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PREFACE 

For the past two decades I have been researching the Hilbert transform of Schwartz 
distributions. I and my colleagues have arrived at many new results. These results form 
the basis of this book which will be of interest not only to mathematicians but also to 
engineers and applied scientists. My objective is to demonstrate the wide applicability 
of Hilbert transform techniques. This book may be used either as a graduate-level 
textbook on the Hilbert transform of Schwartz distributions and periodic distributions 
or as a research monograph. 

The Hilbert transform (///)(*) = ±(P) /Γ«, ^¡dt arises in many fields such as 

i. Signal processing (the Hilbert transform of periodic functions) 
ii. Metallurgy (Griffith crack problem and the theory of elasticity) 
iii. Dirichlet boundary value problems (potential theory) 
iv. Dispersion relation in high energy physics, spectroscopy, and wave equations 
v. Wing theory 

vi. The Hilbert problem 
vii. Harmonic analysis 

The Hilbert problem during the last four decades has received considerable atten-
tion in metallurgical problems, namely in the Griffith crack problem in the theory 
of elasticity. Sneddon and Lowengrub who have been pioneers of applying the finite 
Hilbert transform in the theory of elasticity state: "The major development of the 
present century in the field of two-dimensional elasticity has been Muskhelishvili's 
work on the complex form of the two-dimensional equations due to G. B. Kolsov." 
Consequently a fair amount of treatment of classical as well as distributional Hilbert 
problems has been incorporated in the book. In particular. Chapter 2 is devoted to 
the classical Hilbert problem, whereas Chapter 3 and Chapter 6 cover distributional 
Hilbert problems. 

The singular nature of the kernel '_() of the Hilbert transform has made the 
work on the Hilbert transform very difficult to accomplish and in turn the work on 

xiii 
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the Hubert transform of distributions has suffered. Nevertheless, the problem of the 
Hubert transform of distributions has received the attention of many mathematicians 
who had started working on the Hubert transform of various subspaces of Schwartz 
distributions. Among them are Laurent Schwartz [87], GePfand and Shilov [44], 
Horvath [5], Bremermann [9], Jones [53], Lauwerier [58], Tillmann [97,63], Beltrami 
and Wohlers [6], Orton [72], Mitrovic [61, 62, 63], and Carmichael [15, 16]. The 
approach to the Hubert transform of distributions that I have developed with my 
colleagues is the simplest and the most effective. It is easily accessible to applied 
scientists despite the fact that I have used a fairly advanced treatment in this book. 

Among many new results that I wish to point out are the inversion formula for the 
n-dimensional Hubert transform H2f = (-\)"f, n > 1 and a new definition for the 
Hubert transform of periodic functions with period 2τ: 

(Hf)(x)= -lim (P) f Άώ (i) 
■n tf-.» J_N x - t 

= bP)Lf{x-t)coiOdt (ii) 

This identity is true at least for the class of functions / E Lp
lr My definition of the 

Hubert transform of periodic functions is a generalization of the Hubert transform of 
periodic functions with period 27r, defined as 

("/)(*) = T - C ) /" / ( * - ')cot l- dt (iii) 
2.TT J_„ 2 

Definition (iii) was widely used by Butzer, Nessel, Oppenheim, Schaefer, and many 
others, and to the best of my knowledge, there has been no formula or definition for 
the Hubert transform of periodic functions with period other than 2ττ. I also believe 
that the definition of the Hubert transform of periodic functions in the form (i) will be 
especially useful to people working in signal processing for computational purposes. 
From definition (i), which is the definition for the Hubert transform of functions, a 
unified theory of the Hubert transform of periodic as well as nonperiodic functions 
can be developed. 

In Chapter 71 develop the theory of the Hubert transform of periodic distributions 
and also the approximate Hubert transform of periodic distributions. I use this theory 
to find a harmonic function U(x, v) which is periodic in x with period 2τ vanishes as 
y —► oo, uniformly V* E IR and tends to a periodic distribution / (with period 2τ) 
as y —* 0+ , in the weak distributional sense. The uniqueness of the solution is also 
proved. 

My discussion proceeds from a Paley-Wiener type of theorem (Theorem 6.18) 
which gives the characterization of functions or generalized functions whose Fourier 
transform vanishes over certain orthants or the union of orthants of R". 

In Chapter 5 I also give a generalization of the Hubert problem 

F+(x) - F-(x) = f(x) 
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in higher dimensions and solve it. In Section 6.7 I calculate the p-norm \\H\\P of the 
Hubert transform operator H:L"(W) -> LP(U"), p > 1. In Theorem 6.3 I give a 
characterization of bounded linear operators on LP(W), p > 1, which commute with 
translation and dilatation. 

Another highlight of the book is the very elegant treatment of the one-dimensional 
Hubert transform of distributions in D'u, p > 1, in Chapter 3. Chapter 3 will be 
especially useful to applied scientists. 

The book assumes that the reader has a background in the elements of functional 
analysis. Chapter 1 essentially deals with the prerequisite materials for the theory of 
distributions and Fourier transform. 

Chapter 2 presents the Riemann-Hilbert problem and gives the background mate-
rial to the study of the Hubert transform. It includes sections on the appearance of 
the Hubert transform in wing theory, in the theory of elasticity, in spectroscopy, and 
in high-energy physics. 

Chapter 3 discusses the Hubert transform of Schwartz distributions in D'u and 
related boundary value problems. 

Chapter 4 considers the Hubert transform of Schwartz distributions in D'. It also 
discusses a Gel'fand and Shilov technique for the Hubert transform of generalized 
functions and an improvement to their techniques. 

Chapter 5 deals with «-dimensional Hubert transform and the approximation 
technique in evaluating the Hubert transform and the inversion formulas. The Hubert 
transform of distribution in D¡j,(U") is also covered, and many applications are given. 

Chapter 6 considers the applications of the Hubert transform to Riemann-Hilbert 
problems (classical as well as distributional). Many other related results are presented. 
One among many is the derivation of a Paley-Wiener theorem. 

Chapter 7 deals with the periodic distributions and their Hubert transforms. 
With the firm belief that perfection never comes without practice I have included 

numerous examples in every chapter. 
I wish to acknowledge the assistance of Professor E. L. Koh of the University of 

Regina, and of Professor S. A. Naimpally and Dr. James Bondar of my department 
who were very kind and patient in going through various chapters of the manuscript 
and gave me very useful suggestions. I want to express my sincere gratitude to 
Professor Angelo Mingarelli of my department who very patiently entered the graphic 
designs on my manuscript and helped me consult CDRAM (Math Reviews) for the 
preparation of the manuscript. 

I further wish to thank Mr. Andrew E. Dabrowski a former student at Carleton, Mr. 
Sanjay Varma of the Mehta Research Institute Allahabad India, Ms. Nalini Sreeshylan 
of the Institute of Sciences Bangalore India, Mr. K. P. Sivaraman of the Tata Institute 
of Fundamental Research, Bombay, Mrs. Shelly Bereznin, Mr. Ibrahim Farah, and 
Mrs. Diane Berezowski of Carleton University for their help in the typing of the 
manuscript in its various forms. 

The major part of the typing was done by Mrs. Diane Berezowski who modified 
all the chapters typed by others and unified them into a single TgX scheme along 
with her own typing. She never lost her temper despite the many changes I had asked 
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her to incorporate in the manuscript. I am grateful to her for her patience and for her 
active and prompt cooperation. 

In addition I would like to thank Drs. Q. M. Tariq and Ehab Bassily of my 
department who very patiently prepared the Index and the Notation Index of this 
book. 

I also wish to acknowledge a grant from the Natural Sciences and Engineering 
Research Council of Canada in support of my research. I wish to thank the Tata Insti-
tute of Fundamental Research, Bombay, the Indian Institute of Science, Bangalore, 
and the Mehta Research Institute, Allahabad, for financially supporting my visits to 
their institutions, where a considerable part of the research work on this monograph 
was completed. In particular, I express my gratitude to Professor H. S. Mani, Director, 
Mehta Research Institute of Mathematics and Mathematical Physics for encouraging 
me to use the facilities of his institute. 

My debt to my wife, Krishna for her constant support and cheerfulness under 
difficult circumstances when the manuscript was under preparation, is so profound 
as to defy description. 

J. N. PANDEY 

Ottawa, Canada 



1 
SOME BACKGROUND 

1.1. FOURIER TRANSFORMS AND THE THEORY OF DISTRIBUTIONS 

This chapter discusses some very important properties of the Fourier transform of 
functions that will be useful in developing the theory of the Fourier transform of 
distributions. It also develops some basic results concerning topological vector spaces, 
in particular, locally convex spaces, and extends these results to develop a theory of 
distributions and tempered distributions. 

Definition. Let / be a function of a real variable t defined on the real line. Then its 
Fourier transform F{w) is defined by the relation 

(J/)(w) = F(w) = [ f(t)eiw,dt (1.1) 

provided that the integral exists. 

There are many variations on definition (1.1). Some authors add the factor ¿ . o r 

-ir= outside the integral sign, and some take the kernel of the Fourier transform as 
e~'M in place of the kernel e'w'. Some authors including L. Schwartz have written the 
kernel of the Fourier transform e2mwl. But these variations matter little. 

The inverse Fourier transform of / in our case will be defined as 

J"7(0 = T- I fMe~iw'dw (1.2) 

provided that the integral exists. 

Example 1. Let 

'(Ήο - 1 < / < 1 
elsewhere 



2 SOME BACKGROUND 

/

i C 2sinw 

Then 

r\ ( 2sinw 
w 

2 when w = 0 

Note that the function /(f) £ ¿ ' but (Jf)(w) g ΖΛ 

Theorem 1. Let / G L1. Then 

■ / i. F(w) = / f(t)e'w'dt is well defined V w E R. 

ii. F(w) is uniformly continuous and bounded on U. 
iii. F(w) —> 0 as |w| —> oo. 

Proo/. (i) /Γ«, |/(iy'""l Λ := /Γ«, 1/(01 Λ· Clearly /(/)e,M" is a measurable function 
of /. Therefore /(/)elwl is absolutely integrable, and it is integrable for each w G R. 
Hence F(w) is well defined for each w G R. 

(ii) |F(w)| < / " „ |/(0e''""| A =s / Γ , Ι/(/)Ι A. F(w) is uniformly bounded. Now 
we prove that F(w) is uniformly continuous on /?. Choosing /V large enough so that 
for an arbitrary e > 0, we have 

J \f(f)\dt + j_ |/(0lA<^ (1.3) 

A simple calculation shows that 

AF = F(w + Aw) - F(w) 
rN -I f(t)[ei(w+Aw)' - eiM]dt 

N 

-N (IM) + / + / ) f(t)e'w'le'*wl - 1]A (1.4) 

Now denote the first integral in the right hand side of (1.4) by / and the second pair 
of integrals by 7: 

Γ ι/ωι ι^ 
J-N 

l/l* / 1/(011«*"*-U A 

By virtue of the uniform continuity of (e'^wl — 1), we can choose δ small enough so 
that 

|/| < | whenever |Δνν| < δ (1.5) 
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δ being independent of / (and w as well). 

|7| s (J+J W ( / ) | A < | (1.6) 
Combining (1.5) and (1.6), we have 

|AF| ^ e whenever |Δνν| < δ 

This proves the uniform continuity of F(w) over the real line. 
(iii) The space T)(W) of infinitely differentiable functions with compact support 

on W is dense in LP(W) p > 1, and the identity map from D{W) to Z/(R") is 
continuous [67, 101]. Let now φ G ΤΗβ) be such that 

J -o 
\f(t)-<p{t)\dt<€-. 

Then 

F(w)= f [f(t) - <p(t)]eiM dt + / <p(t)eiMdt (1.7) 

Denoting the two integrals in the right hand side of (1.7) by J\ and J2, respectively, 
we see that 

/

oo 

\m - <p{t)\dt < ^ (1.8) 

A simple integration by parts shows that 

Ji —> 0 as \w\ —» oo 

Therefore there exists a k > 0 such that 

| / 2 l < | v M > * (1.9) 

Combining (1.8) and (1.9), we get for c > 0, that there exists a constant k > 0 such 
that \F(w)\ < e V |»v| > k. Since e is arbitrary our result is proved. D 

Theorem 2. Let / e O and F(w) be the Fourier transform of / . Assume that 
F(w) eZ-'.Then 

1 Γ fit) = — / F(w)e-,w'dw a.e. (1.10) 
2TT y_M 

The equality (1.10) holds at all points of continuity of / . Proof of this inversion 
formula for the Fourier transform can be found in many books on integral transforms. 

The Fourier transform of a function fit) defined from W —» U is defined as 
F(w) = J"R„ f(t)e"'w dt, provided that the integral exists. Here t = (t\,t2,...,t„) and 
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w = (ΗΊ , H»2, . . . , w„), t ■ w = t\ w\ + t2w2 + · · · + t„w„. Theorems analogous to 
Theorems 1 and 2 are valid. The inversion formula analogous to (1.10) is 

f(0= ( ¿ ) j Fiwye-^'dw a.e. 

which is also valid if/ and F both £ L\W). 

1.2. FOURIER TRANSFORMS OF L2 FUNCTIONS 

1.2.1. Fourier Transforms of Some Well-known Functions 

Consider 

Tie 

Jo 

e-Meiw'dl 

cos wte 

w2 + 1 

J[h(t- 1) - A(f - 2)] = i eiw'dt 

where A(f) is Heaviside's unit function, 

eiw, |2 

iw |, 

J 

'e2'* - eiw' 
iw 

1 1 Γ eilw
 J 

= 7r[<T"A(w) + e+"'A(-H')]. 

a different category from the above is 

J ( l ) = /" ί*·*(Λ 
7-00 

which does not exist in the classical sense but does exist in the distributional sense, 
as will be proved later. 

We can verify that our inversion formula as stated before is valid in the case of 
these functions. For example, 

rx[e~wh(w) + ewh(-w)]TT = - Í - / 
2w J0 

lre-»e-iwldw + -Í-7T / ewe-'w'dw 
2π 7° 

J - 0 0 
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- i. Γ ] i 
~ 2 [ 1 + it 1 -it 
_ 1 
~ TTT5 

Theorem 3. Let /(f) be continuous, and let / ' ( /) be piecewise continuous on the real 
line such that lim|,|_oo /(f) = 0, and /(f) is Fourier transformable V w E l . Then 
/'(w) is also Fourier transformable V w G U, and 

JX/'Xw) = ( -w)(J / ) (w) 

Proof. Consider the operations 

J ( / ' ) ( w ) = / fXtW^dt 
J-oo 

= e'w7(f)| - / iweiw'f(t)dt 
I-» 7-» 

= (-iw)f eiMf{t)dt 
J -00 

= (-/w)J(/)(w) 

These operations can be justified by integrating between - M and N and letting 
M,N -+O0. □ 

Corollary 1. If / ' is continuous on R and is Fourier transformable, and if 
lim|(|_oo/(f) = 0, then /(f) is also Fourier transformable and (,Tf')(w) = 
(-/w)(J/)(w). 

Corollary 2. If /(n)(f) is Fourier transformable and is continuous such that 
\\m,^±xfk\t) = 0 for k = 0,1,2 n - 1, then f{n~x\ f-n~2),..., f, f are 
all Fourier transformable and 

J(/(*>)(w) = (-/wO*(J/)(w), ¿ = 1 , 2 n 

Corollary 3. If/ is continuously differentiable up to order n such that limi,^,» /(*'(f) 
= 0 for each k = 0 ,1,2, . . . , n - 1 and /(f) is Fourier transformable, then each of 
the derivatives / ' , / " /<,l) is Fourier transformable and 

nf{k))(w) = (-i*0*(J/)(w). * = 1,2,3 «. 

Corollary 4. I f / / ' , / " , . . . , / ( n _ 1 ) are all continuous and / ( n ) is piecewise con-
tinuous in any aribtrary, finite closed interval of R and if limj,^» /(*'(f) = 0 for 
each k = 0,1,2 n — 1 and /(f) is Fourier transformable, then /(*'(f) is Fourier 
transformable and T(f{k))(w) = (-/'νν)*(^)(νν) for each k = 1,2,3 n. 
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For functions defined over a finite measure space, every / £ L2(X) belongs to 
L\X), but this result is not true here in general. Let us consider 

/w = 
s in / 

t 
1, 

ίΦΟ 

t = 0 

This function / £ Ü (R), but it does belong to L2(R). There are functions that belong 
to L'(R) and L2(U) as well. For example e~M £ ¿'(R) Π L2(R). 

The Fourier transform of functions belonging to L2(R) does not necessarily exist 
in general in the pointwise sense. Also, if / £ L2(R), then the truncated function 
f(t)xi-a*] -+ /(f) »n L2(R) as a -» ». Since f(t)x{-a,a] £ L'(R) Π L2(R), the space 
of functions belonging to ¿'(R) Π L2(R) forms a dense subset of L2(R). The question 
now arises as to how the Fourier transform of / £ L2(R) is to be defined. 

Using the above-mentioned density property, Plancherel proved the following 
well-known theorem [3, p. 91], which is called the Plancheral theorem. 

Theorem 4. Let / £ L2(R). Then there exists a function f(w) £ L2(R) such that 

/(w) -r 
J -a 

f(tVw'dt asa —+ o° (1.Π) 

that is, 

/(w) = l.i.m. / 
"-"" J-a 

f(t)e'w'dt 

is, 

fix) - ¿ f h")e-iwxdw 

f(x) = l.i.m. -i- Γ ) 

asa 

{w)e',wxdw 

(1.12) 

For a measure theoretic and modern proof see Rudin [84] on the real and complex 
analysis. 

It is further proved that 

/(w) 
dw 

Γ eiw' - 1 
a.e. (1.13) 

and 

/(*) dx f - 1 

—iw 
f(w) dw a.e. (1.14) 
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A very elementary proof of the fact that (1.13) and (1.14) are eqivalent to (1.11) and 
(1.12), respectively, is given by Akhiezer and Glazman in their work on the theory 
of linear operators in Hilbert space [3, pp. 75-76]. These concepts of the Fourier 
transform were further developed by Titchmarch [99] for Lp functions 1 < p ^ 2. 

Theorem 5. Titchmarch's Theorem. Let / e L"(R), 1 < p < 2. Then there 
exists a function /(£) G Lq($l) where - + - = 1 such that 

Furthermore 

J-N 

¿V J-N 
0 

asN —> oo 

as N —> oo. 

The Fourier receprocity relation also holds in the sense that 

d 
/(£) = 

d 

Γ ¿* - 1 
/ / w — — d t 

J -00 

™-iiS-m 
It 

e '** -I 

a.e. 

-ι"ί 
άζ a.e. 

Also 

\\f\\q^K(p)U \f(x)\pdx\ 
1/(P-I) 

where K(p) is a constant depending upon p. Thus the Fourier integral operator J 
is a bounded linear operator from W to Lq. The work of generalizing the Fourier 
transform of functions was continued by Laurent Schwartz [87] who put forward the 
theory of the Fourier transform of tempered distributions and L. Ehrenpreis [36] who 
brought forward his theory of the Fourier transform of Schwartz distributions. 

1.3. CONVOLUTION OF FUNCTIONS 

Let / and g be complex-valued functions defined on the real line, which we denote 
by R. Then their convolution ( / * g)(x) is defined by 

(/ * i)W -Í fix - y)g(y)dy 

provided that the above integral exists. At the set of points where the convolution 
exists, we are able to define a new function ( / * g)(x). Since many of the properties 
of the convolution defined above are similar to the product, we call the convolution 
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if * g)(x) a convolution product of two functions f and g. It is a simple exercise to 
show that ( / * g)(x) = ig * f)(x). I will now give some results in the form of theorems 
that demonstrate the existence of the convolution. The proof of the following theorem 
is found in Rudin [84, pp. 146-147]. 

Theorem 6. Let/ ,g e L'(-°°,°°). Then 

Γ i· if * g)ix) = I fix ~ y)giy) dy exists and is finite a.e. 

ii. The function ( / * g)ix) G V ( - » , oo). 
iü. I l / * i l l i s | | / l l i l l g l l . . 

where 

\dx = [ \m\t 
J -00 

Proof. There is no loss of generality in assuming that / and g are Borel measurable. 
Clearly, if / and g are Lebesgue measurable, then there exist Borel measurable 
functions /o and go, respectively, defined on the real line such that f = fo a.e. and 
g = go a.e. Borel measurable functions are necessarily Lebesgue measurable, so 
we may assume that / and g are Borel measurable functions. Also the value of an 
integral remains unchanged by changing the values of the integrand at a set of points 
of measure zero. Now define 

Fix.y) = fix-y)giy) 

We want to first show that the function F{x,y) is a Borel function in R2. For a set 
£ e R , let there be a set E e R2 defined by 

E = {{x,y):x-yGE} 

Since x — y is a continuous function of (JC, y), E must be open whenever E is. It is 
very easy to verify that the collection of all E ε IR for which É (as defined above) is 
a Borel set forms a σ-algebra on R. Again, if V is an open set in R and / is a Borel 
function on R, the set E = {x : f(x) E V} is a Borel set in R. Therefore 

{(x,y): fix - y) £ V} = {(x,y): x - y e E) = E 

is a Borel set in R2. Hence the function (x - y) —♦ f(x — y) is a Borel function. 
The function ix,y) —* giy) is also a Borel function in R2. Therefore the product 
fix ~ y)giy)iS a Borel function on R2. Now 

dy I \F(x,y)\dx= \giy)\dy \f{x - y)\dx 
■00 J —00 , / — 0 0 J —OO 

= 11/11, llglli 
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We have used the translation invariance property of the Lebesgue measure to show 
that 

/ \f(x-y)\dx = \\f\U 
J-tx 

So F(x,y) £ LX(U2). Therefore in view of the Fubini's theorem ( / * g)(x) = 
f-o* f(* - y)8(y)dy exists for almost all x £ R , a n d ( / * g)(x) £ L'(R). This 
proves (i) and (ii) together. Now 

/

oo «»00 r y*oo 

\(f*g)(x)\dx< / / \F(x,y)\dy dx 
■00 J —00 L» / —OO 

= f UjF{x,y)\dx\dy = ||/||, \\g\U 
This proves (iii). D 

Corollary 5. Let f,g £ L'(IR). Then 

J(f * g)(w) = (J/)(w)( Jg)(w) 

where F is the Fourier transformation operator. 

Proof. 

W*g)(w)= [ (J f{x-y)g{y)dy\eiwxdx 

Then by Fubini's theorem we get 

= J_m ( / / < * - yywxdx^j g(y)dy 

Now 

/

OO »00 

f{x - y)eiwxdx = eiwy / f(x - y)eiw{x'y)dx 
■00 J —00 

= eiw> [ f{t)eiw'dt 
J -GO 

By the translation invariance property of the Lebesgue measure, 

JX/*g)(w) = f eiw> f nt)eiw'dtg(y)dy 
J~ OO J~ 00 

/

OO /.OO 

g(y)er>dy / / ( θ Λ ί 
oo y—oo 

= ( Tf)M(Jg)(»>) 
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An excellent proof of the following theorem is given by Hewitt and Stromberg [48, 
p. 397]. D 

Theorem 7. For 1 < p < °°, let / E L\U) and g E LP(U). Then for almost all 
x E IR, f(x — y)g(y) and f(y)g(x — y) as functions of y, E L'(IR). For all such x 
define 

(f*gX*)= [ f(x-y)g(y)dy 

and 

= [six-. 
JR 

Then 

and 

(**/)(*)= / g(x~y)f(y)dy 

(/ * g)W = (g * /)(*) a.e. 

(/*e)U)ez/(R) 

further | | / * g | | p < | | / | | , ||g||p. 

Proof. Let q = -4γ, and let h E L«(IR). Then each of the functions f(x - y), g(y), 
h(x), are Borel measurable in IR2, and so also are their products taken two at a time and 
the function f(x — y)g(y)h(x). Now using Fubini's theorem, translation invariance 
of the Lebesgue measure and Holder's inequality we have 

/ / \f(x-y)g(y)h(x)\dydx 
J — 00 J — 00 

= / ΙΛΟ0Ι / \f(x-y)g(y)\dydx 
J—CO J— CO 

= f \Kx)\ f \f(t)g(x-t)\dtdx 
J—CO J — 00 

= I 1/(01 I \g(x-t)h(x)\dxdt 
J—CO J—CO 

=s / l/WllliU-OllpllAWll,* 
J - 0 0 

= 11*11, HAIL 11/11, < « 


