


This page intentionally left blank 



‘‘This book is much more than a wake-up call. It is also an eye-opener. Even
for those who are already awake to the problems of Web server security, it is

a serious guide for what to do and what not to do.’’

Peter G. Neumann, risks.org



This page intentionally left blank 



Innocent Code
A Security Wake-Up Call for Web Programmers

Sverre H. Huseby



Copyright c© 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system for
exclusive use by the purchase of the publication. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Huseby, Sverre H.
Innocent code : a security wake-up call for Web programmers / Sverre

H. Huseby.
p. cm.

”A Wiley-Interscience publication.”
ISBN 0-470-85744-7

1. Computer security. 2. Computer networks--Security measures. 3.
World Wide Web--Security measures. I. Title.

QA76.9.A25H88 2003
005.8--dc22

2003015774

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85744-7

Typeset in 10.5/13pt Sabon by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wileyeurope.com


Contents

Foreword ix

Acknowledgments xi

Introduction xiii
0.1 The Rules xiv
0.2 The Examples xv
0.3 The Chapters xvi
0.4 What is Not in This Book? xvii
0.5 A Note from the Author xviii
0.6 Feedback xviii

1 The Basics 1
1.1 HTTP 1

1.1.1 Requests and responses 2
1.1.2 The Referer header 6
1.1.3 Caching 7
1.1.4 Cookies 9

1.2 Sessions 10
1.2.1 Session hijacking 11

1.3 HTTPS 15
1.4 Summary 19
1.5 Do You Want to Know More? 19

2 Passing Data to Subsystems 21
2.1 SQL Injection 22

2.1.1 Examples, examples and then some 22
2.1.2 Using error messages to fetch information 30



vi Contents

2.1.3 Avoiding SQL injection 33
2.2 Shell Command Injection 39

2.2.1 Examples 40
2.2.2 Avoiding shell command injection 42

2.3 Talking to Programs Written in C/C++ 48
2.3.1 Example 48

2.4 The Evil Eval 50
2.5 Solving Metacharacter Problems 50

2.5.1 Multi-level interpretation 52
2.5.2 Architecture 53
2.5.3 Defense in depth 54

2.6 Summary 55

3 User Input 57
3.1 What is Input Anyway? 57

3.1.1 The invisible security barrier 62
3.1.2 Language peculiarities: totally unexpected input 65

3.2 Validating Input 67
3.2.1 Whitelisting vs. blacklisting 71

3.3 Handling Invalid Input 74
3.3.1 Logging 76

3.4 The Dangers of Client-side Validation 79
3.5 Authorization Problems 82

3.5.1 Indirect access to data 83
3.5.2 Passing too much to the client 86
3.5.3 Missing authorization tests 90
3.5.4 Authorization by obscurity 91

3.6 Protecting server-generated input 92
3.7 Summary 95

4 Output Handling: The Cross-site Scripting Problem 97
4.1 Examples 98

4.1.1 Session hijacking 99
4.1.2 Text modification 103
4.1.3 Socially engineered Cross-site Scripting 104
4.1.4 Theft of passwords 108
4.1.5 Too short for scripts? 109

4.2 The Problem 111
4.3 The Solution 112

4.3.1 HTML encoding 113
4.3.2 Selective tag filtering 114
4.3.3 Program design 120

4.4 Browser Character Sets 121
4.5 Summary 122
4.6 Do You Want to Know More? 123

5 Web Trojans 125
5.1 Examples 125
5.2 The Problem 130



Contents vii

5.3 A Solution 131
5.4 Summary 133

6 Passwords and Other Secrets 135
6.1 Crypto-Stuff 135

6.1.1 Symmetric encryption 137
6.1.2 Asymmetric encryption 137
6.1.3 Message digests 139
6.1.4 Digital signatures 140
6.1.5 Public key certificates 141

6.2 Password-based Authentication 142
6.2.1 On clear-text passwords 142
6.2.2 Lost passwords 144
6.2.3 Cracking hashed passwords 146
6.2.4 Remember me? 150

6.3 Secret Identifiers 151
6.4 Secret Leakage 153

6.4.1 GET request leakage 154
6.4.2 Missing encryption 156

6.5 Availability of Server-side Code 157
6.5.1 Insecure file names 157
6.5.2 System software bugs 158

6.6 Summary 160
6.7 Do You Want to Know More? 161

7 Enemies of Secure Code 163
7.1 Ignorance 163
7.2 Mess 165
7.3 Deadlines 171
7.4 Salesmen 173
7.5 Closing Remarks 174
7.6 Do You Want to Know More? 174

8 Summary of Rules for Secure Coding 177

Appendix A Bugs in the Web Server 187

Appendix B Packet Sniffing 193
B.1 Teach Yourself TCP/IP in Four Minutes 193
B.2 Sniffing the Packets 195
B.3 Man-In-The-Middle Attacks 196
B.4 MITM with HTTPS 197
B.5 Summary 198
B.6 Do You Want to Know More? 198

Appendix C Sending HTML Formatted E-mails with a Forged
Sender Address 199



viii Contents

Appendix D More Information 201
D.1 Mailing Lists 201
D.2 OWASP 203

Acronyms 205

References 209

Index 221



Foreword

There has been a rude awakening for the IT industry in the last few years. For
nearly a decade corporations have been told by the media and consultants that
they needed firewalls, intrusion detection systems and network scanning tools
to stop the barrage of cyber attacks that we all read about daily. Hackers
are stealing credit cards, booking flights to exotic locations for free and
downloading personal information about the latest politicians’ affair with an
actress. We have all seen the stories and those of us with an inquisitive mind
have all wondered how it really happens.

As the information security market grew into a vast commercial machine
pushing network and operating system security technology and processes as
the silver bullet to cure all ills, the IT industry itself grew in a new direction.
Business leaders and marketing managers discovered that the lowest common
denominator to any user (or potential user) is the web browser, and quite
frankly why in the world wouldn’t they want to appeal to all the possible
clients out there? Why would you want to restrict the possibility of someone
signing up for your service? Web enabling applications and company data
was not just a trend, it has been a phenomena. Today there are web interfaces
to almost all major applications from development source code systems to
human resources payroll systems and sales tracking databases. When we
browse the Web and the local weather is displayed so conveniently in the
side-menu, it’s a web application that put it there. When we check our online
bank balance, it’s a system of complex web applications that compute and
display the balance.

Creating these vast complex pieces of technology is no trivial task. From a
technology stance, Microsoft and Sun are leading the charge with platforms



x Foreword

and supporting languages that provide flexible and extensible bases from
which to build. With flexibility comes choice, and whilst it is true that these
platforms can provide excellent security functionality, the security level is a
choice of the designer and developer. All of the platforms on offer today can
equally create secure and insecure applications, and as with many things in
life, the devil is in the details. When building a web application the details are
almost exclusively the responsibility of the developer.

This book takes a unique and highly effective approach to educating the
people that can effect a change by addressing the people who are actually
responsible for writing code; the developers themselves. It is written by a
developer for developers, which means it speaks the developer lingo and
explains issues in a way that as a developer you will understand. By taking a
pragmatic approach to the issue, the author walks you, the reader, through
an overview of the issues and then delves into the devilish details supporting
issues with examples and real life scenarios that are both easy to understand
and easy to realize in your own code.

This book is a serious must have for all developers who are building web
sites. I know you will enjoy it as much as I did.

Mark Curphey

Mark Curphey has a Masters degree in Information Security and runs the Open Web Application

Security Project. He moderates the sister security mailing list to Bugtraq called webappsec that

specializes in web application security. He is a former Director of Information Security for Charles

Schwab, consulting manager for Internet security Systems and veteran of more banks and consulting

clients than he cares to remember.



Acknowledgments

This book would have been less readable, less consistent, and more filled with
bugs if it wasn’t for a handful of smart friends and colleagues that helped me
pinpoint troublesome areas along the way. All I did was to promise them a
beer and honorable mention in this section, and they started spending hours
and days (and some even weeks) helping me out.

First of all, Jan Ingvoldstad has spent an amazing amount of time reading,
commenting, and suggesting improvements to almost every paragraph.

In addition, the following people have spent quite some time reading
and commenting on early versions of the text: Lars Preben S. Arnesen, Erik
Assum, Jon S. Bratseth, Per Otto Christensen, Per Kristian Gjermshus, Morten
Grimnes, Leif John Korshavn, Rune Offerdal, Frode Sandnes, Frank Solem,
Rune Steinberg, Kent Vilhelmsen and Sigmund Øy.

Kjetil Valstadsve made me rethink some sections, and Tore Anderson, Kjetil
Barvik, Maja Bratseth, Lasse G. Dahl, Dennis Groves, Jan Kvile, Filip van
Laenen, Glenn T. Lines, Kevin Spett, Thorkild Stray and Bjørn Stærk gave
valuable feedback and ideas to parts of the text.

Please note that none of the people on this list of gratitude should be blamed
for any errors or omissions whatsoever in this book. I was stupid enough not
to follow all the advice given to me by these kind and experienced people,
so I’m the only one to blame if you feel like blaming anyone for anything
(concerning this book, that is).

I would also like to thank my editor Gaynor Redvers-Mutton and her friends
at Wiley for believing in my book proposal even though most of their reviewers
wanted to turn the book into a traditional infrastructure security thing. :-)



xii Acknowledgments

As I find book dedications quite meaningless, I’d rather say ‘‘hi’’ to Markus
and Matilde in this section. Thanks for giving me good memories while you
keep me busy throughout the days.

And last, but certainly not least, I bow deeply for my beloved wife, Hanne
S. Finstad. She always makes me feel safe and free of worries. Without that
kind of support (which I’m not sure she knows she’s giving me), I would
never have been able to write a book (cliche, but true anyway). She’s the most
creative, intelligent, beautiful, . . . oh, sorry. I’ll tell her face to face instead.

S. H. H.



Introduction

This book is kind of weird. It’s about the security of a web site, but it hardly
mentions firewalls. It’s about the security of information, but it says very little
about encryption. So what’s this book all about? It describes a small, and
often neglected, piece of the web site security picture: Program code security.

Many people think that a good firewall, encrypted communication and
staying up to date on software patches is all that is needed to make a web
site secure. They’re wrong. Many of today’s web sites contain program code
that make them dynamic. Code written using tools such as Java, PHP, Perl,
ASP/VBScript, Zope, ColdFusion, and many more. Far too often, this code is
written by programmers who seem to think that security is handled by the
administrators. The effect is that an enormous number of dynamic web sites
have logical holes in them that make them vulnerable to all kinds of nasty
attacks. Even with both firewall and encryption in place.

Current programmer education tends to see security as off topic. Something
for the administrators, or for some elite of security specialists. We learn how
to program. Period. More specifically, to make programs that please the
customers by offering the requested functionality. Some years ago, that would
probably suffice. Back then, programs were internal to organizations. Every
person with access to our program wanted it to operate correctly, so that they
could do their day to day job.

In the age of the Web, however, most of us get to create programs that are
available to the entire world. Legitimate users still just want the program to
do its job for them. Unfortunately, our program is also available to lots of
people who find amusement in making programs break. Or better, making
them do things they were not supposed to do.



xiv Introduction

Until recently, those who find joy in breaking programs have put most
of their effort in mass-produced software, creating exploits that will work
on thousands of systems. In the last couple of years, however, focus on
custom-made web applications has increased. International security mailing
lists have been created to deal with the web application layer only, many good
white papers have been written, and we have seen reports of the first few
application level attacks in the media. With increased focus, chances are that
more attackers will start working on application exploits. While the security
people tend to keep up, the programmers are far behind. It’s about time we
started focusing on security too.

This book is written for the coders, those of us programming dynamic web
applications. The book explains many common mistakes that coders tend to
make, and how these mistakes may be exploited to the benefit of the attackers.

When reading the book, you may get the impression that the main focus is
on how to abuse a web site rather than on how to build a site that can’t be
abused. The focus on destruction is deliberate: to build secure applications,
one will need to know how programming mistakes may be abused. One will
need to know how the attacker thinks when he snoops around looking for
openings. To protect our code, we’ll need to know the enemy. The best way
to stop an attacker is to think like one.

The goal of this book is not to tell you everything about how to write
secure web applications. Such a cover-it-all book would span thousands of
pages, and be quite boring: it would contain lots of details on every web
programming language out there, most of which you would never use. And it
would contain lots of details on problems you will never try to solve. Every
programming platform and every type of problem have their own gotchas.

The goal of this book is to make you aware that the code you write may be
exploited, and that there are many pitfalls, regardless of which platform you
use. Hopefully, you will see this book as a teaser, or a wake-up call, that will
make you realize that the coding you do for a living is in fact a significant part
of the security picture. If you end up being a little bit more paranoid when
programming, this book has reached its goal.

0.1 The Rules

When reading the book, you’ll come across a good handful of ‘‘rules’’ or
‘‘best practices’’. The rules highlight points that are particularly worthy
of understanding or remembering. As with most other rules, these are not
absolute. Some of the rules can be bent, others can be broken. Before you start



The Examples xv

bending and breaking a rule, you should have a very clear understanding of
the security problem the rule tries to prevent. And you should have an equally
clear understanding of why your application will not be vulnerable, or why it
doesn’t matter if it is vulnerable, once you start bending and breaking the rule.

Deciding that an application will not be vulnerable is not necessarily a
simple task. It’s easy to think that ‘‘if I can’t find a way to exploit my code,
nobody else can’’. That view is extremely dangerous. The average developer
is not trained in destructive thinking. She works by constructing things. There
may always be an intruder that is more creative when it comes to malicious
thinking than the developer is herself. To remember that, and at the same
time see what the rules look like, we introduce the first rule:

Rule 1

Do not underestimate the power of the dark side

The rule encourages us not to take short cuts, and not to set a security
mechanism aside, no matter what program we create and no matter what
part of the program we are working on at the moment. It also tells us to
be somewhat paranoid. This rule in itself is not particularly convincing, but
paired with the contents of this book, it hopefully is. The Web has a dark
side. Someone is out there looking for an opportunity to abuse a web site,
either for fun or for profit. No matter what their intentions are, they may ruin
the web site you have spent months creating. Even if they’re not able to do
direct harm, symptoms of poor security may give very bad press both for the
web site and for the company that made it.

0.2 The Examples

This book contains lots and lots of examples. The author believes that next
to experimenting, seeing examples is the best way to learn. In the security
context, the two learning mechanisms don’t always combine. Please do not
use the examples in this book to experiment on sites on which you haven’t
got explicit permission to do so. Depending on the laws in your country, you
may end up in jail.

Many of the examples will tell stories that make it seem as if they describe
real life applications. And that’s exactly what they do. The examples that



xvi Introduction

sound real are based on code reviews and testing done by various people,
including the author. Some examples are even based on unauthorized, non-
destructive experiments (luckily, I’m still not in jail). I have anonymized the
sites by not mentioning their name, and often by showing pieces of code in
another programming language than the site actually uses.

Examples are mainly small snippets of code written in Java, PHP, Perl or
VBScript. These languages should be quite easy to read for most programmers.
If you are new to one of these languages, you may find the following table
useful. It lists a few syntactical differences:

Java PHP Perl VBScript

String concatenation + . . &
Variable prefix $ $
Subroutine prefix &
Line continuation

Domain names used in the examples follow the directions given in RFC
2606 [1]. None of them are valid in the real world. The IP addresses are private
addresses according to RFC 1918 [2]. They are not valid on the Internet.
(RFCs, short for Request For Comments, are technical and organizational
documents about the Internet, maintained by the RFC Editor [3] on behalf of
IETF [4], the Internet Engineering Task Force. Every official Internet protocol
is defined in one or more RFCs.)

Note that some example text has had white space added for readability.
Long URLs, error messages and text strings that would have been on a single
line in their natural habitats, may span several lines in this book. And they do
so without further notice.

0.3 The Chapters

Although this book is written with sequential reading of the entire text in
mind, it should be possible to read single chapters as well. A chapter summary
follows:

• Chapter 1 gives an introduction to HTTP and related web technologies,
such as cookies and sessions, along with examples on what can go wrong
if we fail to understand how it all works.



What is Not in This Book? xvii

• Chapter 2 talks about metacharacter problems that may show up when-
ever we pass data to another system. The famous SQL Injection problem
is described in great detail in this chapter.

• Chapter 3 addresses input handling such as spotting invalid input, how
to deal with it, and why one should not blindly trust what comes from
the client.

• Chapter 4 shows how data we send to our users’ browsers may cause
major trouble if left unfiltered. The Cross-site Scripting problem is
described in this chapter.

• Chapter 5 explains how easy it may be to trick a user into performing a
web task he never intended to do, just by pointing him to a web page or
sending him an E-mail.

• Chapter 6 deals with password handling, secret identifiers and other
things we may want to hide from the intruder. Includes the world’s
shortest introduction to cryptography.

• Chapter 7 discusses reasons why the code of web applications often ends
up being insecure.

• Chapter 8 lists all the rules given throughout the book, including short
summaries.

• Finally, there are appendixes on web server bugs, packet sniffing, E-mail
forging, and sources of more information. Notorious appendix skippers
should at least consider reading the ‘‘More Information’’ part.

The book also has a References chapter. Throughout the book, you’ll see
numbers in [angle brackets]. These numbers refer to entries in the References.
The entries point to books, articles and web sites with more information on
the topics discussed.

0.4 What is Not in This Book?
As this book is for programmers, most infrastructure security is left out. Also,
security design, such as what authentication methods to use, how to separate
logic in multiple tiers on multiple servers and so on is mostly missing. When
coding, these decisions have already been made. Hopefully. If you’re not
only coding, but designing security mechanisms too, I urge you to read Ross
Anderson’s Security Engineering [5], which shows how easy it is to get things
wrong (and how not to).



xviii Introduction

One important topic that should be high on the list of C/C++ coders is
left out: the buffer overflow problem. This problem is hard to understand for
people who are not seasoned C/C++ programmers. If you program C, C++
or any other language that lacks pointer checks, index checks and so on, make
sure you fully understand the importance of protecting your memory areas. I
suggest you take a look at Aleph One’s classical article ‘‘Smashing the Stack
for Fun and Profit’’ [6], or pick up a book on secure programming in general,
which typically explains it all in great detail. I recommend Building Secure
Software [7] by John Viega and Gary McGraw.

While talking about books on secure programming, I could also mention
Writing Secure Code [8] by Michael Howard and David LeBlanc, and David
Wheeler’s on-line ‘‘Secure Programming for Linux and Unix HOWTO’’ [9].
Although the former is skewed towards the Microsoft platform and the latter
favors Unix and Linux, both contain major parts that are relevant no matter
what your platform is.

This book focuses on server-side programming. It does not address Java
Applets, ActiveX objects and other technologies that allow programs to be run
on the client-side. If you create client-side programs, you should understand
that the program runs under full control of whoever operates the computer. It’s
probably also a good idea to read one of those books on general code security.

And finally, most platform-dependent security gotchas are left out to make
the entire book readable for everyone. After reading this book, I urge you
to spend some time browsing the Web for ‘‘security best practices’’ for your
platform of choice.

0.5 A Note from the Author
You may like to know that I’m a web programmer myself. I’ve made my (far
from neglectable) share of security holes, and even if I’ve spent every single
day the last three years focusing only on such holes, I still make them. I like
to think that I make fewer holes now than before, though. Not because I’ve
become a better programmer, but because I’ve realized that every single line
I write counts when it comes to security, and—even more importantly—that
it’s far too easy to make mistakes.

0.6 Feedback
If this book makes you angry, happy, curious, scared, nervous, comfortable, or
anything, please tell me by sending an E-mail to innocentcode@thathost.
com. If you find errors, please direct them to the same address. If you happen



Feedback xix

to be in Oslo (the capitol of Norway) and want to discuss the topics of the
book over a beer or something (I must warn you that beer is quite expensive
in Norway), feel free to invite me. :-)

This book has a companion web site at http://innocentcode.that-
host.com/. Any corrections or additions to the text will appear on this
site.



This page intentionally left blank 



1
The Basics

We don’t have to go all the way back to the old Romans, but we’ll step back
to 1989–1990. That’s when Tim Berners-Lee [10] and his friends at CERN
‘‘invented’’ the World Wide Web [11]. The Internet was already old [12], but
with the birth of the Web, information was far more easily available.

Three specifications are central to the Web. One is the definition of
URLs [13, 14, 15, 16], or Uniform Resource Locators, which specifies how to
communicate, well, locations of resources (Standard documents usually refer
to URIs [17, 16], Uniform Resource Identifiers, rather than URLs. URLs are
a subset of URIs. This book will use the term URL even where standard docu-
ments mention URI, as most people think in terms of URLs.). Another specifi-
cation is HTML [18], HyperText Markup Language, which gives us a way to
structure textual information. And finally, there is HTTP [19], or Hypertext
Transfer Protocol. HTTP tells us how nodes in the Web exchange information.

Most developers have good knowledge of URLs and HTML, but many
know very little about HTTP. I truly believe that one needs a good under-
standing of the underlying infrastructure to be able to create more secure
programs. This chapter will bring you up to speed on the basics of HTTP,
and at the same time describe some security problems that may show up if
one doesn’t understand the basics.

1.1 HTTP

When a web browser wants to display a web page, it connects to the
server mentioned in the URL to retrieve the page contents. As soon as the



2 The Basics

1: Connect to server.

2: Send request.

3: Send response.

4: Close connection.

Server

Client

Figure 1.1 The client-server model of the web. The client connects and sends a request.
The server responds and closes the connection

TCP connection is established, the browser sends a HTTP request asking
the web server to provide the wanted document. The web server sends a
reply containing the page contents, and closes the connection. If a persistent
connection is used, the connection may remain open for some (normally
short) time to allow multiple requests with less TCP overhead. Persistent
connections typically speed up access to pages containing lots of images. If
the document contains hypertext that references embedded contents, such as
images and Java applets, the browser will need to send multiple requests to
display all the contents.

The browser is always the initiating party—the server never ‘‘calls back’’.
This means that HTTP is a client/server protocol (see Figure 1.1). The client
will typically be a web browser, but it need not be. It may be any program
capable of sending HTTP requests to a web server.

1.1.1 Requests and responses

HTTP is line oriented, just like many other Internet protocols. Communication
takes place using strings of characters, separated by carriage return (ASCII
13) and line feed (ASCII 10). When you instruct your web browser to go to
the URL http://www.someplace.example/, it will look up the IP address
of the host named www.someplace.example, connect to it, and send the


