
John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Paul Massiglia

Highly Available Storage
for Windows® Servers

(VERITAS Series)

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page i

Innodata
0471264776.jpg

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page x

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Paul Massiglia

Highly Available Storage
for Windows® Servers

(VERITAS Series)

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page i

Publisher: Robert Ipsen
Editor: Carol A. Long
Assistant Editor: Adaobi Obi
Managing Editor: Micheline Frederick

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial
capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by Paul Massiglia. All rights reserved.

Published by John Wiley & Sons, Inc.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the appro-
priate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-
0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the sub-
ject matter covered. It is sold with the understanding that the publisher is not engaged in profes-
sional services. If professional advice or other expert assistance is required, the services of a
competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

Massiglia, Paul.
Highly available storage for Windows servers / Paul Massiglia.

p. cm.
ISBN 0-471-03444-4

1. Microsoft Windows server. 2. Client/server computing. 3. Computer storage devices.
I. Title.

QA76.9.C55 M394 2002
004.4'476—dc21 2001006393

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page ii

C O N T E N TS

iii

Acknowledgments xi
Foreword xiii

Part One Disk Storage Architecture 1

Chapter 1 Disk Storage Basics 3

Data Basics 3
Transient Data 3
Persistent Data 4

Disk Basics 5
Disks, Data and Standards 6
Magnetic Disk Operation 7
Pulse Timing and Recording Codes 8
Error Correction Codes 10
Locating Blocks of Data on Magnetic Disks 11
Logical Block Addressing 13
Zoned Data Recording 14
Disk Media Defects 15
Writing Data on Magnetic Disks 16
Intelligent Disks 17
Other Applications of Disk Intelligence: SMART Technology 18

Disk Controller and Subsystem Basics 19
External and Embedded Array Controllers 20
Host-Based Aggregation 22

Chapter 2 Volumes 25

The Volume Concept 25
Virtualization in Volumes 27
Why Volumes? 27
The Anatomy of Windows Disk Volumes 28
Mapping and Failure Protection: Plexes 28

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page iii

Chapter 3 Volumes That Are Not Failure Tolerant 31

Simple Volumes 31

Spanned Volumes 33
Spanned Volumes and Failure Tolerance 35
Spanned Volumes and I/O Performance 35

Applications for Simple and Spanned Volumes 36

Striped Volumes 37
Striped Volumes and Failure Tolerance 39
Striped Volumes and I/O Performance 40
Applications for Striped Volumes 41

Why Striped Volumes Are Effective 43
Striped Volumes and I/O Request-Intensive Applications 43
Striped Volumes and Data Transfer-Intensive Applications 47
Stripe Unit Size and I/O Performance 48
A Way to Categorize the I/O Performance Effects

of Data Striping 49
An Important Optimization for Striped Volumes:

Gather Writing and Scatter Reading 51

Chapter 4 Failure-Tolerant Volumes: Mirroring and RAID 53

RAID: The Technology 53
RAID Today 54

Mirrored Volumes 55
Mirrored Volumes and I/O Performance 57
Combining Striping with Mirroring 59
Split Mirrors: A Major Benefit of Mirrored Volumes 61

RAID Volumes 63
RAID Overview 63
RAID Check Data 63
The Hardware Cost of RAID 67

Data Striping with RAID 70
Writing Data to a RAID Volume 71
An Important Optimization for Small Writes to Large Volumes 71
An Important Optimization for Large Writes 74
The Parity Disk Bottleneck 75
A Summary of RAID Volume Performance 76

Failure-Tolerant Volumes and Data Availability 77
Mirroring and Availability 78
RAID and Availability 79

What Failure-Tolerant Volumes Don’t Do 80

I/O Subsystem Cache 82
Disk Cache 83
RAID Controller Cache 84

Contentsiv

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page iv

Operating System Cache 85
File System Metadata Cache 86
Database Management System and Other Application Cache 88

Part Two Volume Management for Windows Servers 89

Chapter 5 Disks and Volumes in Windows 2000 91

The Windows Operating Systems View of Disks 91
Starting the Computer 91
Locating and Loading the Operating System Loader 92
Extended Partitions and Logical Disks 94
Loading the Operating System 95

Dynamic Disks: Eliminating the Shortcomings
of the Partition Structure 96

Dynamic Volume Functionality 98

Volumes in Windows NT Operating Systems 99

Recovering Volumes from System Crashes 101
Update Logging for Mirrored Volume 101
Update Logging for RAID Volumes 102
Crash Recovery of Failure-Tolerant Volumes 102

Where Volume Managers Fit: The Windows OS I/O Stack 103
Windows Disk and Volume Naming Schemes 105

Volume Manager Implementations 106
Common Features of All Volume Managers 107
Volume Manager for Windows NT Version 4 108

Volume Managers for Windows 2000 108
Windows 2000 Volume Manager Capabilities 108

Array Managers 110
Volumes Made from Disk Arrays 111

Summary of Volume Manager Capabilities 118

Chapter 6 Host-Based Volumes in Windows Servers 119

Starting the Logical Disk Manager Console 120

Disk Management Simplified 126

Creating and Reconfiguring Partitions and Volumes 126
Invoking Logical Disk Manager Wizards 128

Upgrading Disks to Dynamic Format 130

Chapter 7 Basic Volumes 133

Creating a Simple Volume 133
Management Simplicity 140

Creating a Spanned Volume 142

Contents v

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page v

Creating a Striped Volume 146

Creating a Mirrored Volume 150
Splitting a Mirror from a Mirrored Volume 156
Adding a Mirror to a Logical Disk Manager Volume 158
Removing a Mirror from a Mirrored Volume 160

Chapter 8 Advanced Volumes 163

The Volume Manager for Windows 2000 163

Three-Mirror Volumes and Splitting 175
Part I: Adding a Mirror 177
Part II: Splitting a Mirror from a Mirrored Volume 181

Chapter 9 More Volume Management 189

Extending Volume Capacity 189
Volume Extension Rules 189

Features Unique to Windows 2000 Volumes 198
Mount Points 199
FAT32 File System 201

Mirrored-Striped Volumes 203
The Volume Manager and Mirrored-Striped Volumes 204
Dynamic Expansion of Mirrored Volumes 209
Splitting a Striped Mirror 210

Creating and Extending a RAID Volume 212
RAID Volumes and Disk Failure 216
Extending a RAID Volume (Volume Manager Only) 220

Multiple Volumes on the Same Disks 224

Monitoring Volume Performance 225

Relocating Subdisks 231

Disk Failure and Repair 235

Volume Management Events 240

Using Windows Command-Line Interface
to Manage Volumes 241

Chapter 10 Multipath Data Access 243

Physical I/O Paths 243

Chapter 11 Managing Hardware Disk Arrays 253

RAID Controllers 253
Embedded RAID Controllers 254

Array Managers 255
RAID Controllers and the Volume Manager 262
Dealing with Disk Failures 263

Contentsvi

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page vi

Chapter 12 Managing Volumes in Clusters 271

Clusters of Servers 271
Cluster Manager Data Access Architectures 273
Resources, Resource Groups, and Dependencies 273
Clusters and Windows Operating Systems 276
How Clustering Works 277

Microsoft Cluster Server 278
MSCS Heartbeats and Cluster Partitioning 279
Determining MSCS Membership: The Challenge/

Defense Protocol 280
MSCS Clusters and Volumes 282
Volumes as MSCS Quorum Resources 283

Volume Management in MSCS Clusters 283
Preparing Disks for Cluster Use 284
MSCS Resource Types: Resource DLLs and Extension DLLs 284
Using Host-Based Volumes as Cluster Resources 287
Multiple Disk Groups 288
Cluster Resource Group Creation 290
Making a Cluster Disk Group into a Cluster Resource 291
Controlling Failover: Cluster Resource Properties 293
Bringing a Resource Group Online 294
Administrator-Initiated Failover 296
Failback 297
Multiple Disk Groups in Clusters 298
Making a Volume Manager Disk Group into

an MSCS Cluster Resource 298
Making Cluster Resources Usable: A File Share 301

MSCS and Host-Based Volumes: A Summary 304
Disk Groups in the MSCS Environment 305
Disk Groups as MSCS Quorum Resources 305
Configuring Volumes for Use with MSCS 306

VERITAS Cluster Server and Volumes 306
VCS and Cluster Disk Groups 307
VCS Service Groups and Volumes 307
Service Group Failover in VCS Clusters 311
Adding Resources to a VCS Service Group 313
Troubleshooting: The VCS Event Log 318
Cluster Resource Functions: VCS Agents 318

Volume Manager Summary 319

Chapter 13 Data Replication: Managing Storage Over Distance 321

Data Replication Overview 321
Alternative Technologies for Data Replication 322
Data Replication Design Assumptions 323
Server-Based and RAID Subsystem-Based Replication 323

Contents vii

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page vii

Elements of Data Replication 326
Initial Synchronization 326
Replication for Frozen Image Creation 326
Continuous Replication 327

What Gets Replicated? 328
Volume Replication 329
File Replication 333
Database Replication 334

How Replication Works 336
Asynchronous Replication 339
Replication and Link Outages 342
Replication Software Architecture 343
Replicated Data Write Ordering 344
Initial Synchronization of Replicated Data 345
Initial Synchronization of Replicated Files 347
Resynchronization 347

Using Replication 348
Bidirectional Replication 348
Using Frozen Images with Replication 350

Volume Replication for Windows Servers: An Example 351
Managing Volume Replication 352
Creating a Replicated Data Set 353
VVR Data Change Map Logs 356
Initializing Replication 360
Sizing the Replication Log 362
Replication Log Overflow Protection 365
Protecting Data at a Secondary Location 366
Network Outages 366
Using Replicated Data 368
RVG Migration: Converting a Secondary RVG into a Primary 369

File Replication for Windows Servers 371
Replication Jobs 372
Specifying Replication Sources and Targets 374
Specifying Data to be Replicated 376
Replication Schedules 377
Starting Replication Administratively 378
Troubleshooting File Replication 381

Chapter 14 Windows Online Storage Recommendations 383

Rules of Thumb for Effective Online Storage Management 383

Choosing an Online Storage Type 383

Basic Volume Management Choices 384
Just a Bunch of Disks 384
Striped Volumes 388

Contentsviii

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page viii

Failure-Tolerant Storage: RAID versus Mirrored Volumes 389
RAID Volume Width 391
Number of Mirrors 392

Hybrid Volumes: RAID Controllers and Volume Managers 394
Host-Based and Subsystem-Based RAID 395
Host-Based and Subsystem-Based Mirrored Volumes 395
Using Host-Based Volume Managers to Manage Capacity 396
Combining Host-Based Volumes and RAID Subsystems

for Disaster Recoverability 397

Unallocated Storage Capacity Policies 398
Determination of Unallocated Storage Capacity 398
Distribution of Unallocated Storage 398
Amount of Unallocated Capacity 399
Spare Capacity and Disk Failures 400
Disk Groups and Hardware RAID Subsystems 400

Failed Disks, Spare Capacity, and Unrelocation 401

Using Disk Groups to Manage Storage 403
Using Disk Groups to Manage Storage in Clusters 403
Using Disk Groups to Control Capacity Utilization 403

Data Striping and I/O Performance 404
Striping for I/O Request-Intensive Applications 404
Striping for Data Transfer-Intensive Applications 406
Rules of Thumb for Data Striping 407
Staggered Starts for Striped Volumes 407
Striped Volume Width and Performance 408

Appendix 1 Disk and Volume States 411

Appendix 2 Recommendations at a Glance 415

Glossary of Storage Terminology 421

Index 443

Contents ix

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page ix

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page x

Acknowledgments

xi

The title page bears my name, and it’s true, I did put most of the words on paper.
But as anyone who has ever written a book—even a modestly technical book
like this one—is aware, it is inherently a team effort.

This project wouldn’t have come to fruition without a lot of support from a
number of talented people. Pete Benoit’s Redmond engineering team was of
immeasurable technical assistance. I single out Terry Carruthers, Debbie Gra-
ham, Pylee Lennil, and Mike Peterson, who all put substantial effort into cor-
recting my mistakes.

Philip Chan’s volume manager engineering team reviewed the original manu-
script for accuracy, and met all my requests for license keys, access to docu-
ments, and software, server accounts and technical consulting.

Particular thanks go to the engineers and lab technicians of VERITAS West,
who made both their facilities and their expertise available to me unstintingly.
Hrishi Vidwans, Vipin Shankar, Louis MacCubbin, T. J. Somics, Jimmy Lim,
Natalia Elenina, and Sathaiah Vanam were particularly helpful in this respect.

Karen Rask, the VERITAS product marketing manager for the Volume Man-
ager described in this book saw value in the concept and drove it through to
publication. Thanks, too, to other members of the VERITAS Foundation and
Clustering engineering and product management teams who supported the
project.

Richard Barker, my manager, had the forbearance not to ask too often what I
was doing with all my time. This book actually stemmed from an idea of

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page xi

Richard’s almost two years ago—although in retrospect, he may view it as
proof of the adage, “Be careful what you wish for. You may get it.”

Many other people contributed, both materially and by encouraging me when
necessary. You know who you are.

Errors that remain are solely my responsibility.

Paul Massiglia
Colorado Springs
August, 2001

Acknowledgementsxii

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page xii

The Importance of Understanding
Online Storage

F O R E WO R D

xiii

In recent years, the prevailing user view of failure-tolerant storage has pro-
gressed from “seldom-deployed high-cost extra” to “necessity for important
data in mission-critical applications,” and seems to be headed for “default
option for data center storage.” During the same period, the storage industry
has declared independence from the computer system industry, resulting in a
wider range of online storage alternatives for users.

Today, system administrators and managers who buy and configure online
storage need to understand the implications of their choices in this complex
environment. A prerequisite for making informed decisions about online stor-
age alternatives is an awareness of how disks, volumes, mirroring, RAID, and
failure-tolerant disk subsystems work; how they interact and what they can
and cannot do.

Similarly, client-server application developers and managers must concern
themselves with the quality of online storage service provided by their data
centers. Understanding storage technology can help these users negotiate
with their data centers to obtain the right cost, availability, and performance
alternatives for each application.

Moreover, volume management technologies are now available for the desk-
top. As disk prices continue to decline, widespread desktop use of these tech-
niques is only a matter of time. Desktop users should develop an
understanding of storage technology, just as they have done with other
aspects of their computers.

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page xiii

Highly Available Storage for Windows Servers (VERITAS Series) was written
for all of these audiences. Part I gives an architectural background, to enable
users to formulate online storage strategies, particularly with respect to fail-
ure tolerance and performance. Part II describes how VERITAS volume man-
agement technologies apply these principles in Windows operating system
environments.

Forewordxiv

8921_Massiglia_fm_f.qxd 3/4/02 10:45 AM Page xiv

Disk Storage Architecture

PA RTONE

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 1

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 2

Data Basics

Computer systems process data. The data they process may be transient, that
is, acquired or created during the course of processing and ceasing to exist
after processing is complete or it may be persistent, stored in some perma-
nent fashion so that program after program may access it.

Transient Data
The solitaire game familiar to Windows users is an example of transient data.
When a solitaire player starts a new game, transient data structures represent-
ing a deck of cards dealt into solitaire stacks is created. As the user plays the
game, keystrokes and mouse clicks are transformed into actions on virtual
cards. The solitaire program maintains transient data structures that describe
which cards are exposed in which stacks, which remain hidden and which
have been retired. As long as the player is engaged in the game, the solitaire
program maintains the data structures. When a game is over, however, or
when the program ceases to run, the transient data structures are deleted
from memory and cease to exist.

In today’s computers, with volatile random access memory, programs may
cease to run and their transient data cease to exist for a variety of uncontrol-

Disk Storage Basics

C H A P T E R 1

3

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 3

lable reasons that are collectively known as crashes. Crashes may result from
power failure, from operating system failure, from application failure, or from
operational error. Whatever the cause, the effect of a crash is that transient
data is lost, along with the work or business state it represents. The conse-
quence of crashes is generally a need to redo the work that went into creating
the lost transient data.

Persistent Data
If all data were transient, computers would not be very useful. Fortunately,
technology has provided the means for data to last, or persist, across crashes
and other program terminations. Several technologies, including battery-
backed dynamic random access memory (solid state disk) and optical disk,
are available for storing data persistently; but far and away the most prevalent
storage technology is the magnetic disk.

Persistent data objects (for example, files) outlast the execution of the pro-
grams that process them. When a program stops executing, its persistent data
objects remain in existence, available to other programs to process for other
purposes. Persistent data objects also survive crashes. Data objects that have
been stored persistently prior to a crash again become available for process-
ing after the cause of the crash has been discovered and remedied, and the
system has been restarted. Work already done to create data objects or alter
them to reflect new business states need not be redone. Persistent data
objects, therefore, not only make computers useful as recordkeepers, they
makes computers more resilient in the face of the inevitable failures that
befall electromechanical devices.

Persistent data objects differ so fundamentally from transient data that a dif-
ferent metaphor is used to describe them for human use. Whereas transient
data is typically thought of in terms of variables or data structures to which
values are assigned (for example, let A = 23), persistent data objects are
typically regarded as files, from which data can be read and to which data can
be written. The file metaphor is based on an analogy to physical file cabinets,
with their hierarchy of drawers and folders for organizing large numbers of
data objects. Figure 1.1 illustrates key aspects of the file metaphor for persis-
tent data objects.

The file metaphor for persistent computer data is particularly apt for several
reasons:

■■ The root of the metaphor is a physical device—the file cabinet. Each file
cabinet represents a separate starting point in a search for documents. An
organization that needs to store files must choose between smaller number
of larger file cabinets and a larger number of smaller filer cabinets.

C H A P T E R O N E4

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 4

■■ File cabinets fundamentally hold file folders. File folders may be hierar-
chical: They may hold folders, which hold other folders, and so forth.

■■ Ultimately, the reason for file folders is to hold documents, or files. Thus,
with rare exceptions, the lowest level of hierarchy of file folders consists
of folders that hold documents.

■■ File folders are purely an organizational abstraction. Any relationship
between a folder and the documents in it is entirely at the discretion of the
user or system administrator who places documents in folders.

The file cabinet/file folder metaphor has proven so useful in computing that it
has become nearly universal. Virtually all computers, except those that are
embedded in other products, include a software component called a file sys-

tem that implements the file cabinet metaphor for persistent data. UNIX sys-
tems typically use a single cabinet abstraction, with all folders contained in a
single root folder. Windows operating systems use a multicabinet abstraction,
with each “cabinet” corresponding to a physical or logical storage device that
is identified by a drive letter.

Disk Basics

Of the technologies used for persistent data storage, the most prevalent by far
is the rotating magnetic disk. Magnetic disks have several properties that
make them the preferred technology solution for storing persistent data:

Low cost. Today, raw magnetic disk storage costs between 1 and 5 cents per
megabyte. This compares with a dollar or more for dynamic random access
memory.

Disk Storage Basics 5

File Cabinet

File Folders

Embedded File Folders

Documents (files)

Figure 1.1 The file metaphor for persistent data objects.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 5

Random access. Relatively small blocks of data stored on magnetic disks can
be accessed in random order.1 This allows programs to execute and process
files in an order determined by business needs rather than by data access
technology.

High reliability. Magnetic disks are among the most reliable electromechani-
cal devices built today. Disk vendors routinely claim that their products
have statistical mean times between failures of as much as a million hours.

Universality. Over the course of the last 15 years, disk interface technology
has gradually become standardized. Today, most vendors’ disks can be used
with most computer systems. This has resulted in a competitive market that
tends to reinforce a cycle of improving products and decreasing prices.

Disks, Data and Standards
Standardization of disk interface technology unfortunately has not led to to
standardization of data formats. Each operating systems and file system has a
unique “on disk format,” and is generally not able to operate on disks written
by other operating systems and file systems without a filter or adapter applica-
tion. Operating systems that use Windows NT technology include three major
file systems (Figure 1.2 shows the latter two):

File Allocation Table, or FAT. DOS-compatible files system retained pri-
marily for compatibility retained for compatibility with other operating sys-
tems, both from Microsoft and from other vendors.

FAT32. 32-bit version of the FAT file system originally developed to allow per-
sonal computers to accommodate large disks, but supported by Windows
operating systems that use NT technology.

NTFS. The native files system for NT Technology files systems.

NT Technology operating systems also include an Installable File System (IFS)
facility that enables software vendors to install additional software layers in
the Windows operating system data access stack to filter and preprocess file
system input/output (I/O) requests.

The three Windows NT file systems use different on-disk formats. The for-
mat function of Windows NT Disk Administrator prepares a disk for use with

C H A P T E R O N E6

1Strictly speaking, disks do not provide random access to data in quite the same sense as dy-
namic random access memory (DRAM). The primitive actions (and therefore the time) required
to access a block of data depend partly upon the last block accessed (which determines the seek
time) and partly upon the timing of the access request (which determines the rotational latency).
Unlike tapes, however, each disk access specifies explicitly which data is to be accessed. In this
sense, disks are like random access memory, and operating system I/O driver models treat disks
as random access devices.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 6

one of the file systems by writing the initial file system metadata2 on it. The
operating system mount function associates a disk with the file system for
which it is formatted and makes data on the disk accessible to applications.

Windows operating systems mount all visible disks automatically when they
start up, so the act of associating a disk with its file system is generally trans-
parent to system administrators and users once the disk has been formatted
for use.

Magnetic Disk Operation
While magnetic disks incorporate a diverse set of highly developed technolo-
gies, the physical principles on which they are based are simple. In certain
materials, called ferromagnetic materials, small regions can be permanently
magnetized by placing them near a magnetic field. Other materials are para-

magnetic, meaning that they can be magnetized momentarily by being
brought into proximity with an electrical current in a coil. Figure 1.3 illus-
trates the components of a magnetic recording system.

Once a ferromagnetic material has been magnetized (e.g., by being brought
near a strongly magnetized paramagnetic material), moving it past a paramag-
netic material with a coil of wire wrapped around it results in a voltage change
corresponding to each change in magnetization direction. The timing of these
pulses, which is determined by the distance between transitions in field direc-
tion and the relative velocity of the materials, can be interpreted as a stream
of data bits, as Figure 1.4 illustrates.

Disk Storage Basics 7

2File system metadata is data about the file system and user data stored. It includes file names,
information about the location of data within the file system, user access right information, file
system free space and other data.

Figure 1.2 FAT and NTFS file systems on different disk partitions.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 7

Magnetic disk (and tape) recording relies on relative motion between the ferro-
magnetic recording material (the media) and the device providing recording
energy or sensing magnetic state (the head). In magnetic disks, circular plat-
ters rotate relative to a stationary read/write head while data is read or written.

Pulse Timing and Recording Codes
Disk platters rotate at a nominally constant velocity, so the relative velocity of
read/write head and media is nominally constant, allowing constant time slots
to be established. In each time slot, there either is or is not a pulse. With con-
stant rotational velocity and an electronic timer generating time slots, pulses
could be interpreted as binary ones, and the absence of pulses could be inter-
preted as zeros. Figure 1.5 illustrates this simple encoding. Pulses peak in the

C H A P T E R O N E8

Paramagnetic Recording
and Read-Back Device

Relative
Motion

Ferromagnetic
Recording

Material

Wire Coil

Figure 1.3 General principle of magnetic data recording.

Recording
device

Media state
changes cause

electrical pulses.

Known
(usally constant)
relative velocity

Volts

Time

Data is derived from the
timing between pulses.

Signal
detection

Figure 1.4 Recovering data recorded on disks from pulse timing.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 8

third and twelfth time intervals and are interpreted as “1” bits. Other intervals
lack pulse peaks and are interpreted as “0” bits.

If rotational velocity were truly constant and the electronics used to establish
time slots were perfect, this simple encoding scheme would be adequate.
Unfortunately, minor variations in rotational speed and timer electronics can
cause pulses to drift into adjacent time slots and to be interpreted incorrectly,
as illustrated in Figure 1.6.

Using the encoding scheme illustrated in Figures 1.5 and 1.6, an entire block
of binary zeros would produce no pulses when read back. To guard against
this, on-disk data is encoded using algorithms that guarantee the occurrence
of frequent pulses independent of the input data pattern of ones and zeros.
Pulses are input to a phase-locked loop, which in turn adjusts time slots. The
constant fine-tuning maximizes the likelihood that pulses will be interpreted
correctly. Encoding schemes that guarantee frequent pulses (or 1 bits) inde-
pendent of the application data pattern are called run-length-limited, or RLL
codes. Figure 1.7 illustrates a very simple RLL code.

RLL codes are characterized by the smallest and largest possible intervals
between 1- bits in the encoded bit stream. Thus, the code illustrated in Figure
1.7 would be characterized as a 0,4 code, because:

Disk Storage Basics 9

Volts

Time

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 011

Evenly spaced time intervals generated by clock

Figure 1.5 Inferring data from a combination of voltage pulses and timing.

Volts

Time

Correct pulse spacing

Data 0 1 0 0 0 0 0 0

Incorrect
bitsMomentary slowdown causes pulse to be misinterpreted.

0 1 0 00 0 0 0 0 0 0

Figure 1.6 Effect of timing on data recovery.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 9

■■ Pulses in adjacent time slots can occur (e.g., user data 0010, which en-
codes into 001100).

■■ There can be at most four time slots between pulses (user data 1000, which
encodes into 100001).

With this code, a pulse is guaranteed to occur in the encoded bit stream at
least every fifth time slot. Thus, the maximum time that the timing generator
must remain synchronized without feedback from the data stream itself is
four time slots.

Actual RLL codes are typically more elaborate than the one illustrated in Fig-
ure 1.7, sometimes guaranteeing a minimum of one or more time intervals
between adjacent pulses. This is beneficial because it decreases the frequency
spectrum over which the disk’s data decoding logic must operate.

Error Correction Codes
Even with run-length encoding and phase-locked loops, errors can occur when
data is read from disks. Mathematically elaborate checksum schemes have
been developed to protect against the possibility of incorrect data being
accepted as correct; and in many instances, these checksums can correct
errors in data delivered by a disk. In general, these error correction codes, or
ECCs, are generated by viewing a block of data as a polynomial, whose coeffi-
cients are consecutive strings of bits comprising the data block. As data is writ-
ten, specialized hardware at the source (e.g., in a disk, just upstream of the
write logic) divides the data polynomial by a smaller, fixed polynomial called a
generating polynomial. The quotient of the division is discarded, and the

C H A P T E R O N E10

Encoder

00 001

01 010

10 100

11 101

Incoming
Data

Resulting
Code Bits

00011011
11

00
10

10 01 01

001 010
101

100

101

010

100

001

010

100
Incoming

Data

Encoded
Data

to Media

from
Application

Figure 1.7 Example of a run-length-limited data encoding.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 10

remainder, which is guaranteed to be of limited size, is appended to the data
stream as a checksum and written to disk media, as illustrated in Figure 1.8.

When data is read back from the disk, the read logic performs the same com-
putation, this time retaining the quotient and comparing the computed remain-
der to the checksum read from the disk. A difference in the two is a signal that
data and/or checksum have been read incorrectly. The mathematical proper-
ties of the checksum are such that the difference between the two remainders
plus the coefficients of the quotient can be used, to correct the erroneous data
within limits.

The specialized hardware used to compute checksums is usually able to cor-
rect simple data errors without delaying the data stream. More complex error
patterns require disk firmware assistance. So when these patterns occur, data
may reach memory out of order. Error-free blocks that occur later in the data
stream may be delivered before earlier erroneous ones. Thus it is important
for applications and data managers not to assume that data read from a disk is
present in memory until the disk has signaled that a read is complete.

Locating Blocks of Data on
Magnetic Disks

For purposes of identifying and locating data, magnetic disks are logically
organized into concentric circles called tracks, as illustrated in Figure 1.8.
Read/write heads are attached to actuators that move them from track to
track.

On each track, data is stored in blocks of fixed size (512 bytes in Windows and
most other systems). Each disk block starts with a synchronization pattern

Disk Storage Basics 11

Tracks

Disk Surface

Index markServo
information

Synch Header User Data ECC Trailer

Figure 1.8 Magnetic disk data layout.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 11

and identifying header3 followed by user data, an error correction code (ECC)
and a trailer pattern. Adjacent blocks are separated by servo signals, recorded
patterns that help keep the read/write head centered over the track. An index
mark at the start of each track helps the disk’s position control logic keep
track of rotational position.

Figure 1.8 illustrates one surface of one disk platter. All the blocks at a given
radius comprise a track. On a disk with multiple recording surfaces, all of the
tracks at a given radius are collectively known as a cylinder. The disk illus-
trated in Figure 1.8 has the same number of blocks on each track. The capac-
ity of such a disk is given by:

Disk capacity (bytes) = number of blocks per track

× number of tracks

× number of data heads (data surfaces)

× number of bytes per block

Each block of data on such a disk can be located (“addressed”) by specifying
a cylinder, a head (recording surface) and a (relative) block number. This is
called cylinder, head, sector, or C-H-S addressing. Figure 1.9 illustrates C-H-S
addressing.

C H A P T E R O N E12

3In some newer disk models, the header is eliminated to save space and increase storage capacity.

3. Rotate to block 2 on track

“Index
mark”

1. Seek to cylinder 1

2. Select
head/surface

combination 2

4. Read
or write
a block
of data

Figure 1.9 Locating data on a disk.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 12

Figure 1.9 illustrates the three distinct operations required to locate a block of
data on a multisurface disk for reading or writing:

■■ Seeking moves the actuator to position the recording heads approximately
over the track on which the target data is located.

■■ Selection of the head that will read or write data connects the head’s out-
put to the disk’s read/write channel so that servo information can be used
to center the head precisely on the track.

■■ Rotation of the platter stack brings the block to be read or written directly
under the head, at which time the read or write channel is enabled for data
transfer.

Logical Block Addressing
C-H-S addressing is inconvenient for disk drivers and file systems because it
requires awareness of disk geometry. To use C-H-S addressing to locate data, a
program must be aware of the number of cylinders, recording surfaces, and
blocks per track of each disk. This would require that software be customized
for each type of disk. While this was in fact done in the early days of disk stor-
age, more recently the disk industry has adopted the more abstract logical

block addressing model for disks, illustrated in Figure 1.10.

With logical block addressing, disk blocks are numbered in ascending se-
quence. To read or write data, file systems and drivers specify a logical block
number. A microprocessor in the disk itself converts between the logical
block address and the C-H-S address, as illustrated in Figure 1.11.

Disk Storage Basics 13

Logical block model of disk
(visible to hosts)

Block 007

Block 005

Block 004

Block 003

Block 006

Block 002

Block 001

Block 000

etc.

Disk
Logical block m odel o f d

(visible t o hos t s)

Disk
Fi

Physical disk

Conversion performed
by disk microprocessor

Figure 1.10 The logical block disk data-addressing model.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 13

Desktop computer disks typically support both C-H-S and block data address-
ing, largely for reasons of backward compatibility. The SCSI and Fibre Chan-
nel disks typically used in servers and multidisk subsystems use block
addressing exclusively.

Zoned Data Recording
Each block on the outermost track of the disk platter illustrated in Figure 1.9
occupies considerably more linear distance than the corresponding block on
the innermost track, even though it contains the same amount of data. During
the early 1990s, in an effort to reduce storage cost, disk designers began to
design disks in which the longer outer tracks are divided into more blocks
than the shorter inner ones. Although this increased the complexity of disk
electronics, it also increased the storage capacity for any given level of head
and media technology by as much as 50 percent. Today, this technique goes by
the names such as zoned data recording (ZDR). The cylinders of a ZDR disk
are grouped into zones, each of which is formatted to hold a different number
of 512 byte blocks. Figure 1.12 illustrates a platter surface of a ZDR disk with
two zones.

In Figure 1.12, each track in the inner zone contains 8 blocks, while each track
in the outer zone contains 16. Compared to the disk illustrated in Figure 1.9,
capacity is 50 percent higher, with little if any incremental product cost. (Fig-
ure 1.12 uses unrealistically low numbers of blocks per track for the sake of
clarity of the diagram. Typical ZDR disks have 20 or more zones, with between
100 and 200 blocks per track. For 3.5-inch diameter disks, the outermost zone
usually has about twice as many blocks per track as the innermost zone.)

C H A P T E R O N E14

READ
• 2048 bytes of data t
• starting at disk block

1002

WRITE
• 1536 bytes of data
• starting at disk block

2001
READ
• SEEK to cylinder 2
• SELECT head 2
• ENABLE reading at

sector 2
• DISABLE reading at

sector 6

Disk
Firmware

Disk Geometry
• 100 blocks/track
• 4 surfaces
• 1000 cylinders

WRITE
• SEEK to cylinder 5
• SELECT head 0
• ENABLE writing at

sector 1
• DISABLE writing at

sector 4

from
host

to
disk

Figure 1.11 Conversion between logical block and C-H-S data addressing.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 14

Because of the beneficial effect on cost per byte of storage, zone bit recording
has essentially become ubiquitous.

Disk Media Defects
With the high recording densities in use today, miniscule material defects can
render part of a recording surface permanently unrecordable. The blocks that
would logically lie in these surface areas are called defective blocks. Attempts
to read or write data in a defective block always fail. The conventional way of
dealing with defective blocks is to reserve a small percentage of a disk’s block
capacity to be substituted for defective blocks when they are identified. Corre-
spondence tables relate the addresses of defective blocks to addresses of sub-
stitute blocks and enable file systems to treat disks as if they were defect-free.
Figure 1.13 illustrates such a correspondence table. These tables are some-
times called revectoring tables and the process of converting a host-specified
block number that maps to a defective block into the C-H-S address of a sub-
stitute block is called revectoring.

In the early days of disk technology, defective blocks were visible to hosts,
and operating system drivers maintained revectoring tables for each disk.
Like address conversion, however, revectoring is highly disk type-specific.

Disk Storage Basics 15

Index
mark

Inner zone:
8 blocks per track

Outer zone:
16 blocks per track

Figure 1.12 One platter of a zoned data-recorded disk.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 15

Consequently, it became apparent to the disk industry that revectoring could
be performed most effectively by the disks themselves. Today, most disks
revector I/O requests addressed to defective blocks to reserved areas of the
media using a correspondence table similar to that illustrated in Figure 1.13.

Inside-the-disk bad block revectoring (BBR) allows host drivers as well as file
systems to treat disks as if there were no defective blocks. From the host’s
point of view, a disk is a consecutively numbered set of blocks. Within the
disk, block addresses specified by file systems are regarded as logical. The
disk translates them into physical media locations, and in so doing, transpar-
ently substitutes for defective blocks as necessary.

Writing Data on Magnetic Disks
A little-recognized fact about magnetic disks is that, there is very little physi-
cal feedback to confirm that data has been correctly written. Disk read/write
logic and the read/write channel write each block’s preamble, header, user
data, ECC, and trailer, and disengage. Hardware in the read/write channel veri-
fies signal levels, and head position is validated frequently with servo feed-
back, but data written to the media is not verified by, for example, immediate
rereading, as is done with tape drives. Disks are able to reread and verify data
after writing it, but this necessitates an extra disk revolution for every write.
This affects performance adversely (single-block write times can increase by
50 percent or more), so the capability is rarely used in practice. Fortunately,
writing data on disks is an extremely reliable operation, enough so that most
of data processing can be predicated upon it. There is always a miniscule
chance, however, that data written by a host will not be readable. Moreover,

C H A P T E R O N E16

Defective Block
Recovering Table

••
••
••

I/O requests specify original block address

defective substitute
block block

number address

One or more tracks reserved for
defective block substitution

Substitution table causes disk to
transparently reroute I/O request to
substitute block.

Figure 1.13 Defective block substitution.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 16

unreadable data will not be discovered until a read is attempted, by which
time it is usually impossible to re-create. The remote possibility of unreadable
data is one of several reasons to use failure-tolerant volumes for business-
critical online data.

Intelligent Disks
Electronic miniaturization and integration have made it technically and eco-
nomically feasible to embed an entire disk controller in every disk built today,
making the disk, in effect, a complete subsystem, as the block diagram in Fig-
ure 1.14 illustrates.

A subtle but important property of the architecture illustrated in Figure 1.14
is the abstraction of the disk’s external interface. Today, host computers no
longer communicate directly with disk read/write channels. Instead, they com-
municate with the logical interface labeled “Host I/O Bus Interface” in Figure
1.14. I/O requests sent to this logical interface are transformed by a micro-
processor within the disk. Among its activities, this processor:

■■ Converts logical block addresses into C-H-S addresses and performs revec-
toring as necessary.

■■ Breaks down hosts’ read and write requests into more primitive seek,
search, and read and write channel enable and disable operations.

■■ Manages data transfer through the disk’s internal buffers to and from the
host.

All of this activity is transparent to hosts, which use simple read and write
commands that specify logical block addresses from a dense linear space.

Abstract host I/O interfaces allow disks to evolve as component technologies
develop without significant implications for their external environment. A

Disk Storage Basics 17

Data

Read/Write
Channel

Error
Correction

Processor

Buffer

Commands

Host I/O Bus
Interface

Commands &
Data to Host

Servo
Control

Serialization &
Deserialization

Rotational
Position

Intelligent
Disk with
Integrate
Controller

Figure 1.14 Block diagram of an intelligent disk with embedded controller.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 17

disk might use radically different technology from its predecessors, but if it
responds to I/O requests, transfers data, and reports errors in the same way,
the system support implications of the new disk are very minor, making mar-
ket introduction easy. This very powerful abstract I/O interface concept is
embodied in today’s standard I/O interfaces such as SCSI, ATA (EIDE)4 and
FCP. Disks that use these interfaces are easily interchangeable. This allows
applications to use the increased storage capacity and performance delivered
as technology evolves, with minimal support implications.

Other Applications of Disk
Intelligence: SMART Technology

One innovative use of disk intelligence that has emerged in recent years is disk
self-monitoring for predictive failure analysis. With so many millions of sam-
ples upon which to base statistical analyses, disk manufacturers have devel-
oped significant bodies of knowledge about how certain physical conditions
within disk drives indicate impending failures before they occur. In general,
these physical conditions are sensed by a disk and are implementation-specific.
Such factors as head flying height (distance between read/write head and disk
platter), positioning error rates, and media defect rates are useful indicators of
possible disk failure.

A SCSI standard called Self-Monitoring, Analysis, and Reporting Technology
(SMART) provides a uniform mechanism that enables disks to report normal-
ized predictive failure information to a host environment. Disks that use the
ATA interface report raw SMART information when polled by their hosts. The
hosts then make any predictive failure decisions. Large system disks use built-in
intelligence to analyze SMART information themselves and only report danger
signals to their hosts when analysis indicates that a failure might be imminent.

Hosts that support SMART alert system administrators when a disk is in dan-
ger of failing. The system administrator can then take action to protect data
on the failing disk—for example, by scheduling an immediate backup.

Though SMART improves the reliability of data stored on disks, the technology
is not without its limitations. It is chiefly useful to predict failures that are char-
acterized by gradual deterioration of some measurable disk parameter. SMART
does not protect against sudden failures, as are typical of logic module failures.

Because SMART reports refer to conditions that are deteriorating with time,
system administrators must receive and act on them promptly. SMART is thus
most useful in environments that are monitored constantly by administrators.

C H A P T E R O N E18

4AT(advanced technology) Attachment; also known as extended IDE intelligent drive electronics,
FCP = Fibre Channel Protocol

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 18

SMART is indeed a useful technology for improving the reliability of data
stored on disks, but it is most effective in protecting data against disk failures
when used in conjunction with volume management techniques described
later in Chapter 2.

Disk Controller and Subsystem Basics

As disks evolved during the 1980s into the self-contained intelligent subsys-
tems represented in Figure 1.14, separate controllers were no longer re-
quired for low-level functions such as motion control, data separation, and
error recovery. The concept of aggregating disks to improve performance
and availability is a powerful one, however, so intelligent disk subsystems

with aggregating disk controllers evolved in their place. Figure 1.15 illus-
trates the essentials of an intelligent disk subsystem with an aggregating
controller.

The aggregating disk controller that is shown in Figure 1.15 with four disk I/O
bus interfaces that connect to a memory access bus internal to the controller.
The disk I/O buses connect intelligent disks to the controller. The disk con-
troller coordinates I/O to arrays of two or more disks, and makes them
appear to host computers over the host I/O bus interface as virtual disks.

Aggregating disk controllers can:

■■ Concatenate disks and present their combined capacity as a single large
virtual disk.

■■ Stripe or distribute data across disks for improved performance and
present the combined capacity as a single large virtual disk.

Disk Storage Basics 19

Host Computer Aggregating
Disk Controller Disk I/O Bus

Interface

Real-time
RAID
Striping

DRAM
Buffer/Cache

Host I/O Bus
Interface

Internal Bus

File
System

App

App

App

File I/O
Commands &

Data

Disk I/O

Disk I/O Bus
Interface

Disk I/O Bus
Interface

Disk I/O Bus
Interface

Volume I/O
Commands &

Data

Policy Processor

Commands & Data

Disk I/O buses
(e.g., SCSI)

Figure 1.15 Intelligent disk subsystem with aggregating disk controller.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 19

■■ Mirror identical block contents on two or more disks or striped volumes,
and present them as a single failure-tolerant virtual disk.

■■ Combine several disks using Redundant Array of Independent Disk (RAID)
techniques to stripe data across the disks with parity check data inter-
spersed, and present the combined available capacity of the disks as a sin-
gle failure-tolerant virtual disk.

Each of the disk I/O bus interfaces in Figure 1.15 sends I/O requests to, and
moves data between, one or more disks and a dynamic random access mem-
ory (DRAM) buffer within the aggregating controller. Similarly, a host I/O bus
interface in the aggregating controller moves data between the buffer and one
or more host computers. A policy processor transforms each host I/O request
made to a volume into one or more requests to disks, and sends them to disks
via the disk I/O bus interfaces. For example, if two mirrored disks are being
presented to host computers as a single failure-tolerant virtual disk, the aggre-
gating controller would:

■■ Choose one of the disks to satisfy each application read request, and issue
a read request to it.

■■ Convert each host write request made to the volume into equivalent write
requests for each of the mirrored disks.

Similarly, if data were striped across several disks, the aggregating controller’s
policy processor would:

■■ Interpret each host I/O request addressed to the striped volume to deter-
mine which data should be written to or read from which disk(s).

■■ Issue the appropriate disk read or write requests.

■■ Schedule data movement between host and disk I/O bus interfaces.

For RAID arrays, in which data is also typically striped, the aggregating con-
troller’s policy processor would perform these functions and would update
parity each time user data was updated.

External and Embedded
Array Controllers

From a host computer standpoint, a RAID controller is either external or
embedded (mounted) within the host computer’s housing.

External RAID controllers function as many-to-many bridges between disks
and external I/O buses, such as parallel SCSI or Fibre Channel, to which physi-
cal disks can also be attached. External RAID controllers organize the disks
connected to them into arrays and make their storage capacity available to

C H A P T E R O N E20

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 20

host computers by emulating disks on the host I/O buses. Figure 1.16 illus-
trates a system configuration that includes an external RAID controller.

External RAID controllers are attractive because they emulate disks and, there-
fore, require little specialized driver work. They are housed in separate packages
whose power, cooling, and error-handling capabilities are optimized for disks.
They typically accommodate more storage capacity per bus address or host port
than the embedded controllers discussed next. Moreover, since they are opti-
mized for larger systems, they tend to include advanced performance-enhancing
features such as massive cache, multiple host ports, and specialized hardware
engines for performing RAID computations. The main drawbacks of external
RAID controllers are their limited downward scaling and relatively high cost.

Embedded, or internal, RAID controllers normally mount within their host
computer enclosures and attach to their hosts using internal I/O buses, such
as PCI peripheral component interconnect. Like external RAID controllers,
embedded controllers organize disks into arrays and present virtual disks to
the host environment. Since there is no accepted standard for a direct disk-to-
PCI bus interface, embedded controllers require specialized drivers that are
necessarily vendor-unique. Figure 1.17 illustrates a system configuration that
includes an embedded RAID controller.

Embedded RAID controllers are particularly attractive for smaller servers
because of their low cost and minimal packaging requirements. An embedded
RAID controller is typically a single extended PCI module. Some vendors
design server enclosures that are prewired for connecting a limited number of
disks mounted in the server enclosure itself to an embedded RAID controller.
The disadvantages of embedded RAID controllers are their limited scaling and
failure tolerance and their requirement for specialty driver software.

Disk Storage Basics 21

Host Computer

Policy
Processor

Cache

Bus carries SCSI or Fibre
Channel disk I/O commands.

Policy processor converts
between virtual disk commands
and operations on physical disk.

Disk
Driver

App

App HBAVolume
Manager

File
System

App

Normal HBA
Driver for Disks

SCSI or
Fibre

Channel
Interface

Disk I/O buses
(e.g., SCSI)

External RAID
Controller

Figure 1.16 External RAID controller.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 21

The virtual disks presented by external RAID controllers are functionally iden-
tical to physical disks and are usually controlled by native operating system
disk drivers with little or no modification. Embedded RAID controllers, on the
other hand, typically require unique bus interface protocols and, therefore,
specialized drivers, typically supplied by the controller vendor. Both external
and embedded RAID controllers’ virtual disks can be managed by host-based
volume managers as though they were physical disks.

Both external and embedded RAID controllers require management interfaces
to create and manage the virtual disks they present. Embedded RAID con-
trollers typically have in-band management interfaces, meaning that manage-
ment commands are communicated to the controller over the same PCI
interface used for I/O. External controllers typically offer both in-band man-
agement interfaces using SCSI or FCP commands and out-of-band interfaces
using Ethernet or even serial ports. Out-of-band interfaces enable remote
management from network management stations and preconfiguration of disk
array subsystems before they are installed.

Host-Based Aggregation
The architecture of the aggregating disk controller block diagrammed in Fig-
ure 1.15 is very similar to that of a general-purpose computer. In fact, most
disk controllers use conventional microprocessors as policy processors, and
several use other conventional computer components as well, such as PCI
bus controller application-specific integrated circuits (ASICs), such as the
single-chip PCI interfaces found on most computer mainboards. As processors
became more powerful during the 1990s, processing became an abundant
resource, and several software developers implemented the equivalent of

C H A P T E R O N E22

Host Computer
Embedded RAID

r

PCIRAID
Driver

App

App

App

Specialized
Driver for

RAID
Controller

PCI Bus carries commands unique to the
particular RAID controller model.

Interface

Controller

Disk I/O buses
(e.g., SCSI)

Volume
Manager

File
System

Figure 1.17 Embedded RAID controller.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 22

aggregating disk controllers’ function in a host computer system software
component that has come to be known as a volume manager. Figure 1.18
depicts a system I/O architecture that uses a host-based volume manager to
aggregate disks.

This figure represents a PCI-based server, such as might run the Windows NT
or Windows 2000 operating system. In such servers, disk I/O interfaces are
commonly known as host bus adapters, or HBAs, because they adapt the pro-
tocol, data format, and timing of the PCI bus to those of an external disk I/O
bus, such as SCSI or Fibre Channel. Host bus adapters are typically designed
as add-in circuit modules that plug into PCI slots on a server mainboard or, in
larger servers, a PCI to memory bus adapter. Small server main boards often
include integrated host bus adapters that are functionally identical to the add-
in modules.

Host bus adapters are controlled by operating system software components
called drivers. Windows operating systems include drivers for the more popu-
lar host bus adapters, such as those from Adaptec, Q Logic, LSI Logic, and
others. In other cases, the vendor of the server or host bus adapter supplies a
Windows-compatible HBA driver. Microsoft’s Web site contains a hardware
compatibility list that contains information about host bus adapters that have
been successfully tested with each of the Windows operating systems.

HBA drivers are pass-through software elements, in the sense that they have
no awareness of the meaning of I/O requests made by file systems or other
applications. An HBA driver passes each request made to it to the HBA for
transmission to and execution by the target disk. For data movement effi-
ciency, HBA drivers manage mapping registers that enable data to move

Disk Storage Basics 23

Server
(e.g., Windows NT)

Server Processor
Host Bus

Adapter (HBA)OS
(Kernel)

DRAM
Buffer/Cache

Internal I/O Bus
(e.g., PCI)

Volume
Manager
Striping
RAID
etc.

File
System

App

App

App

File I/O Commands
& Data

Disk I/O
Commands & Data

Volume I/O
Commands & Data

HBA
Driver

Host Bus
Adapter (HBA)

Host Bus
Adapter (HBA)

Host Bus
Adapter (HBA)

Figure 1.18 Host-based disk subsystem with aggregating software.

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 23

directly between the HBA and main memory. HBA drivers do not filter I/O
requests, nor do they aggregate disks into volumes (although there are some
PCI-based RAID controllers that perform disk aggregation).

In systems like the one depicted in Figure 1.18, the volume manager aggre-
gates disks into logical volumes that are functionally equivalent to the virtual
disks instantiated by aggregating disk controllers. The volume manager is a
software layer interposed between the file system and HBA drivers. From the
file system’s point of view, a volume manager behaves like a disk driver. The
volume manager responds to I/O requests to read and write blocks of data and
to control the (virtual) device by transforming each of these requests into one
or more requests to disks that it makes through one or more HBAs. The vol-
ume manager is functionally equivalent to the aggregating disk controller
depicted in Figure 1.15.

Like aggregating disk controllers, host-based volume managers can:

■■ Concatenate two or more disks into a single large volume.

■■ Stripe data across two or more disks for improved performance.

■■ Mirror data on two or more disks or striped volumes for availability.

■■ Combine several disks into a RAID volume.

Chapters 3 and 4 describe the capacity, performance, and availability charac-
teristics of these popular volume types.

C H A P T E R O N E24

8921_Massiglia_01_f.qxd 3/4/02 10:33 AM Page 24

