
Network Query
Language (NQL)

John Wiley & Sons, Inc.

Wiley Computer Publishing

David Pallmann

71328_Pman_FM 12/21/01 4:50 PM Page i

I iE@

Innodata
0471272035.jpg

71328_Pman_CH02I 12/13/01 5:12 PM Page 32

Network Query
Language (NQL)

John Wiley & Sons, Inc.

Wiley Computer Publishing

David Pallmann

71328_Pman_FM 12/21/01 4:50 PM Page i

To my dear wife, Rebekah

Publisher: Robert Ipsen
Editor: Ben Ryan
Development Editor: Kathryn A. Malm
Managing Editor: Angela Smith
New Media Editor: Brian Snapp
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by David Pallmann. All rights reserved.
Published by John Wiley & Sons, Inc., New York
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

Pallmann, David.
Network query language (NQL) / David Pallmann.

p. cm.
ISBN: 0-471-20766-7 (acid-free paper)

1. Internet programming. 2. Network Query Language (Computer program
language) I. Title.

QA76.625 .P35 2002
005.2'762--dc21

2001006061

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

71328_Pman_FM 12/21/01 4:50 PM Page ii

Foreword xi
Introduction xiii
Acknowledgments xxii

Chapter 1 Presenting Network Query Language (NQL) 1

A First Look 1

Appropriate Uses for NQL 2

Why a New Language? 3

Design Philosophies 3

The Right Building Blocks 6

Role Independence 10

Tutorial: Directory 11

Chapter Summary 16

Chapter 2 Developing in NQL 17

The Development Environment 17

The Development Process 20

The Debugger 22

Contents

iii

71328_Pman_FM 12/21/01 4:50 PM Page iii

Compiling NQL Scripts 24

Deploying NQL Scripts 24

Tutorial: Pie 26

Chapter Summary 31

Chapter 3 Language Fundamentals 33

Statements 33

Code Blocks 35

Expressions 36

Functions 36

Comments 37

Labels 37

Literals 38

Variables 38

The Stack 44

The Success/Failure Condition 48

Error Handling 49

Directives 49

Tutorial: Setting the Time 50

Chapter Summary 56

Chapter 4 Flow of Control 57

Control Statements and Functions 57

If, Then, and Else Statements 59

Loop Statements 61

Functions 65

switch-case 67

Parallel Processing 68

Timing Execution 75

Terminating Execution 75

Tutorial: FastSearch 76

Chapter Summary 80

Chapter 5 Expressions, Operators, and Functions 83

Expressions 83

Operators 84

Functions 93

iv Contents

71328_Pman_FM 12/21/01 4:50 PM Page iv

Tutorial: Phone 121

Chapter Summary 129

Chapter 6 Working with Files 131

File Input/Output 131

File Operations 138

Directory Operations 142

Tutorial: FindFiles 145

Chapter Summary 149

Chapter 7 Transferring Files 151

Background on FTP 151

FTP Operations 153

Tutorial: FtpReceive 162

Chapter Summary 166

Chapter 8 Working with Databases 167

Database Fundamentals 167

NQL’s Database Support 172

Tutorial: Movie-Reviews 184

Chapter Summary 188

Chapter 9 Working with XML 191

XML Fundamentals 191

XML Operations 194

Tutorial: RealEstate 208

Chapter Summary 216

Chapter 10 Accessing Web Sites 219

The World Wide Web 219

Web Primitives 220

Controlled Browser 224

Site Crawling and File Downloading 236

Web Services 240

Tutorial: BookSearch 241

Chapter Summary 244

Chapter 11 Processing HTML 247

Types of Pattern Matching 247

HTML Pattern Matching 248

Contents v

71328_Pman_FM 12/21/01 4:50 PM Page v

Data Pattern Matching 255

HTML Table Processing 261

Regular Expressions 271

Web Queries 276

HTML Operations 286

Chapter Summary 288

Chapter 12 Sending and Receiving Email 291

An Overview of NQL’s Email Capabilities 291

Email Protocols 292

Message Formats 293

Email Support in NQL 298

Tutorial: ScanMail 306

Chapter Summary 310

Chapter 13 Accessing Newsgroups 313

An Overview of NQL’s Newsgroup Capabilities 313

Newsgroup Support in NQL 314

Tutorial: Prospects 317

Chapter Summary 320

Chapter 14 Searching Directory Servers 323

An Overview of NQL’s LDAP Capabilities 323

LDAP Directory Support in NQL 325

Tutorial: NameSearch 328

Chapter Summary 332

Chapter 15 Terminal Emulation 333

The Basics of Terminal Emulation 333

Terminal Emulation Operations 334

Tutorial: Unix 339

Chapter Summary 344

Chapter 16 Interacting with Applications 345

Exporting to Microsoft Office 345

Interacting with Applications Using Automation 350

Tutorial: Outlook 354

Chapter Summary 360

vi Contents

71328_Pman_FM 12/21/01 4:50 PM Page vi

Chapter 17 Socket Communications 361

Background on Socket Communications 361

Socket Programming in NQL 363

Tutorial: Client/Server 367

Chapter Summary 374

Chapter 18 Serial Communications 377

Serial Programming in NQL 377

Tutorial: Scale 381

Chapter Summary 384

Chapter 19 Synchronization 385

Inter-process Communication 385

Inter-process Locking 391

Chapter Summary 395

Chapter 20 E-Commerce 397

Credit Card Transactions 397

Open Financial Exchange 405

Tutorial: Approval 409

Chapter Summary 414

Chapter 21 Graphics 415

Image Operations 416

Acquiring Images from TWAIN Devices 425

Tutorial: Counter 429

Chapter Summary 434

Chapter 22 Agent Characters 437

Microsoft Agent 437

Agent Operations 438

Tutorial: Hamlet 442

Chapter Summary 449

Chapter 23 Fuzzy Logic 451

Introduction to Fuzzy Logic 451

Fuzzy Logic Support in NQL 454

Tutorial: Concerts 457

Chapter Summary 464

Contents vii

71328_Pman_FM 12/21/01 4:50 PM Page vii

Chapter 24 Neural Networks 465

Introduction to Neural Networks 465

Neural Network Support in NQL 474

Tutorial: Recognizing Symbols 481

Chapter Summary 486

Chapter 25 Bayesian Inference 489

Introduction to Bayesian Inference 489

Bayesian Computations in NQL 491

Tutorial: HealthTest 493

Chapter Summary 496

Chapter 26 Interacting with the Desktop 497

Desktop Operations 497

Tutorial: MP3 510

Further Exercises 516

Chapter Summary 516

Chapter 27 Network Monitoring 519

Introduction to Network Monitoring 519

Network Monitoring Operations 520

Tutorial: Discover 525

Chapter Summary 528

Chapter 28 Web Applications 531

Background on Web Applications 531

Web Programming in NQL 533

Tutorial: Library Search 540

Chapter Summary 567

Chapter 29 Supporting Mobile Devices 569

Mobile Applications 569

Mobile Programming in NQL 574

Tutorial: DeviceType 584

Chapter Summary 589

Chapter 30 System Actions and Information 591

System Actions 591

System Information 593

viii Contents

71328_Pman_FM 12/21/01 4:50 PM Page viii

Tutorial: Restart 597

Chapter Summary 600

Chapter 31 Calling NQL as a Component 603

Calling NQL from Other Languages 603

Tutorial: vbNQL 620

Chapter Summary 624

Chapter 32 NQL Cookbook 625

AddDatabase 625

AppendTextFile 626

AppendUnicodeTextFile 627

DeleteDatabase 627

FtpReceive 628

FtpSend 629

GetWeb 629

GetWebData 630

GetWebFile 630

QueryDatabase 631

ReadMail 632

ReadMailFile 632

ReadNewMail 633

ReadNewsgroup 634

ReadNewsgroupHeaders 634

ReadTextFile 635

ReadUnicodeTextFile 636

WriteTextFile 636

ReadXML 637

SendHtmlMail 638

SendMailWithFile 638

SendMultiMail 639

SendTextMail 640

UpdateDatabase 640

WriteTextFile 641

WriteUnicodeTextFile 641

WriteXML 642

Contents ix

71328_Pman_FM 12/21/01 4:50 PM Page ix

Appendix NQL Versions and Editions 643

A Brief History of NQL 643

NQL 1.1 vs. NQL 2.0 644

Windows Edition vs. Java Edition 646

Index 647

x Contents

71328_Pman_FM 12/21/01 4:50 PM Page x

Information is a company’s greatest asset. Within the maze of corporate networks and
back office systems that asset is typically locked in place, a prisoner of the system that
produced it, network that carried it, the client that displayed it. Reusing information pre-
sented by an existing system in a new application is tantalizingly easy to talk about but
difficult in practice to do. Certainly newer open system architectures make this easier,
but there is always some legacy system which is either not open or inaccessible through
programmable interfaces. These are the villains of the system integrator’s world.

The situation that is so frustrating is that you can see the data that you want to use
on the screen—it’s right there in front of you, perhaps in three different systems—and
you could describe to a six-year-old what steps to take to come up with the desired
result. Why can’t computers connected to networks do the same?

I first met David Pallmann in 1998 when he came to pitch his ideas about standard
ways to access data on network-connected computers. David was spellbinding with
his rapid-fire presentation on how the Network Query Language (NQL) could harvest
in situ data and repurpose it in new applications. Because combining information
from multiple separate systems together to produce larger results has been my passion
and profession for many years, David and I hit it off.

David’s idea with NQL was to produce a common approach for accessing networked
data, much like SQL made access to relational databases uniform. Initially David and his
company NQLi focused on building agents to access data from World Wide Web pages
using NQL. They built a variety of systems for their clients using NQL, including Stock-
Vue, a product that uses NQL to harvest and reassemble information about investments.

Foreword

xi

71328_Pman_FM 12/21/01 4:50 PM Page xi

xii Foreword

As they built these applications, David and his team added new capabilities to the lan-
guage—features that were motivated by the needs of real-world application developers.

When I first encountered NQL, it had primitives supporting Web access, as well as
normal control structures, pattern scanning, and output commands for taking har-
vested information and presenting it in HTML pages. Over the next two years, NQL
blossomed into a very complete programming system, adding support for such essen-
tial topics as XML, filling out support for networked data facilities such as news, mail,
ftp, telnet, and Web site crawling, adding access to non-networked data in local data-
bases and file systems, and finishing off the system with lots of niche, but important,
capabilities such as support for genetic algorithms, fuzzy logic, and parallel processing.

Ho, hum, you say. YAPS: Yet Another Programming System. We’ve all seen similar
capabilities in a variety of different systems—perhaps not as well integrated together,
but they exist. Wait, the best is yet to comeThe NQL Programming Environment.

I don’t know about you, but I never get things right the first time I try something. I
am constantly trying things out, refining them, trying other approaches. I hate the
delay and brittleness of the edit, compile, link, debug cycle. I much prefer the edit, run
cycle that an interpreted system allows. Furthermore, although a programmer at heart,
I’d much rather tell a computer to watch carefully what I am doing and then make a
procedure based on those actions. (For the hard core: I love EMACS keyboard macros).

One of the strongest features of NQL is that it is interpreted. As such, it earns all of
the honors that go to such systems. As a developer, you interact with NQL through the
NQL Client, a full featured programming environment for creating, modifying, and
debugging NQL programs. You can use the editor to write your programs, but also
there are a number of wizards which will build NQL program fragments for you.

One such wizard, the browser recorder, allows you to visit a Web site, drill down to
the page that contains the information you are interested in and then identify the spe-
cific area of that page that contains the information, putting that information in an
NQL variable for subsequent processing. With this program-by-example wizard, you
identify the place to visit for subsequent information harvesting of that moment’s ver-
sion of the information—the lead story in the living/arts section of a newspaper, the
current price of soybeans, or the front page picture on your favorite sports Web site.
Further programming in NQL would allow you to build and export an HTML page
that combined these items into one consolidated presentation—or deliver an XML rep-
resentation of these items, plus XML representations of other information retrieved
from local SQL databases to another application.

One last observation: By staying at a high level in the types of objects and opera-
tions on those objects, NQL allows you to stand on the shoulders of other successful
system developers, take information components from those systems, and deliver
your audience the value of selective combinations, decisions, and derivations based on
those components.

Let me stop now and let you read the book.
Harry Forsdick

VP Advanced Technology
Genuity, Inc.

71328_Pman_FM 12/21/01 4:50 PM Page xii

Introduction

xiii

This book describes a new programming language, Network Query Language. Net-
work Query Language is a kind of shorthand for Internet and network programming
that lets you easily combine and leverage technologies such as XML and the Web. If
you like Stuctured Query Language (SQL) for database programming, you’ll love
NQL for network programming. If you have a need to create commercial-grade con-
nected applications such as bots, intelligent agents, middleware, and Web applica-
tions, you’ll find NQL well worth looking at. For investing a small amount of time in
getting to know the language, you’ll receive a startling savings in development time.

Network Query Language runs on all major computing platforms, and you’ll find a
copy of it on the CD at the back of this book. You can also download the language from
www.nqli.com.

Overview of the Book and Technology

Welcome to a language that breaks some of the rules and isn’t afraid to venture into
new territory. Where else can you crawl a Web site and download files with a single
statement? Or create, train, and run a neural network with a five-line script? Network
Query Language equips you with extensive capabilities in four functional areas that
are usually lacking in other programming languages: Communications, conversion,
distributed processing, and artificial intelligence.

71328_Pman_FM 12/21/01 4:50 PM Page xiii

xiv Introduction

Network Query Language is intended for both experienced developers and begin-
ners. If you’re a seasoned developer, you’ll find NQL saving you oodles of time. Tasks
that used to take you a month can be accomplished in a week, and what used to take a
week can be accomplished in a day. For the junior programmer, you’ll find NQL very
easy to pick up. The language avoids cryptic punctuation, does not assume a com-
puter science background, and uses simple, easy-to-remember keywords. The three
hallmarks of NQL are unparalleled ease of use, lightning-fast development, and sheer
power. It’s not uncommon for developers to tell us they’ve created solutions and put
them into production within 24 hours of their first exposure to NQL.

Network Query Language has interesting roots. My colleagues and I didn’t set out to
create a new programming language, but we ended up creating one out of necessity.
After five years of developing custom solutions—such as intelligent agents, corporate
portals, content servers, shopping bots, search engines, and middleware—we had used
many different languages and found all of them unsatisfying. A pattern was emerging:
No matter what language we used for a project, the building blocks we needed to use on
a daily basis were missing. It offended us that programming languages don’t contain
built-in statements for tasks such as interacting with Web sites, sending and receiving e-
mail, working with XML, and applying artificial intelligence techniques. We decided to
do something about it. Network Query Language was born when we developed over
500 powerful building blocks and wrapped an SQL-like language around them.

If NQL sounds similar to SQL, that’s no accident: SQL is our hero, one of the great
success stories of the computer industry. It turned long, proprietary database programs
into short, generic queries. There were numerous benefits. Database programs could be
written in significantly less time. Short queries were less likely to contain bugs than
large database programs, and they could be developed far more rapidly. A more junior
level person could perform database programming. Structured Query Language was
such an elegant idea that although 25 years have gone by, it is still with us and is used
pervasively. We believe today’s Internet and network programming situation is remark-
ably similar to the database problems of the past and cries out for an SQL-like remedy.
Our intention with NQL is to appeal to the same paradigm. The things that are true of
SQL are also true of NQL: Large programs become short, simple scripts. Extremely
rapid development becomes the norm. Junior people can do powerful things.

Best of all, you don’t have to choose between NQL and your favorite programming
language. Although NQL can be used as a stand-alone solution, it can also be called as
a component from another language. If you prefer, you can continue using languages
such as Visual Basic, C++, or Java and call NQL when needed to be that missing puz-
zle piece in a project. Be forewarned, however, that NQL is addictive and you may find
yourself using it more and more.

This book’s aim is to serve as a handbook: Your field guide to NQL, if you will. It
introduces the language, takes you on a guided tour, teaches through the use of exam-
ples, and provides reference information.

How This Book Is Organized

The organization of this book is such that it can be read straight through or consulted
topically. Readers who are new to the language will find introductory material at the

71328_Pman_FM 12/21/01 4:50 PM Page xiv

Introduction xv

beginning and a smooth progression from chapter to chapter. Each chapter stands on
its own, however; readers already familiar with NQL can go directly to an individual
chapter for assistance in a particular subject.

Chapter 1, Presenting NQL, gives you a first look at Network Query Language
without getting into too much of the nuts and bolts. The chapter covers the
appropriate uses for NQL, its design philosophies, and the unique features that
distinguish it from other languages.

Chapter 2, Developing in NQL, guides you through the use of the NQL
development environment. The chapter describes how to enter and edit code,
run scripts, use the debugger, and deploy solutions.

Chapter 3, Language Fundamentals, covers the syntactical rules of NQL, including
statements, functions, comments, code blocks, literals, and variables. The
chapter also describes the stack and the success/failure condition, two
constructs which allow statements to work together efficiently.

Chapter 4, Flow of Control, describes how program flow is governed in NQL. The
chapter discusses loops, functions, parallel processing, and timing.

Chapter 5, Expressions, Operators, and Functions, explains the rules for combining
constants, variables, operators, and functions together in expressions. It also
documents the built-in functions of NQL and how user-defined functions are
specified.

Chapter 6, Working with Files, visits the subject of file input/output in NQL. The
ability to create, open, append, read, and write files is discussed. File and
directory operations are also covered.

Chapter 7, Transferring Files, describes how files can be transferred to and from
remote systems using File Transfer Protocol (FTP). It also covers file and
directory operations.

Chapter 8, Working with Databases, discusses how to query and modify databases.
Several database protocols are supported, permitting access to the vast majority
of databases.

Chapter 9, Working with XML, explores the retrieval, parsing, and generation of
XML documents. One of NQL’s most attractive features is its ability to convert
data to and from XML.

Chapter 10, Accessing Web Sites, focuses on interfacing with the World Wide Web.
Material covered includes accessing Web pages, submitting forms, crawling
Web sites, and downloading files. Web services are also covered.

Chapter 11, Processing HTML, attacks the problem of how to programmatically
mine data from Web pages. Multiple methods of extracting information from
HTML documents are covered.

Chapter 12, Sending and Receiving E-mail, examines NQL’s messaging capabilities.
The mechanics of sending e-mail messages, receiving them, and acting upon
them are covered.

Chapter 13, Accessing Newsgroups, shows how to access newsgroups, also known as
forums or discussion boards. Reading newsgroup postings allows your

71328_Pman_FM 12/21/01 4:50 PM Page xv

programs to gather information on public perceptions of a subject or who the
interested parties are.

Chapter 14, Searching Directory Servers, covers how to access directory servers with
the LDAP protocol. Searching directory servers allows your programs to
connect better with their local environment and locate people, systems, and
resources.

Chapter 15, Terminal Emulation, enters the world of connecting to UNIX systems,
minicomputers, and legacy systems. Your programs can mimic terminal-based
interactive users, sending commands, waiting for responses, and capturing
screens of output.

Chapter 16, Interacting with Applications, is about cooperation between your
programs and other software. OLE Automation permits you to exchange
information with other programs or control them. Exporting allows your scripts
to create documents, spreadsheets, and presentations.

Chapter 17, Socket Communications, describes TCP/IP socket programming in NQL,
which you would use to implement a protocol NQL does not already support,
or your own custom protocol.

Chapter 18, Serial Communications, discusses how to perform serial port
communications in NQL, which you would use to read and write data to and
from a local device connected to your computer.

Chapter 19, Synchronization, is concerned with creating distributed applications,
where multiple agents must cooperate to work as a team. Methods of
communications and synchronization are covered.

Chapter 20, E-Commerce, explores electronic transactions, which NQL supports for
several major credit card providers. Open Financial Exchange is also covered,
which makes automated interaction with financial institutions possible.

Chapter 21, Graphics, explains how to work with graphic images in NQL. Images
can be dynamically created, modified, saved, and converted to other formats.
The chapter also covers reading images from digital devices.

Chapter 22, Agent Characters, discusses how to create animated agent characters
that speak, move, and perform actions.

Chapter 23, Fuzzy Logic, describes the use of fuzzy logic, a form of soft computing.
Fuzzy logic allows your programs to represent real-world quantities more
accurately and make better decisions.

Chapter 24, Neural Networks, covers how to create, train, and run neural networks.
Neural networks are powerful due to their ability to learn, and are useful for
applications that require pattern matching or prediction.

Chapter 25, Bayesian Inference, focuses on Bayes’ Theorem and how it can be
applied to compute probabilities. Bayesian inference allows causes to be
inferred from effects, rather than the usual inferring of effects from causes.

Chapter 26, Interacting with the Desktop, enumerates the options NQL offers for
interacting with the desktop. This includes opening documents, displaying
console windows, rendering text-to-speech, and playing multimedia files.

xvi Introduction

71328_Pman_FM 12/21/01 4:50 PM Page xvi

Chapter 27, Network Monitoring, focuses on the use of the SNMP protocol to
interact with network devices. Network devices can be discovered, monitored,
and controlled.

Chapter 28, Web Applications, explores the use of NQL to drive solutions that can be
accessed from Web browsers. Like ASP and Perl, NQL scripts can power Web
applications.

Chapter 29, Supporting Mobile Devices, explains how to write Web applications that
can be accessed by mobile devices. A variety of PDAs and phones can be
supported.

Chapter 30, System Actions and Information, covers actions the operating system can
perform, such as powering down the computer; and information the operating
system can supply, such as the current user’s privileges.

Chapter 31, Calling NQL as a Component, is about the use of NQL as a callable object
from other development environments. It is possible to gain the benefits of NQL
without giving up the use of your favorite programming language.

Chapter 32, NQL Cookbook, is just what it sounds like: a collection of recipes for
putting NQL to work for a particular task. For each task listed in this chapter, a
step-by-step procedure and sample script are included.

Appendix A, NQL Versions and Editions, is your ammunition against version and
platform confusion. It describes editions of the language and platform
differences. Past and present versions of NQL are also described.

Who Should Read This Book

If you need to develop connected applications quickly, this book (and Network Query
Language) are for you. Since NQL appeals to both junior and experienced developers,
the book doesn’t assume that you have a deep background in computer science. It is
assumed that you understand the rudiments of programming, however. Program-
mers, IT personnel, Web masters, and content engineers can all put NQL to good use in
short order.

If you really want a firm grounding in NQL, then by all means read the book
straight through and try each of the tutorials. If you’re short on time or have a looming
deadline, here are some recommendations:

If you’re a junior programmer, read Chapters 1 through 5 carefully, which will give
you a good grounding in essentials. Go through the tutorials in these chapters
and make sure you understand them. The remaining chapters of the book are
topical, so when you need to do something new, like sending mail messages, go
to the appropriate chapter. You might want to briefly scan through all of the
chapters to develop a feeling for what NQL is capable of. You will find many
common tasks addressed in Chapter 32, including scripts that can serve as
templates for your own solutions.

For experienced programmers, you’ll probably want to skim through Chapters 1
through 5 to get a feel for the language, taking note of NQL’s distinguishing

Introduction xvii

71328_Pman_FM 12/21/01 4:50 PM Page xvii

characteristics and pausing for an extended read when you come across
something interesting. The remaining topical chapters can be read in any order
desired, and contain tutorials for getting up to speed quickly. If you plan to use
NQL to drive Web applications or mobile applications, you’ll want to read
Chapters 28 and 29 carefully. If you plan on calling NQL as a component from
another language, see Chapter 31. The cookbook in Chapter 32 provides many
ready-to-run scripts for putting NQL to use right away.

Conventions

This book uses certain conventions for showing code examples and reference forms of
statements and functions.

Names of Statements, Functions, and
Parameters
In the body text of the book, names of statements, functions, and parameters are often
italicized. For example, “the replace function requires two parameters, a search-string
and a replace-string.”

Code Examples
Code examples appear in monospaced type.

open filename

while read(line)

{

show line

}

close

When part of a code example is left to the imagination, an italicized line beginning
and ending with an ellipsis (...) appears.

open filename

while read(sLine)

{

...do something with sLine...

}

close

Small code examples are in-line with the body text; code examples that are larger or
are especially significant are cited by a listing number, such as “Listing 8.1.”

xviii Introduction

71328_Pman_FM 12/21/01 4:50 PM Page xviii

Statement and Function
Reference Forms
When a statement or function is first introduced, its reference form is usually given.
Reference forms appear in monospaced type. Although NQL will accept upper-,
lower-, or mixed-case keywords, the official rendering of these keywords in the lan-
guage is lower case, and that is how they appear in this book.

end

Parameters are italicized, indicating the places where you need to supply values.
Statement reference forms indicate a keyword and some number of parameters. Func-
tion reference forms indicate a return type, a keyword, and some number of parame-
ters in parentheses.

open filespec

boolean open(filespec)

Parameters that must be variables are indicated by the word var. When a variable
list (one or more variables) is needed, the term var-list is used.

clear var

output var-list

Introduction xix

//movie-reviews - reads movie reviews out of sample Access database

and displays results

dbpath = "c:\\Program

Files\\NQL\\Samples\\Scripts\\Database\\movies.mdb;"

dbprotocol "ado"

if opendb("Driver=Microsoft Access Driver (*.mdb); DBQ=" dbpath)

{

boolean bHaveData = select("select * from movies")

while bHaveData

{

dumpvars

bHaveData = nextrecord()

}

}

else

{

show "Unable to open the database " dbpath

}

closedb

Listing 8.1 Database example.

71328_Pman_FM 12/21/01 4:50 PM Page xix

Square brackets [] indicate optional elements. An ellipsis (...) within square brackets
indicates elements that can repeat multiple times.

nextline [var]

for var = [initial,] final [, increment]

sendmessage recipient, subject, message1, type1 [... , messageN, typeN]

If there are many statements or functions to be listed, they are arranged in a table.

Planned Features
Some NQL language features described in this book are described as planned features.
This means that these features were on the drawing board for Network Query Lan-
guage and were considered likely to be included in the 2.0 release, but a final decision
had not been committed to as of the time of this writing. In tables of statements and
functions, an asterisk signifies a planned feature. In body text, the phrase Planned fea-
ture: precedes discussion of planned features.

Names of Web Sites
Many of the sample scripts in this book access Web sites. Rather than using actual Web
site names, this book often uses generic placeholder names such as www.my-site.com,
www-my-news-site.com, and www.my-retail-site.com.

Tools You Will Need

To get the most out of this book, you’ll need a copy of Network Query Language so
that you can try things out. Even if you don’t own a copy, you can obtain an evaluation
edition, either from the book’s companion CD-ROM or the Internet. The version of
NQL reflected in this book is Version 2.0, so you’ll do best to have NQL 2.0 or later
installed. If you can only get NQL 1.1 for your platform, this book will still be useful to
you. Appendix A will help you keep your sanity if you happen to be using a different
version of NQL.

What’s on the CD-ROM

The companion CD-ROM contains software and code examples.
The software on the CD-ROM includes three versions of Network Query Language:

■■ Network Query Language for Windows version 2.0 (60-day evaluation)

■■ Network Query Language for Windows version 1.1 (60-day evaluation)

■■ Network Query Language for Java version 1.1 (60-day evaluation)

xx Introduction

71328_Pman_FM 12/21/01 4:50 PM Page xx

As of this writing, the Windows edition of NQL 2.0 was just nearing readiness. If
you’re running on a non-Windows platform, visit www.nqli.com or www.network-
querylanguage.com to determine what the latest version of NQL is, and what plat-
forms it is available for. If you can’t get your hands on NQL 2.0 or later for your type of
computer, take heart. NQL 1.1 is available in both a Windows edition and a Java edi-
tion that runs on all major computing platforms. If you have to use NQL 1.1 instead of
NQL 2.0, see Appendix A for some helpful information.

The CD-ROM also contains all of the NQL script code cited in the book as tutorials.
When you go through each chapter’s tutorial, you have the choice of entering script
code by hand or copying the script from the CD-ROM. If a tutorial script requires sup-
porting files, these are included as well.

Lastly, the scripts from Chapter 32, the NQL cookbook, are also included on the CD-
ROM. These ready-made scripts can reduce your learning curve significantly.

Where To Go from Here

It’s my sincere desire to see you and the rest of the world’s software developers do more
powerful things in a shorter timeframe. Network Query Language can be instrumental
in making that happen. If it becomes part of your standard collection of programming
tools you will find yourself being a programming superstar more often, and with less
effort! In this book, I’ve sought to justify the reasons for NQL’s existence; entice you with
its power, brevity, and ease of use; educate you through tutorials; and equip you with
essential reference information. The rest is up to you and your imagination.

I am happy to hear from readers, and can be reached at nqlbook@hotmail.com.

David Pallmann
Mission Viejo, California

Introduction xxi

71328_Pman_FM 12/21/01 4:50 PM Page xxi

Although I am the inventor of Network Query Language, I can hardly take sole credit
for it! Many talented people have contributed to the NQL effort over the years.
Christopher Hunter and John Ross have been integral to the language all along, from
its earliest inception to present day. In version 2.0, Brandon Bethke and Jed Stumpf
also served major architectural roles, taking charge of the compiler and runtime sys-
tems. The language also benefited from the ongoing engineering efforts of Robert Apo-
daca, Scott Bishop, Mike Campbell, Brian Connolly, Matt Grofsky, Ashur Novick, Peter
Tran, and Bill Walker. Gentlemen, I salute you all.

It takes more than engineers to see a new product developed. I would like to thank
Denny Michael and Doug Tullio, both of whom believed in NQL enough to dedicate
years to seeing it advance from an interesting concept into a commercial-grade product.
Their tireless efforts provided the conditions under which NQL could be developed.

To my wife Becky and daughters Susan and Debra, I must express my heartfelt
thanks for your support, without which it would have been impossible to write a
book. Putting up with a husband and dad with his nose in a laptop every waking
moment can’t have been enjoyable. The good news is, I’m back!

I am indebted to the fine folks at John Wiley & Sons for making the writing and edit-
ing process easy for me, and for their dedication to professionalism.

C H A P T E R

Acknowledgments

xxii

71328_Pman_FM 12/21/01 4:50 PM Page xxii

C H A P T E R

1

Presenting Network Query
Language (NQL)

1

This chapter gives you a first look at Network Query Language (NQL). It is often
instructive to gaze at something new from 30,000 feet before zooming in on the minute
detail, and that is certainly true of computer languages. Before diving into the nuts and
bolts of NQL, we want to consider the big picture: Its proper uses, its design philoso-
phies, and its unique features. This chapter offers a first look at NQL, discusses appro-
priate uses for the language, and examines its unique qualities. The chapter ends with
a tutorial in which you will enter, save, and run your first NQL program.

A First Look

It is traditional when introducing new languages to show a “Hello, World” program.
So let’s get that out of the way. The one-line script that follows displays “Hello, World”
on the screen.

show "Hello, World!"

That’s hardly very interesting, so let’s look at something slightly more ambitious
(and useful). The following script is a complete NQL program.

get "http://www.my-news-site.com"

match '{headline}'

71328_Pman_CH01I 12/14/01 1:47 PM Page 1

2 Network Query Language

while

{

output headline, link

nextmatch

}

Even if you’ve never seen NQL before, you can probably make an educated guess
about the purpose of this program. It accesses a news Web site, locates the news sto-
ries, and outputs the headlines and links as eXtensible Markup Language (XML). A
few things should strike you about this program:

■■ It is very small.

■■ It is very clear.

■■ It does something that is not easy (or even possible) in many mainstream
programming languages.

Appropriate Uses for NQL

Network Query Language is ideally suited for creating connected applications such as
bots, agents, spiders, middleware, Web applications, and mobile applications.

Bots are automated programs (the term bot comes from the word robot). Bots are
essential because of infoglut. The amount of information on the Internet is constantly
growing, and the same is true of electronic information within corporate networks. Yet
a human being’s ability to read, digest, and work with information is essentially fixed.
Thus, there is an information gap that grows worse each every day. Bots come to the res-
cue by automating tasks for people and making life manageable again.

Agents are bots that serve an individual. In the real world, we employ human
agents for all kinds of purposes: Travel agents, insurance agents, real estate agents,
accountants, attorneys, and so on. Agents specialize in an area and represent our per-
sonal interests. The same is true of software agents: They are very good at a specific
task, and they have a clear understanding of their master’s wishes.

Spiders are bots that crawl the Internet, indexing Web pages and constructing the
databases that power search engines. Spiders can be used for other purposes beside
search engines, such as creating site maps.

Middleware applications connect two or more systems or applications, helping
them to work in harmony as part of a larger system. Middleware is valuable because it
avoids having to change major systems, instead taking the approach of interfacing
between them.

Web applications are the modern gateway to interfacing with companies and other
organizations. Web applications perform such diverse functions as conveying infor-
mation, searching databases, initiating actions, and effecting transactions.

Mobile applications are Web applications that support Personal Digital Assistants
(PDAs) and cellular phones rather than desktop Web browsers. Mobile applications
have to be concerned with supporting a variety of devices and accommodating a small
display size, different output formats, and a simple user interface.

71328_Pman_CH01I 12/14/01 1:47 PM Page 2

Presenting Network Query Language (NQL) 3

Why a New Language?

Network Query Language came about after repeated disappointment with main-
stream programming languages. It wasn’t that these languages were especially defi-
cient; rather, what has changed is the focus of modern software development. Since
the rise of networking and the Internet, there has been a shift toward new kinds of
applications that stress communication, content transformation, distributed process-
ing, and smarter software. That means the statements and functions that have been
standard in languages for decades no longer serve us so well. In an age where pro-
grammers are performing new tasks and meeting new challenges, we need some new
tools in our toolbox.

Design Philosophies

It is no accident that NQL scripts are powerful yet remain small and elegant—that is a
reflection of the design philosophies that went into the language. The benefits to you
are more power, clarity of code, speedier development, and the ability to extend the
language further.

Power
NQL is an extremely powerful language. It has far more built-in capabilities than other
programming languages. There are over 500 statements and functions in NQL, many
of which aren’t found elsewhere. This unrivaled collection of building blocks is at your
immediate disposal. Many of the one-liners in NQL accomplish things that would nor-
mally require large, exceedingly complex programs in their own right.

Many difficult tasks become simple in NQL. It might be beyond you to directly
write programs that interact with Web sites, send and receive email, export data to
applications, or perform artificial intelligence—but these kinds of activities are ridicu-
lously easy in NQL.

Clarity
NQL is intended not only for professional programmers, but also for anyone who
needs to quickly create a connected application, such as IT personnel, content engi-
neers, and Webmasters. With this in mind, NQL makes no assumptions about com-
puter science background or prior programming experience. The result is a language
that has a simpler syntax than Visual Basic yet retains its power.

The names of statements and functions in NQL have been selected to be as straight-
forward as possible. Whereas some languages use ornate names for historical reasons,
NQL’s keywords tend to be one or more real words found in the dictionary. It is easy
to discern the meanings of statements with intuitive names like openmail, sendmessage,
and firstunreadmessage.

71328_Pman_CH01I 12/14/01 1:47 PM Page 3

4 Network Query Language

Likewise, the use of cryptic punctuation has been strenuously avoided. If an NQL
statement requires parameters, they simply appear to the right of the statement. If
there is more than one parameter, they are separated by commas. A newline separates
statements, so there’s no need for an end-of-statement character such as the semicolon
used in C++ and Java.

Rapid Development
NQL promotes rapid development. The aim is to turn months into weeks, weeks into
days, and days into hours. Features that facilitate rapid development include the fol-
lowing:

■■ A fast, friendly development environment

■■ A scripting language design that does not require a separate compilation
process

■■ Powerful building blocks built directly into the language

■■ A clear, compact syntax

■■ A safe, forgiving runtime environment

When you craft a program in a standard programming language, you typically
combine hundreds, thousands, or tens of thousands of instructions. Naturally this
takes time to write and debug. When programming in NQL, programs are composed
of far fewer statements because of the powerful building blocks built into the lan-
guage. Sometimes a complete NQL script is just a handful of statements. Tiny pro-
grams mean faster development, a smaller likelihood of errors, and faster debugging.

Let’s consider a case in point. Say you want to crawl a Web site and download files,
a task that is easy to talk about conceptually but is not trivial to program. Site crawling
requires a careful understanding of Web technologies in order to be done well and
normally an intermediate to senior level developer would be needed to implement
such a program. In a language like C++ or Java, crawling a Web site requires 20 or so
pages of code. In NQL, the task can be accomplished in just one statement, because site
crawling and file downloading are concepts built into the language.

Familiarity
NQL also stresses familiarity. Some languages make the error of being unique to the
point of alienating developers. Although NQL has many unique features and a unique
grammar, it also provides plenty of things programmers will find familiar. Among
these are the following:

■■ Typed variables

■■ Operators and expressions

■■ Multi-statement code blocks

71328_Pman_CH01I 12/14/01 1:47 PM Page 4

Presenting Network Query Language (NQL) 5

// Retrieve news headlines from a news site main page,

// output to a text file (news.text), and

// open the results on the desktop.

String headline

String link

Integer stories

Create "news.txt"

Get "http://www.my-news-site.com"

stories = 0

Match '• {headline}'

While

{

Write headline & ","

Write link & "\r\n"

stories = stories + 1

NextMatch

}

Close

OpenDoc "news.txt"

Listing 1.1 Visual Basic-like phrasing.

■■ Standard flow of control statements

■■ User-defined functions

To illustrate the point, take a look at the script code in Listings 1.1, 1.2, and 1.3. All
three scripts perform identically, but they don’t look all that similar. If you’re from a
Visual Basic background, Listing 1.1 probably looks most familiar to you.

If you come from a C++ or Java background, you’re probably more at-home with
Listing 1.2. NQL supports a number of conventions from Visual Basic, C++, and
Java, possessing aliases in many cases. Most statements can also be treated as func-
tions.

If you’ve used assembly language or a stack-oriented language such as Forth or
PostScript, you may relate best to Listing 1.3. The use of NQL statements and the stack
allows one to program in terms of instructions that work together, just like the instruc-
tions in a microprocessor.

As you can see, there is a great deal of freedom in how programs are expressed in
NQL. Capitalization is immaterial, as is indenting and the use of white space (that is,
spaces, tabs, and blank lines).

71328_Pman_CH01I 12/14/01 1:47 PM Page 5

6 Network Query Language

/***

* Retrieve news headlines from a news site page, *

* output to a text file (news.text), and *

* open the results on the desktop. *

***/

string headline, link

int stories = 0

if create("news.txt")

{

get "http://www.my-news-site.com"

while match('• {headline}')

{

write headline ","

write link "\r\n"

stories=stories+1

}

close

opendoc "news.txt"

}

Listing 1.2 C++/Java-like phrasing.

Customizable and Extensible
NQL is a customizable language. Every keyword in the language can be redefined.
The same is true for every error message. This level of customization makes it easy to
handle internationalization. All it takes to change keywords or messages is editing and
compiling a message file.

As powerful as NQL is, it can be extended. Anyone can write new statements for the
language, which become seamless additions indistinguishable from the core state-
ments in the language. In the Windows edition of NQL, a Dynamic Link Library (DLL)
(created in any language) can implement new statements. In the Java edition of NQL,
a Java class can implement new statements. Third parties with experience in specific
areas of technology or industries can leverage their expertise and make contributions
to NQL.

The Right Building Blocks

What are the building blocks that make NQL special? They fall into four main cate-
gories: communication, data conversion, automation/distributed processing, and intelligent
behavior. Connected applications frequently need to draw on building blocks in these
categories. For example, consider an agent that retrieves news stories from a Web site
every 24 hours and stores them as XML in a local database. The agent utilizes commu-

71328_Pman_CH01I 12/14/01 1:47 PM Page 6

Presenting Network Query Language (NQL) 7

; Retrieve news headlines from a news site page,

; output to a text file (news.text), and

; open the results on the desktop.

STRING HEADLINE

STRING LINK

INT STORIES

CREATE "news.txt"

GET "http://www.my-news-site.com"

STORIES =0

MATCH '• {HEADLINE}'

WHILE

{

WRITE HEADLINE | ","

WRITE LINK | "\r\n"

STORIES =STORIES+1

NEXTMATCH

}

CLOSE

OPENDOC "news.txt"

END

Listing 1.3 Assembler-like phrasing.

nication to retrieve Web pages, conversion to generate XML, automation to run every
24 hours, and intelligent behavior to identify news articles on Web pages.

Communication
NQL is full of support for Internet and network protocols. The communication facili-
ties allow you to retrieve information from just about anywhere, whether on the Inter-
net or corporate network. They also allow you to deliver information, results, or
notifications to people and systems, whether nearby or remote. The communication
facilities include the following:

Web sites. The ability to read Web pages, crawl Web sites, and interact with Web sites.

File input/output. Reading and writing disk files.

File Transfer. Sending and receiving files between computers.

Databases. Querying databases, and adding, updating, and deleting database
records.

71328_Pman_CH01I 12/14/01 1:47 PM Page 7

8 Network Query Language

Email. Sending and receiving email.

Newsgroups. Scanning newsgroups.

Directory Servers. Querying directory servers.

Terminal Emulation. Accessing UNIX systems and legacy systems.

Interaction with Applications. Controlling applications under program control,
and exporting.

Sockets. TCP/IP input/output.

Serial Communications. Serial port input/output.

e-Commerce. Processing credit card transactions and accessing financial servers.

Network Monitoring. Detecting network devices, reading their status, and
sending them commands.

Mobile Devices. Recognizing mobile devices and outputting data in their content
languages.

Web Services. Accessing XML-based services over the Internet.

Text-to-speech. Speaking content on the desktop.

Audio. Playing sound and music files on the desktop.

Video. Playing movie files on the desktop.

Data Conversion and Analysis
Because NQL can work with data in different ways and perform conversions between
common data types, it is possible for scripts to transform content. Coupled with NQL’s
communication capabilities, scripts are able to acquire content, analyze and transform
it, and deliver the results to users in just the format they desire. Some of NQL’s data-
related capabilities include the following:

XML. Parsing, validating, creating, importing, and exporting eXtensible Markup
Language, the standardized data language for representing all kinds of content.

HTML. Parsing, generating, importing, and exporting HyperText Markup
Language, the data language of Web pages.

Delimited data. Reading, writing, importing, and exporting delimited data files.

Images. Creating, manipulating, and converting graphic images.

Date/Time. Obtaining current date and time, converting to and from various
formats.

Filtering. Removing unwanted data.

Ranking. Analyzing and reordering information so that the most relevant items
appear first.

Conversion. Transforming data into other formats.

Strings. Manipulating strings and text, and generating formatted output.

71328_Pman_CH01I 12/14/01 1:47 PM Page 8

Presenting Network Query Language (NQL) 9

Automation and Distributed
Processing
Connected applications are frequently automated and/or distributed. Automated solu-
tions run all by themselves, either on a schedule or in response to events. Distributed
solutions require cooperation between multiple programs working together as a team.

Scheduling. Performing tasks at set dates and times, and repeating tasks at regular
intervals.

Inter-process communication. Communication between agents for cooperative
processing on a large scale.

Synchronization. Locking and unlocking to manage access to shared resources
and to coordinate processing.

Application control. Launching applications, on local or remote systems, and
passing them command line arguments, data, or keystrokes.

Intelligent Behavior and Analysis
An essential ingredient in constructing reliable software with good decision-making
capabilities is intelligence. NQL includes the following features that can be used to
make software smarter:

Neural Networks. Adaptive software that learns and can be applied to pattern
recognition, prediction, and organizational tasks.

Bayesian Inference. Predictive statistics that determine causes from effects.

Fuzzy Logic. Algorithms dealing with fine degrees of belief and probability.

Pattern Matching. Ability to recognize objects based on patterns or landmarks.

Categorization. Procedure of examining text and Web pages and assigning them
categories.

Miscellaneous
In addition to the four main categories just covered, there are some additional NQL
capabilities worth mentioning. They include the following:

Agent characters. Desktop characters that can display information, speak, and
perform actions.

Registry access. Reading and writing information to the system registry.

System information. Determining operating system, current directory, available
memory and resources, and other information.

System actions. Powering down, shutting down, or rebooting the computer, and
logging off the current user.

71328_Pman_CH01I 12/14/01 1:47 PM Page 9

10 Network Query Language

Role Independence

Network Query Language stresses role independence, allowing you to utilize NQL
wherever convenient. NQL scripts can execute on the desktop, on a server, as a Web
application, and as a component. This means you can use NQL to be that missing puz-
zle piece in your enterprise, taking on the size, shape, and location needed.

Desktop
On workstations, NQL scripts may run as desktop agents. The agents can be out of
sight or can take on a console appearance that resembles an MP3 player. The desktop
is a logical choice for these kinds of applications:

■■ Applications that need to speak, play audio, or play video on the desktop

■■ Applications that need to interact with users

■■ Applications that need to be on the desktop for permission/security content
reasons, such as an agent that reads incoming email messages

■■ Applications that need to perform on-screen notification, such as displaying
messages or animating agent characters

■■ Applications that need to launch, export to, or otherwise interact with other
desktop applications

Servers
On servers, NQL scripts can perform actions that service entire departments or organi-
zations rather than individuals. Servers are logical places for these kinds of applications:

■■ Applications that need to respond to clients

■■ Applications that need to process large amounts of data based on queues, lists,
or databases, such as shopping bots

■■ Middleware that interconnects two or more systems

■■ Scheduled applications that run in the background

Web Servers
On Web servers, NQL applications can operate as CGI applications, just as applica-
tions in languages like ASP, JSP, PHP, and Perl do. Web servers are a logical place for
the following kinds of applications:

■■ Web applications, accessible from desktop Web browsers

■■ Mobile applications, accessible from PDAs and phones

■■ Applications that need to be accessible from anywhere in the world

71328_Pman_CH01I 12/14/01 1:47 PM Page 10

Presenting Network Query Language (NQL) 11

Components
NQL can be called as a component, which gives you the luxury of continuing to use
other languages and development environments but still tap into NQL’s power when
you need it. Some instances where you might want to call NQL as a component
include the following:

■■ When you are extending existing projects already developed in another
language

■■ When you have programmers already comfortable in working with a different
language

■■ When you want to add communication, conversion, and intelligence features
easily to extensible applications, such as Microsoft Office

Tutorial: Directory

Now that you know something about NQL’s capabilities, let’s develop and run a com-
plete application. In this tutorial, you will create a script that examines a disk directory,
creates a Web page that lists the files, and opens the Web page in a browser on the
desktop. The result will be a Web page like the one shown in Figure 1.1.

There are four steps in this tutorial:

1. Launch the NQL development environment.

2. Enter the Directory script.

3. Run the Directory script.

4. Understand the Directory script.

When you are finished with this tutorial, you will have seen how to do the follow-
ing in NQL:

■■ Retrieve the names of files in a disk directory.

■■ Create a Web page and write HTML to it.

■■ Open a Web page in a browser on the desktop.

Let’s begin!

Step 1: Launch the NQL Development
Environment
Launch the NQL development environment. On a Windows system, this can be
accomplished by clicking on the NQL Client desktop icon, or by selecting Program
Files, Network Query Language, NQL Client from the Start Menu. On other platforms,
you should have a desktop icon and/or command line method of launching the NQL
Client.

71328_Pman_CH01I 12/14/01 1:47 PM Page 11

12 Network Query Language

Figure 1.1 Directory Web page.

At this point, you should have the NQL development environment active on your
desktop, with an empty code window. Now you’re ready to enter your first NQL
script.

Step 2: Enter the Directory Script
In the NQL development environment, enter the script shown in Listing 1.4 and save
it under the name directory.nql. Enter the script, then save it by clicking the Save tool-
bar button (which has a disk icon).

If you prefer, you may copy directory.nql from the companion CD. If you have
installed the companion CD on your system, you will have all of the book’s tutorial
materials in a \Tutorials directory on your hard drive. Click the Open toolbar button
(folder icon), and select directory.nql from the Tutorials\ch01 folder.

At this point, the script in Listing 1.4 should be in your code window, either because
you entered it by hand or because you opened the script from the companion CD. You
are now ready to run the script.

Step 3: Run the Directory Script
Now, take a deep breath and run the script. You can do this by selecting Build, Run
from the menu, clicking the Run toolbar button, or pressing F5. Almost immediately, a

71328_Pman_CH01I 12/14/01 1:47 PM Page 12

Presenting Network Query Language (NQL) 13

//directory - creates a Web page that shows the contents of a disk

directory

string path = "c:\\"

int size = length(path)

path = path & "*.*"

if !dir(path) { end }

create "directory.htm"

write "<html><head><title>Directory of {path}</title></head>"

write "<body bgcolor=#000088 text=#ffffff>"

write "<h1>Directory: {path}</h1>"

write "<table border=1 bgcolor=#0000FF><tr>"

while nextline(file)

{

file = mid(file, size+1)

write "<td>" file "</td>"

files = files+1

if files>=4

{

write "</tr><tr>"

files = 0

}

}

write "</tr></table>"

write "</body></html>"

close

opendoc "directory.htm"

end

Listing 1.4 Directory script.

Web page should open up on the desktop that shows a directory of the files in c:\. If
this does not happen, check the following:

1. Make sure you have a c: drive. If you don’t, change the path in the script.

2. Make sure there are files in the c:\ root directory. If there aren’t, change the path
in the script.

71328_Pman_CH01I 12/14/01 1:47 PM Page 13

14 Network Query Language

3. Ensure that you are running directory.nql from a disk directory that you can
write to. If not, copy the script to a different location, such as your primary
hard drive.

4. Ensure that you have a default application for displaying .htm files (most
systems assign a Web browser for this purpose).

5. Check the NQL client’s Errors tab for error messages.

At this point you should have seen the directory script run, generating a Web page
that lists the files in a disk directory. Although we haven’t discussed how it works yet,
you’ve seen the results of an NQL script first-hand, in this case exercising NQL’s abili-
ties to read disk directories, generate Web pages, and open files on the desktop. In the
next step, we’ll dissect the script and explain exactly how it works.

Step 4: Understand the Directory Script
We now want to make sure we understand every part of the directory script. The first
line is a comment line.

//directory - creates a Web page that shows the contents of a disk

directory

Next, a variable named path is declared and initialized. The word string indicates
that path is a string variable. The path is set to c:\, the directory to be displayed in the
Web page.

string path = "c:\\"

A second variable named size is now declared and initialized. The data type is inte-
ger, and the value is the length of the path string. The variable size will be used to sep-
arate the filename from the path prefix later in the script.

int size = length(path)

The path is appended with *.* so that it is now a full wildcard directory specification
of c:*.*.

path = path & "*.*"

A directory of the path is requested using the dir function. If a directory cannot be
obtained, dir returns false and the script ends. If the directory is obtained, it is stored
on the stack as a list of filenames separated by newlines.

if !dir(path) { end }

It is now time to create the Web page and write some initial HTML to it. The create
statement creates a new file and opens it, overriding any previous file of the same

71328_Pman_CH01I 12/14/01 1:47 PM Page 14

Presenting Network Query Language (NQL) 15

name. We call the Web page directory.htm. The write statements output some initial
HTML, ending in the beginnings of a table.

create "directory.htm"

write "<html><head><title>Directory of {path}</title></head>"

write "<body bgcolor=#000088 text=#ffffff>"

write "<h1>Directory: {path}</h1>"

write "<table border=1 bgcolor=#0000FF><tr>"

Now to loop through the filenames returned by the dir function earlier. A while loop
uses nextline to get the next line from the data on the stack. The loop runs as long as
there are files left to process, leaving the current file to work with in the variable
named file.

while nextline(file)

{

Within the loop, the filename is reduced to eliminate the path (drive and folder)
portion, using the mid function and the size variable calculated earlier. The file name is
then written out as an HTML table element. If more than four files across have been
written, additional HTML is written out to move to the next table row.

file = mid(file, size+1)

write "<td>" file "</td>"

files = files+1

if files>=4

{

write "</tr><tr>"

files = 0

}

}

Once all of the files have been written to the HTML, the table needs to be finished and
the final HTML suffix code needs to be output. More write statements take care of this.

write "</tr></table>"

write "</body></html>"

The HTML file is now finished and can be closed with close.

close

Lastly, we want to open the newly created Web page on the desktop. The opendoc
statement accomplishes this.

opendoc "directory.htm"

71328_Pman_CH01I 12/14/01 1:47 PM Page 15

16 Network Query Language

An end statement terminates the script.

end

At this point, you’ve not only seen an NQL script in action, you’ve also had a look
under the hood as well. The remaining chapters of this book go into more detail about
the families of NQL statements and functions.

Further Exercises
You could amend this example in a number of ways. Once you’ve learned more about
NQL from the chapters that follow, you may want to come back to this example and try
your hand at extending it. Here are some interesting modifications that can be made:

■■ Show different types of files in different colors. For example, .doc files in blue
and .xls files in green.

■■ Show more information about each file than just its name, such as the size of
the file.

■■ For text files, display an excerpt from the file.

Chapter Summary

Network Query Language is oriented toward the development of connected applica-
tions such as bots, agents, spiders, middleware, Web applications, and mobile applica-
tions. The design philosophies behind NQL yield power, clarity, and rapid development
while retaining familiarity to programmers and permitting extensibility.

NQL contains over 500 building blocks that fall into four main categories: commu-
nications, data conversion, automation/distributed processing, and intelligent behav-
ior. Powerful scripts can be created quickly from just a handful of these building
blocks.

NQL features role independence, which means it can be put to use anywhere it is
needed. Scripts can run on the desktop, on servers, on Web servers, and as compo-
nents. Although complete applications can be developed in NQL, it is also possible to
combine NQL with other languages.

You’ve had your first look at NQL. Hopefully you’ve seen a lot to get excited about.
The chapters that follow explore the language’s rules and capabilities in detail, with
plenty of examples along the way.

71328_Pman_CH01I 12/14/01 1:47 PM Page 16

