the last 15 years: 
David Aldous, Marc Alzina, Izydor Apostol, Alberto Apostolico, Mikhail Atallah, 
Luc Devroye, Jim Fill, Philippe Flajolet, Ioannis Fudos, Yann Genin, Leonidas 
Georgiadis, Ananth Grama, Micha Hofri, Svante Janson, Philippe Jacquet, Peter 
Kirschenhofer, Chuck Knessl, Guy Louchard, Tomasz Luczak, Hosam Mahmoud, 
Dan Marinescu, Evaggelia Pitoura, Helmut Prodinger, Bonita Rais, Vernon Rego, 
Mireille Régnier, John Sadowsky, Erkki Sutinen, Jing Tang, and Leandros Tassi-
ulas. 

I also had the privilege of talking with D. E. Knuth, whose encouragement was 
very important to me. His influence pervades the book. 

Many colleagues have read various versions of this book. I profoundly thank 
Luc Devroye, Michael Drmota, Leonidas Georgiadis, Philippe Jacquet, Svante 
Janson, Chuck Knessl, Yiannis Kontoyiannis, Guy Louchard, John Kieffer, Gabor 
Lugosi, Kihong Park, Helmut Prodinger, Yuri Reznik, and Erkki Sutinen. I am 
particularly in debt to Leonidas Georgiadis, who read the entire book and gave 
me many valuable comments. 

xxi 



xxii Acknowledgments 

As with every large project, I am sure I did not avoid mistakes and typos. I will 
try to keep errata on my home page www. c s . p u r d u e . e d u / p e o p l e / s p a . 
Readers' help in eliminating remaining inaccuracies will be greatly appreciated. 
Please send comments to spa@cs. p u r d u e . edu. 

This book was written over the last four years. I have received invaluable help 
from staff and faculty of the Department of Computer Sciences at Purdue Uni-
versity. I am grateful to the National Science Foundation, which supported me 
over the last 15 years. The last three chapters were written during my sabbatical 
at Stanford University during fall 1999.1 thank Tom Cover for being a wonderful 
host and his students for welcoming me into their weekly seminar. 

Philippe Flajolet kindly agreed to write a Foreword to this book. I thank him 
from the bottom of my heart. Philippe Jacquet has been entertaining me for more 
than ten years with his good humor and comic sketches. He generously agreed to 
contribute ten comic illustrations to this book; one for each chapter. If only for 
these sketches, the book should be on your shelf! 

Finally, I am in debt to my family for putting up with me through these years 
and helping me, in their own way, to continue this project. My wife, Mariola, 
designed the cover. I have much to thank her for, including some twenty years 
with me. 

WOJTEK SZPANKOWSKI 
West Lafayette, Indiana, 1997-1998 
Stanford, California, 1999 



Part I 

PROBLEMS ON WORDS 



This page intentionally left blank



1 
Data Structures and 
Algorithms on Words 

In this book we choose one facet of the theory of algorithms, namely data struc-
tures and algorithms on sequences (strings, words) to illustrate probabilistic, com-
binatorial, and analytic techniques of analysis. In this chapter, we briefly describe 
some data structures and algorithms on words (e.g., tries, PATRICIA tries, digi-
tal search trees, pattern matching algorithms, Lempel-Ziv schemes, string editing, 
and shortest common superstring) that are used extensively throughout the book 
to illustrate the methods of analysis. 

3 



4 Data Structures and Algorithms on Words 

Data structures and algorithms on sequences have experienced a new wave of 
interest due to a number of novel applications in computer science, communica-
tions, and biology. Among others, these include dynamic hashing, partial match 
retrieval of multidimensional data, searching and sorting, pattern matching, con-
flict resolution algorithms for broadcast communications, data compression, cod-
ing, security, genes searching, DNA sequencing, genome maps, double digest 
problem, and so forth. To satisfy these diversified demands various data structures 
were proposed for these algorithms. Undoubtedly, the most popular data struc-
tures in algorithms on words are digital trees [3, 269, 305] (e.g., tries, PATRICIA, 
digital search trees), and in particular suffix trees [3, 17, 77, 375, 383, 411, 412]. 
We discuss various digital trees and introduce several parameters characterizing 
them that we shall study throughout the book. 

The importance of digital trees stems from their abundance of applications 
in other problems such as data compression (Section 1.2), pattern matching (Sec-
tion 1.3), and the shortest common superstring problem (Section 1.4). These prob-
lems recently became very important due to the need for an efficient storage and 
transmission of multimedia, and possible applications to DNA sequencing. 

Graphs and directed acyclic graphs (DAG) also find several applications in 
problems on strings. In particular, we consider the edit distance problem and its 
variants (Section 1.5). Finally, we close this chapter with a brief discussion of cer-
tain class of optimization problems on graphs that find applications for algorithms 
on sequences (Section 1.6). 

1.1 DIGITAL TREES 

We start our discussion with a brief review of the digital trees. The most basic 
digital tree, known as a trie (from refneval), is defined first, and then other digital 
trees (such as PATRICIA, digital search trees and suffix trees) are described in 
terms of the trie. 

The primary purpose of a trie is to store a set X of strings (words, sequences), 
say X = ( X 1 , . . . , X"}. Throughout the book, the terms strings, words and se-
quences are used interchangeably. Each string is a finite or infinite sequence of 
symbols taken from a finite alphabet A = {ω\,..., ων} of size V = \A\. We 
use a generic notation T>„ for all digital trees built over a set X of n strings. A 
string will be stored in a leaf of the trie. The trie over X is built recursively as 
follows: For \X\ = 0, the trie is, of course, empty. For \X\ = 1, trie(X) is a 
single node. If \X\ > 1, X is split into V subsets X\, Χ2, ■ ■., Xv so that a string 
is in Xj if its first symbol is <wy. The tries trie(X\), trie^Xi),..., trie(Xy) are 
constructed in the same way except that at the kth step, the splitting of sets is 
based on the kth symbol. They are then connected from their respective roots to a 
single node to create trie(X). Figure 1.1 illustrates such a construction. Observe 



Digital Trees 5 

Trie PATRICIA 

Figure 1.1. A trie, Patricia trie and a digital search tree (DST) built from the following four strings 
X1 = 11100... , X2 = 10111... , X3 = 00110... , and X4 = 00001 . . . . 

that all strings are stored in external nodes (shown as boxes in Figure 1.1) while 
internal nodes are branching nodes used to direct strings to their destinations (i.e., 
external nodes). When a new string is inserted, the search starts at the root and 
proceeds down the tree as directed by the input symbols (e.g., symbol "0" in the 
input string means move to the right and " 1 " means proceed to the left as shown 
in Figure 1.1). 

There are many possible variations of the trie. One such variation is the b-trie, 
in which a leaf is allowed to hold as many as b strings (cf. [145, 305, 411]). 
The b-lne is particularly useful in algorithms for extendible hashing in which 
the capacity of a page or other storage unit is b. A second variation of the trie, 
the PATRICIA trie (Practical Algorithm To Retrieve /nformation Coded /n 
Alphanumeric) eliminates the waste of space caused by nodes having only one 
branch. This is done by collapsing one-way branches into a single node (Fig-
ure 1.1). In a digital search tree (DST), shown also in Figure 1.1, strings are 
directly stored in nodes so that external nodes are eliminated. More precisely, 



6 Data Structures and Algorithms on Words 

the root contains the first string (however, in some applications the root is left 
empty). The next string occupies the right or the left child of the root depending 
on whether its first symbol is "0" or " 1 " . The remaining strings are stored in 
available nodes which are directly attached to nodes already existing in the tree. 
The search for an available node follows the prefix structure of a string as in tries. 
That is, if the next symbol in a string is "0" we move to the right, otherwise we 
move to the left. 

As in the case of a trie, we can consider an extension of the above digital trees 
by allowing them to store up to b strings in an (external) node. We denote such 
digital trees as T>„ , but we often drop the upper index when b = 1 is discussed. 
Figure 1.1 illustrates these definitions for b = 1. 

One of the most important example of tries and PATRICIA tries are suffix trees 
and compact suffix trees (also called PAT). In suffix trees and compact suffix 
trees, the words stored in these trees are suffixes of a given string X = x\X2 .. ■; 
that is, the word X-7 = XjXj+\Xj+2 . . . is the yth suffix of X which begins at 
the jth position of X. Thus a suffix tree is a trie and a compact suffix tree is a 
PATRICIA trie in which the words are all suffixes of a given string. Clearly, in 
this case the strings X ; for j = 1 , . . . , n strongly depend on each other while in a 
trie the strings of X might be completely independent. A suffix tree is illustrated 
in Figure 1.2. 

5, = 1010010001 
52 = 010010001 
53 = 10010001 

54 =0010001 
55 = 010001 

Figure 1.2. Suffix tree built from the first five suffixes S\ S5 of X = 0101101110. 



Digital Trees 7 

Certain characteristics of tries and suffix trees are of primary importance. We 
define them below. 

Definition 1.1 (Digital Trees Parameters) Let us consider a b-digital tree 

node. 
T>n built over n strings and capable of storing up to b strings in an (external) 

(i) The mth depth Dn (m) is the length of a path from the root of the digital 
tree to the (external) node containing the mth string. 

(ii) The typical depth D„ is the depth of a randomly selected string, that is, 

Pr{D<*> < k) = X- Σ Pr{D<fc)(m) < k). ( l . i) 

m=l 

(iii) The (external) path length Ln is the sum of all depths, that is, 

*■?> = Σ D(n] («)■ (1-2) 

m = \ 

(iv) The height Η„ is the length of the longest depth, that is, 

H^ = max [DJfHm)). (1.3) 
\<m<n 

(v) The fill-up level F„ is the maximal full level in the tree T>„ , that is, 
Vn is a full tree up to level F„ but not on the level F„ + 1. In other 
words, on levels 0 < i < F„ there are exactly V nodes (either external 
or internal) in the tree, but there are less than Vr" + 1 nodes on level 
F„(b) + 1. 

(vi) The shortest depth sn is the length of the shortest path from the root to 
an external node, that is, 

s<w = min {£><fc)(m)}- (1.4) 
\<m<n 

(Observe that F„W < s(
n
b\) 

(vii) The size S„ is the number of (internal) nodes in T>„ '. 

(viii) The kth average profile B(n\k) is the average number of strings stored 
on level kofVn . 

These parameters can be conveniently represented in another way that reveals 
combinatorial relationships between strings stored in such digital trees. We start 
with the following definition. 



8 Data Structures and Algorithms on Words 

Definition 1.2 (Alignments) For the set of strings X = \XX, X2,..., X"), 
the alignment C,1...,i>+1 between b + 1 strings X'1,..., X'b+^ is the length of the 
longest common prefix of all these b + 1 strings. 

To illustrate this definition and show its usefulness to the analysis of digital 
trees, we consider the following example. 

Example 1.1: Illustration of the Self-Alignments Let us consider the suffix 
tree shown in Figure 1.2. Define C = {C,;}? ._, for b = 1 as the self-alignment 
matrix which is shown explicitly below: 

C = 

Γ* 0 2 0 0-
0 * 0 1 4 
2 0 * 0 0 
0 1 0 * 1 

L0 4 0 1 *. 

Observe that we can express the parameters of Definition 1.1 in terms of the self-
alignments dj as follows: 

D „ ( l ) = max{Ci,} + l = 3 , 
2<y'<5 

H„ — max {Cu} + 1 = 5 , 

sn = min max {C,,} + 1 = 2 
l<i<n \<j<n 

(since b = 1 we drop b from the above notations). 
Certainly, similar relationships hold for tries, but not for PATRICIA tries and 

digital search trees. In the latter case, however, one can still express parameters of 
the trees in terms of the alignments matrix C. For example, the depth of the fourth 
string Ö4(4) can be expressed as follows: 

D4(4) = max{min{C4i, D4(l)}, min{C42, £>4(2)}, min{C43, D4(3))}. 

This is a bit too complicated to be of any help. ■ 

The above example suggests that there are relatively simple relationships bet-
ween parameters of a trie and the alignments. Indeed, this is the case as the theo-
rem below shows. The reader is asked to provide a formal proof in Exercise 1. 

Theorem 1.3 Ina trie the following holds: 

Df\ib+X)= max {C(1..,Wl} + l, (1.5) 



Data Compression: Lempel-Ziv Algorithms 9 

H(
n

b)= max {C/I...i4+1} + 1, (1.6) 
1<Ί '*+1<η 

D<6)(n + D = max {C,·, ..,·„,„+,} + 1, (1.7) 
1<I'I /*<« 

4 f c ) = min {D<w(ii+i)} = min max {C„...lWl} + l (1.8) 
l<'f)+iS" ·5'*+ι5" 1<ι'ι,...,/»<« 

for any 1 < i ' i , . . . , i't+i < n, where £>*(« -f 1) = /« is the depth of insertion. 

In passing, we should mention that the above combinatorial relationships find 
applications in problems not directly related to digital trees. We shall meet them 
again in Section 6.5.2 when analyzing the shortest common superstring problem 
described in Section 1.4. 

The digital trees are used very extensively in this book as illustrative examples. 
We analyze the height of tries, PATRICIA tries, and suffix trees in Chapter 4. 
Recurrences arising in the analysis of digital trees are discussed in Chapter 7, 
while the typical depth of digital search trees is studied in Chapters 8-10. 

1.2 DATA COMPRESSION: LEMPEL-ZIV ALGORITHMS 

Source coding is an area of information theory (see Chapter 6) that deals with 
problems of optimal data compression. The most successful and best-known data 
compression schemes are due to Lempel and Ziv [460,461]. Efficient implemen-
tation of these algorithms involves digital trees. We describe here some aspects of 
the Lempel-Ziv schemes and return to them in Chapter 6. 

We start with some definitions. Consider a sequence [X*}£2., taking values in 
a finite alphabet A (e.g., for English text the cardinality \A\ = 26 symbols, while 
for an image \A\ = 256). We write XJJ, to denote X^, Xm+\ ■ ■ · Xn· We encode 
X" into a binary (compression) code 9^, and the decoder produces the reproduc-
tion sequence X" of X". More precisely, a code ^„ is a function φ : A" —*■ 
[0, 1}*. On the decoding side, the decoder function ψ : [0, 1}* -*■ A" is applied 
to find X? = ψ(φ(Χ1). Let £(9r„(Xy)) be the length of the code £*„ (in bits) 
representing X?. Then the bit rate is defined as 

r(Xl) = €(^n(x;)) 

For example, for text r(X") is expressed in bits per symbol, while for image 
compression in bits per pixel or in short bpp. 

We shall discuss below two basic Lempel-Ziv schemes, namely the so-called 
Lempel-Ziv'77 (LZ77) [460] and Lempel-Ziv'78 (LZ78) [461]. Both schemes 



10 Data Structures and Algorithms on Words 

are examples of lossless compression; that is, the decoder can recover exactly the 
encoded sequence. A number of interesting problems arise in lossy extensions of 
the Lempel-Ziv schemes. In the lossy data compression, discussed below, some 
information can be lost during the encoding. 

1.2.1 Lempel-Ziv'77 Algorithm 

The Lempel-Ziv algorithm partitions or parses a sequence into phrases that are 
similar in some sense. Depending on how such a parsing is encoded we have dif-
ferent versions of the algorithm. However, the basic idea is to find the longest 
prefix of yet uncompressed sequence that occurs in the already compressed se-
quence. 

More specifically, let us assume that the first n symbols X" are given to the 
encoder and the decoder. This initial string is sometimes called the "database 
string" or the "training sequence." Then we search for the longest prefix X^[ of 
X^_, that is repeated in X", that is, 

Let I„ be the largest I such that ^ " t j = X™ for some prescribed range of 
m and I. 

Depending on the range of m and £, we can have different versions of the 
LZ77 scheme. In the original LZ77 algorithm [460], m and I were restricted to a 
window size W and "lookahead" buffer B, that is, n — W + l <m <n and I < B. 
This implementation is sometimes called the sliding window LZ77. In \he fixed 
database (FDLZ) version [452, 453], one sets 1 < m < W and m - 1 + t < W; 
that is, the database sequence is fixed and the parser always looks for matches 
inside such a fixed substring X^. Such a scheme is sometimes called the Wyner-
Ziv scheme [452]. Finally, in the growing database version the only restriction is 
that 1 < m < n (i.e., the database consists of the last n symbols). 

In general, the code built for LZ77 consists of the triple (m, I, c h a r ) where 
c h a r is the symbol Xm+i. Since the pointer to m needs log2 n bits, the length I 
could be coded in 0(log /„) bits and c h a r requires log \A\ bits, the code length 
of a phrase is log2n + 0(log/„) + log2 |-4| bits. In Exercise 5 we propose a 
formula for the code length of the FDLZ, while in Exercise 6 the reader is asked 
to find the code length for all other versions of the Lempel-Ziv schemes. 

The heart of all versions of the Lempel-Ziv schemes is the algorithm that finds 
the longest prefix of length /„ that occurs in the database string of length n. It turns 
out that the suffix tree discussed in Section 1.1 can be used to efficiently find such 
a prefix. Indeed, let us consider a sequence X = 1010010001..., and assume X* 
is the database string. The suffix tree built over X\ is shown in Figure 1.3. Let 
us now look for I4, that is, the longest prefix of Xf that occurs (starts) in the 
database X\. In the growing database implementation it is X\ since it is equal to 



Data Compression: Lempel-Ziv Algorithms 11 

Si 53 

s2 54 

Figure 1.3. Suffix tree built from the first four suffixes of X = 1010010001 . . . 

X\. This can be seen by inserting the fifth suffix of X into the suffix tree from 
Figure 1.3—which actually leads to the suffix tree shown in Figure 1.2. 

1.2.2 Lempel-Ziv'78 Algorithm 

The Lempel-Ziv'78 (LZ78) is a dictionary-based scheme that partitions a se-
quence into phrases (blocks) of variable sizes such that a new block is the short-
est substring not seen in the past as a phrase. Every such phrase is encoded by 
the index of its prefix appended by a symbol, thus LZ78 code consists of pairs 
( p o i n t e r , symbol). A phrase containing only one symbol is coded with the 
index equal to zero. 

Example 1.2: The Lempel-Ziv'78 and Its Code Consider the string X}4 = 
ababbbabbaaaba over the alphabet Λ = {a, b), which is parsed and coded as 
follows: 

Phrase No: 
Sequence: 
Code: 

1 
(a) 
0a 

2 
(b) 
0b 

3 
(ab) 
lb 

4 
(bb) 
2b 

5 
(abb) 

3b 

6 
(aa) 
la 

7 
(aba) 

3a 

Observe that we need riog2 71 bits to code a phrase, and two bits to code a symbol, 
so in total for 7 phrases we need 28 bits. ■ 

The most time consuming part of the algorithm is finding the next phrase, that 
is, searching the dictionary. However, this can be speeded up by using a digital 
search tree to build the dictionary. For example, the string 11001010001000100 is 
parsed into (1)(10)(0)(101)(00)(01)(000)(100), and this process is represented 
in Figure 1.4 using the digital search tree structure. In this case, however, we 



12 Data Structures and Algorithms on Words 

Figure 1.4. A digital tree representation of the Lempel-Ziv parsing for the string 
11001010001000100. 

leave the root empty (or we put an empty phrase into it). To show that the root is 
different from other nodes we draw it in Figure 1.4 as a square. All other phrases 
of the Lempel-Ziv parsing algorithm are stored in internal nodes (represented 
in the figure as circles). When a new phrase is created, the search starts at the 
root and proceeds down the tree as directed by the input symbols exactly in the 
same manner as in the digital tree construction (cf. Section 1.1). The search is 
completed when a branch is taken from an existing tree node to a new node that 
has not been visited before. Then the edge and the new node are added to the tree. 
The phrase is just a concatenation of symbols leading from the root to this node, 
which also stores the phrase. 

We should observe differences between digital search trees discussed in Sec-
tion 1.1 and the one described above. For the Lempel-Ziv scheme we consider a 
word offixed length, say n, while before we dealt with fixed number of strings, say 
m, resulting in a digital tree consisting of exactly m nodes. Looking at Figure 1.4, 
we conclude that the number of nodes in the associated digital tree is equal to the 
number of phrases generated by the Lempel-Ziv algorithm. 

1.2.3 Extensions of Lempel-Ziv Schemes 

Finally, we shall discuss two extensions of Lempel-Ziv schemes, namely gen-
eralized Lempel-Ziv'78 and lossy Lempel-Ziv'77. Not only are these extensions 
useful from a practical point of view (cf. [ 11,29,299,399, 361 ]), but they are also 
a source of interesting analytical problems. We return to them in Chapters 6, 9, 
and 10. 



Data Compression: Lempel-Ziv Algorithms 13 

Generalized Lempel-Ziv'78 Let us first consider the generalized Lempel-
Ziv'78 scheme. It is known that the original Lempel-Ziv scheme does not cope 
very well with sequences containing a long string of repeated symbols (i.e., the 
associated digital search tree is a skewed one with a long path). To somewhat 
remedy this situation, Louchard, Szpankowski and Tang [299] introduced a 
generalization of the Lempel-Ziv parsing scheme that works as follows: Fix an 
integer b > 1. The algorithm parses a sequence into phrases such that the next 
phrase is the shortest phrase seen in the past by at most b — 1 phrases (b = 1 
corresponds to the original Lempel-Ziv algorithm). It turns out that such an ex-
tension of the Lempel-Ziv algorithm protects against the propagation of errors in 
the dictionary (cf. [399, 361]). 

Example 1.3: Generalized Lempel-Ziv'78 Consider the sequence 

aßaßßaßaßaaaaaaaaay 

over the alphabet Λ = {a, β, γ}. For b = 2 it is parsed as follows: 

(α)(β)(α)(β)<βα)(βα)(βαα){αα)(.αα)(ααα)(γ) 

that has seven distinct phrases and eleven phrases. The code for this new algo-
rithm consists: (i) either of ( p o i n t e r , symbol) when p o i n t e r refers to the 
first previous occurrence of the prefix of the phrase and symbol is the value 
of the last symbol of this phrase; (ii) or just ( p o i n t e r ) if the phrase has oc-
curred previously (i.e., it is the second or the third o r . . . the b\h occurrence of this 
phrase). For example, the code for the previously parsed sequence is for b = 2: 
0α0)0122α33α1α55α0}' (e.g., the phrase (2a) occurs for the first time as a new 
phrase, hence (2) refers to the second distinct phrase appended by a, while code 
(5) represents a phrase that has its second occurrence as the fifth distinct phrase). 
Observe that this code is of length 47 bits since there are eleven phrases each re-
quiring up to riog2 7] = 3 bits and seven symbols need 14 additional bits (i.e., 
4 7 = 1 1 - 3 + 7-2 = 47). The original LZ78 code needs 54 bits. We saved 7 bits! 
But, the reader may verify that the same sequence requires only 46 bits for b = 3 
(so only one additional bit is saved), while for b = 4 the bit count increases again 
to 52. ■ 

The above example suggests that b = 3 is (at least local) optimum for the above 
sequence. Can one draw similar conclusions "on average" for a typical sequence 
(i.e., generated randomly)? This book is intended to provide tools to analyze such 
problems. 

As for the original Lempel-Ziv algorithm, the most time-consuming part of the 
construction is to generate a new phrase. An efficient way of accomplishing this 



14 Data Structures and Algorithms on Words 

Figure 1.5. A 2-digital search tree representation of the generalized Lempel-Ziv parsing for the string 
1100101000100010011. 

is by means of generalized digital search trees, introduced in Section 1.1, namely 
fc-digital search tree (fc-DST). We recall that in such a digital tree one is allowed 
to store up to b strings in a node. In Figure 1.5 we show the 2-DST constructed 
from the sequence 1100101000100010011. 

Lossy Extension of Lempel-Ziv'77 We now discuss another extension, namely 
a lossy Lempel-Ziv'77 scheme. In such a scheme in the process of encoding some 
information is lost. To control this loss, one needs a measure of fidelity d(-, ■) 
between two sequences. For example, the Hamming distance is defined as 

dn(X
n

l,X") = -f]d\(Xi,Xi) 
η7Ξ{ 

where d\ (X,·, X, ) = 0 for X,- = X; and 1 otherwise. In the square error distortion 
weseti/(X,-,X/) = (X, - X , ) 2 . 

Let us now fix D > 0. In the lossy LZ77, we consider the longest prefix of the 
uncompressed file that approximately (within distance D) occurs in the database 
sequence. More precisely, the quantity /„ defined in Section 1.2.1 becomes in this 
case: 

Let /„ be the largest K such that a prefix of X£5_ j of length K is within distance D 

from Xiri+K for some 1 < / < n - K + 1, that is, d(X\~x+K, X"+f) < D. 



Pattern Matching 15 

Not surprisingly, the bit rate of such a compression scheme depends on the proba-
bilistic behavior of /„. We shall analyze it in Chapter 6. The reader is also referred 
to [91, 278, 303,403,439]. 

1.3 PATTERN MATCHING 

There are various kinds of patterns occurring in strings that are important to lo-
cate. These include squares, palindromes, and specific patterns. For example, in 
computer security one wants to know if a certain pattern (i.e., a substring, or even 
better a subsequence) appears (too) frequently in an audit file (text) since this 
may indicate an intrusion. In general, pattern matching involves a pattern H and 
a text string T. One is asked to determine the existence of H within T, the first 
occurrence of H, the number of occurrences or the location of all occurrences 
ofW. 

Two well-known pattern matching algorithms are the Knuth-Morris-Pratt 
(KMP) algorithm and the Boyer-Moore (BM) algorithm [3, 77]. In this sec-
tion we focus on the former. The efficiency of these algorithms depends on how 
quickly one determines the location of the next matching attempt provided the 
previous attempt was unsuccessful. The key observation here is that following a 
mismatch at, say the kth position of the pattern, the preceding k — 1 symbols of 
the pattern and their structure give insight as to where the next matching attempt 
should begin. This idea is used in the KMP pattern matching algorithm and is 
illustrated in the following example and Figure 1.6. 

Example 1.4: The Morris-Pratt Algorithm We now consider a simplified ver-
sion of the KMP algorithm, namely that of the Morris-Pratt pattern matching al-
gorithm. Let A/,6 = 011010 and the text string Γ,10 = 1011011011, as shown in 

H 0 1 1 0 1 0 
T 1 0 1 1 0 1 1 0 1 1 

(a) first attempt 

H 0 11010 
T 10 110 110 11 

(b) second attempt 

H 0 1 10 10 
T 1 0 1 1 0 1 1 0 1 1 

(c) third attempt 
Figure 1.6. Comparisons made by the Morris-Pratt pattern matching algorithm 



16 Data Structures and Algorithms on Words 

Figure 1.6. When attempting to match P with 7", we proceed from left to right, 
comparing each symbol. No match is made with the first symbol of each, so the 
pattern H is moved one position to the right. On the second attempt, the sixth 
symbol of H does not match the text, so this attempt is halted and the pattern 
H is shifted to the right. Notice that it is not fruitful to begin matching at either 
the third or fourth position of T since the suffix 01 of the so far matched pattern 
//,5 = 01101 is equal to the prefix 01 of tfj5. Thus the next matching attempt 
begins at the fifth symbol of T. m 

Knowing how far to shift the pattern H is the key to both the KMP and the 
BM algorithms. Therefore, the pattern H is preprocessed to determine the shift. 
Let us assume that a mismatch occurs when comparing 7} with Hk- Then some 
alignment positions can be disregarded without further text-pattern comparisons. 
Indeed, let 1 < i < k be the largest integer such that H^Z} = H\, that is, i is the 
longest prefix of H that is equal to the suffix of Hk~x of length /.Then positions 
/ — k + 1, / — k + 2 , . . . , / — i + 1 of the text do not need to be inspected and the 
pattern can be shifted by k — i positions (as already observed in Figure 1.6). The 
set of such i can be known by a preprocessing of H. 

There are different variants of the classic Knuth-Morris-Pratt algorithm [272] 
that differ by the way one uses the information obtained from the mismatching 
position. We formally define two variants, and provide an example. They can 
be described formally by assigning to them the so-called shift function S that 
determines by how much the pattern H can be shifted before the next comparison 
at / + 1 is made. We have: 

Morris-Pratt variant: 

5 = min{fc : min{s > 0 : H\~1 = H^"5}} ; 

Knuth-Morris-Pratt variant: 

S = min{it : mm{s : H^ZJ = tff-1"* and Hk φ Hk-S}} 

There are several parameters of pattern matching algorithms that either deter-
mine their performance or shed some light on their behaviors. For example, the 
efficiency of an algorithm is characterized by its complexity, defined below. 

Definition 1.4 

(i) For any pattern matching algorithm that runs on a given text T and a given 
pattern H, let M(l,k) = 1 if the Ith symbol Ti of the text is compared 
by the algorithm to the kth symbol Hk of the pattern, and M (I, k) = 0 
otherwise. 


