
Domain Architectures
Models and Architectures for UML Applications

Daniel J. Duffy
Datasim Education BV, Amsterdam, Netherlands

Innodata
0470020644.jpg

Domain Architectures

Domain Architectures
Models and Architectures for UML Applications

Daniel J. Duffy
Datasim Education BV, Amsterdam, Netherlands

Copyright  2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the
Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90
Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of
any material supplied specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions Department, John Wiley
& Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or
other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Duffy, Daniel J.
Domain architectures : models and architectures for UML applications /

Daniel J. Duffy.
p. cm.

Includes bibliographical references and index.
ISBN 0-470-84833-2 (alk. paper)

1. Computer software—Development. 2. Business—Data processing. 3. UML
(Computer science) I. Title.

QA76.76.D47D84 2004
005.1—dc22 2004002216

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84833-2

Typeset in 10/12.5pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Preface xv

PART I Background and fundamentals 1

1. Introducing and motivating domain architectures 3

1.1 What is this book? 3
1.2 Why have we written this book? 4
1.3 For whom is this book intended? 5
1.4 Why should I read this book? 5
1.5 What is a domain architecture, really? 5
1.6 The Datasim Development Process (DDP) 8
1.7 The structure of this book 9
1.8 What this book does not cover 10

2. Domain architecture catalogue 11

2.1 Introduction and objectives 11
2.2 Management Information Systems (MIS) (Chapter 5) 13
2.3 Process Control Systems (PCS) (Chapter 6) 16
2.4 Resource Allocation and Tracking (RAT) systems (Chapter 7) 18
2.5 Manufacturing (MAN) systems (Chapter 8) 19
2.6 Access Control Systems (ACS) (Chapter 9) 20
2.7 Lifecycle and composite models (Chapter 10) 21

3. Software lifecycle and Datasim Development Process (DDP) 23

3.1 Introduction and objectives 23
3.2 The Software Lifecycle 24
3.3 Reducing the scope 25

vi Contents

3.4 The requirements/architecture phase in detail 29
3.5 The object-oriented analysis process 30
3.6 Project cultures and DDP 33

3.6.1 Calendar-driven projects 34
3.6.2 Requirements-driven projects 34
3.6.3 Documentation-driven style 35
3.6.4 Quality-driven style 36
3.6.5 Architecture-driven style 36
3.6.6 Process-driven style and the DDP 37

3.7 Summary and conclusions 38

4. Fundamental concepts and documentation issues 41

4.1 Introduction and objectives 41
4.2 How we document domain architectures 43
4.3 Characteristics of ISO 9126 and its relationship with domain

architectures 44
4.4 Documenting high-level artefacts 48
4.5 Goals and core processes 48
4.6 System context 50
4.7 Stakeholders and viewpoints 50

4.7.1 Documenting viewpoints 52
4.8 Documenting requirements 54
4.9 Defining and documenting use cases 54
4.10 Summary and conclusions 55
Appendix 4.1: A critical look at use cases 55

PART II Domain architectures (meta models) 57

5. Management Information Systems (MIS) 59

5.1 Introduction and objectives 59
5.2 Background and history 59
5.3 Motivational examples 61

5.3.1 Simple Digital Watch (SDW) 61
5.3.2 Instrumentation and control systems 62

5.4 General applicability 63
5.5 Goals, processes and activities 64
5.6 Context diagram and system decomposition 65
5.7 Stakeholders, viewpoints and requirements 67
5.8 UML classes 69
5.9 Use cases 70

Contents vii

5.10 Specializations of MIS systems 71
5.10.1 Example: Noise control engineering 72

5.11 Using MIS systems with other systems 74
5.12 Summary and conclusions 76

6. Process Control Systems (PCS) 77

6.1 Introduction and objectives 77
6.2 Background and history 78
6.3 Motivational examples 78

6.3.1 Simple water level control 79
6.3.2 Bioreactor 80
6.3.3 Barrier options 81

6.4 Reference models for Process Control Systems 83
6.4.1 Basic components and variables 83
6.4.2 Control engineering fundamentals 86

6.5 General applicability 88
6.6 Goals, processes and activities 89
6.7 Context diagram and system decomposition 90

6.7.1 Decomposition strategies 91
6.8 Stakeholders, viewpoints and requirements 96

6.8.1 Input and output variable completeness 97
6.8.2 Robustness criteria 97
6.8.3 Timing 98
6.8.4 Human–Computer Interface (HCI) criteria 100
6.8.5 State completeness 100
6.8.6 Data age requirement 101

6.9 UML classes 101
6.10 Use cases 102
6.11 Specializations of PCS systems 105

6.11.1 Multi-level architectures 105
6.12 Using PCS systems with other systems 106
6.13 Summary and conclusions 107
Appendix 6.1: Message patterns in Process Control Systems 108

7. Resource Allocation and Tracking (RAT) systems 111

7.1 Introduction and objectives 111
7.2 Background and history 112
7.3 Motivational examples 112

7.3.1 Help Desk System (HDS) 113
7.3.2 Discrete manufacturing 115

7.4 General applicability 117

viii Contents

7.5 Goals, processes and activities 118
7.6 Context diagram and system decomposition 118
7.7 Stakeholders, viewpoints and requirements 120
7.8 UML classes 121
7.9 Use cases 123
7.10 Specializations of RAT systems 124
7.11 Using RAT systems with other systems 125
7.12 Summary and conclusions 126

8. Manufacturing (MAN) systems 127

8.1 Introduction and objectives 127
8.2 Background and history 128
8.3 Motivational examples 130

8.3.1 Compiler theory 130
8.3.2 Graphics applications 132
8.3.3 Human memory models 134

8.4 General applicability 137
8.5 Goals, processes and activities 138
8.6 Context diagram and system decomposition 138
8.7 Stakeholders, viewpoints and requirements 139

8.7.1 Stakeholders and viewpoints 139
8.7.2 Requirements 140

8.8 UML classes 141
8.9 Use cases 142
8.10 Specializations of MAN systems 143
8.11 Using MAN systems with other systems 144
8.12 Summary and conclusions 144

9. Access Control Systems (ACS) 147

9.1 Introduction and objectives 147
9.2 Background and history 148
9.3 Motivational examples 148

9.3.1 The Reference Monitor model 148
9.4 General applicability 152
9.5 Goals, processes and activities 152
9.6 Context diagram and system decomposition 153
9.7 Stakeholders, viewpoints and requirements 154
9.8 UML classes 155
9.9 Use cases 155

Contents ix

9.10 Specializations of ACS 157
9.10.1 Security models for Web-based applications 157
9.10.2 Access control during design: the Proxy pattern 159

9.11 Using ACS with other systems 162

10. Lifecycle and composite models 163

10.1 Introduction and objectives 163
10.2 Background and history 164
10.3 Motivational example: the Rent-a-machine system 164
10.4 General applicability 168
10.5 Goals, processes and activities 170
10.6 Context diagram and system decomposition 171
10.7 Stakeholders, viewpoints and requirements 171
10.8 UML classes 172
10.9 Use cases 173
10.10 Specializations of LCM 174
10.11 Using LCM systems with other systems 174
10.12 Summary and conclusions 175

PART III Applications (models) 177

11. Project resource management system: Manpower Control (MPC)
system 179

11.1 Introduction and objectives 179
11.2 Description and scope of problem 180
11.3 Core processing and context diagram 181
11.4 Requirements and use case analysis 183

11.4.1 Functional requirements and use cases 183
11.4.2 Non-functional requirements 186

11.5 Validating use cases 187
11.6 Class architecture 189
11.7 Generalizations 192
11.8 Summary and conclusions 192

12. Home Heating System (HHS) 193

12.1 Introduction and objectives 193
12.2 Background and history 194

12.2.1 Hatley–Pirbhai 194
12.2.2 The Booch approach 197

x Contents

12.3 Description of problem 197
12.4 Goals, processes and context 197
12.5 System decomposition and PAC model 200
12.6 Viewpoints and requirements analysis 201
12.7 Use cases 202
12.8 Validation efforts 207
12.9 Creating statecharts 209
12.10 Generalization efforts 212
12.11 Summary and conclusions 213

13. Elevator Control System (ELS) 215

13.1 Introduction and objectives 215
13.2 Domain categories and ELS 216
13.3 A traditional object-oriented requirement specification 217
13.4 Re-engineering ELS: goals and processes 220
13.5 Stakeholders and their requirements 223
13.6 Requirements 225
13.7 System decomposition of ELS 227
13.8 PAC decomposition of ELS 230
13.9 Major use cases 232

13.9.1 Normal use cases 232
13.9.2 Exceptional use cases 233

13.10 Summary and conclusions 235
Appendix 13.1: Definitions 235

14. Order Processing Systems (OPS) 237

14.1 Introduction and objectives 237
14.2 Customer Requirements Specification (CRS): the product

management vision of OPS 239
14.2.1 Business concerns and stakeholders’ viewpoints 239

14.3 OPS as a lifecycle model 240
14.3.1 Order Creation System (OCS) 242
14.3.2 Order Realization System (ORS) 243
14.3.3 Order Management System (OMS) 244

14.4 Behavioural aspects 245
14.4.1 Front Office 246
14.4.2 Back Office 246
14.4.3 Middle Office 247
14.4.4 External groups 247

14.5 Collecting requirements from multiple stakeholder viewpoints 248
14.5.1 Critical use cases 249

Contents xi

14.6 Class architecture 250
14.6.1 Class models and diagrams 250

14.7 Design guidelines for OPS 252
14.7.1 Data patterns 253

14.8 Functional and non-functional requirements and their
realization 256
14.8.1 ISO 9126 revisited 257

14.9 Database repository: an architectural style for data-driven
systems 258

14.10 Summary and conclusions 259
Appendix 14.1: Documenting use cases 259
Appendix 14.2: Some UML class diagrams 261

15. Drink Vending Machine (DVM) 263

15.1 Introduction and objectives 263
15.2 Description of problem 264

15.2.1 Scope and span of problem 265
15.3 Goals, processes and context 266
15.4 Use cases 268
15.5 Creating an initial PAC model 269
15.6 Class structure 270
15.7 Interaction diagrams and interface discovery 271

15.7.1 Sequence diagrams 271
15.8 Summary and conclusions 278
Appendix 15.1: Collaboration diagrams in a nutshell 278

16. Multi-tasking lifecycle applications 281

16.1 Introduction and objectives 281
16.2 The problem domain 282

16.2.1 General description of problem 282
16.2.2 System stakeholders 285

16.3 System features 285
16.4 System architecture 286

16.4.1 The PAC models 289
16.5 Design issues: overview 291
16.6 The proof of the pudding: enter the ACE library 291
16.7 The challenge: applying the ACE library in the extrusion

application 293
16.8 Summary and conclusions 298
Appendix 16.1: an introduction to multi-threading 298

xii Contents

PART IV Domain architecture summary and ‘how to use’
documentation 307

17. Summary of domain architectures 309

17.1 Introduction and objectives 309
17.2 Object Creational Systems (OCS) 310
17.3 Object Alignment Systems (OAS) 311
17.4 Object Behavioural Systems (OBS) 312

17.4.1 MIS 312
17.4.2 PCS 313
17.4.3 ACS 314

17.5 Keeping the domain architectures distinct and orthogonal 315
17.5.1 MAN versus RAT 316
17.5.2 MAN versus MIS 317
17.5.3 MAN versus PCS 317
17.5.4 MAN versus ACS 317
17.5.5 RAT versus MIS 317
17.5.6 RAT versus PCS 318
17.5.7 RAT versus ACS 318
17.5.8 MIS versus PCS 318
17.5.9 MIS and PCS versus ACS 318

17.6 Summary and conclusions 319

18. Using domain architectures and analogical reasoning 321

18.1 Introduction and objectives 321
18.2 In which domain architecture does my application belong?

The bird-watching method 322
18.3 Focusing on essential system features: the framework method 324
18.4 The defining-attribute view 325

18.4.1 Advantages and disadvantages 326
18.5 The prototype view 327

18.5.1 Advantages and disadvantages 328
18.6 The exemplar-based view 329

18.6.1 Advantages and disadvantages 330
18.7 Summary and conclusions 331
Appendix 18.1: Analogical reasoning and learning by analogy 331

Appendix 1. The Inquiry Cycle and related cognitive techniques 335

A1.1 Introduction and objectives 335
A1.2 Background and history 336

Contents xiii

A1.3 An introduction to the Inquiry Cycle model 336
A1.3.1 Requirements documentation 336
A1.3.2 Requirements discussion 337
A1.3.3 Requirements evolution 337

A1.4 Using the right questions 338
A1.4.1 General applicability 340

A1.5 The learning loop 341
A1.6 Summary and conclusions 342

Appendix 2. The Presentation–Abstraction–Control (PAC) pattern 345

A2.1 Introduction and objectives 345
A2.2 Motivation and background 346

A2.2.1 A short history of objects 347
A2.2.2 Subsuming object orientation in a broader context 348

A2.3 Decomposition strategies 348
A2.3.1 System decomposition and activity diagrams 350
A2.3.2 System decomposition and context diagrams 350

A2.4 PAC and object-oriented analysis 352
A2.4.1 Entity classes 355

A2.5 The relationship between PAC and UML 355
A2.6 Summary and conclusions 357

Appendix 3. Relationships with other models and methodologies 359

A3.1 Introduction 359
A3.2 Information hiding and the work of David Parnas 360
A3.3 The Rummler–Brache approach 361
A3.4 Michael Jackson’s problem frames 363
A3.5 The Hatley–Pirbhai method 364
A3.6 The Garlan and Shaw architectural styles 365
A3.7 System and design patterns 366
A3.8 The Unified Modelling Language (UML) 367
A3.9 Viewpoint-based requirements engineering 367

Appendix 4. The ‘Hello World’ example: the Simple Digital Watch
(SDW) 371

A4.1 Introduction 371
A4.2 Features and description of problem 371
A4.3 Goals and processes 372
A4.4 Stakeholders, viewpoints and requirements 373
A4.5 Context diagram and system decomposition 373
A4.6 Use cases 375

xiv Contents

A4.7 UML classes 375
A4.8 Statecharts 375

Appendix 5. Using domain architectures: seven good habits 379

References 383

Index 387

Preface

The last two decennia have witnessed many advances in the area of software
development. The advent of object-oriented programming languages and modelling
languages such as Unified Modeling Language (UML) has increased our ability
as developers to design and realize large and enterprise-wide software systems.
However, software engineering, as a discipline seems to be lacking in its sup-
port for reference models that can be used in order to help developers create new
systems quickly and efficiently. The software development process is still a very
context-sensitive and idiosyncratic process. Whereas disciplines such as chemical
engineering and mathematics have developed domain models for a range of prob-
lems, the IT industry is in general lacking in such models. Software development
tends to be a very personal experience and in many cases how a system is to be
developed is a product of a single person’s insights. This is a potentially dangerous
state of affairs because there is no guarantee that the resulting model reflects the
problem domain well.

This book introduces a number of so-called models (we call them domain archi-
tectures) that act as ‘cookie-cutters’ or reference models for more specific real-life
applications. Working with domain architectures demands a shift in thinking because
when designing a new software system we try to categorize it as an instance sys-
tem of one or more domain architectures. Having done that we can reuse and
specialize the requirements, viewpoints and generic architecture to the specific sys-
tems. This results in massive reuse at the architectural and design levels while the
risk of failure is reduced because the reference models in this book are based in
real-life applications and experience. They have been used on real projects with
real customers.

The reference models can and should be used in much the same way as people
reason about the world around them. This is the Ausubel subsumption theory: when
developing software systems we relate new knowledge to relevant concepts and
propositions we already know.

xvi Preface

ACKNOWLEDGEMENTS

Although many of the results in this book are based on my own work it would
have been impossible to write this literature without the support and feedback from
many organizations and individuals that I’ve come in to contact with during the
last 25 years. First, I would like to thank Datasim’s customers who have attended
our analysis and design courses since 1992. It is impossible to name them all and
we wish to thank them for their feedback. Particular thanks goes to the following
individuals (in random order): Paul Langemeijer, Hans Plekker, Henry Rodenburgh,
Marten Kramer, Wim van Leeuwen, Robert Demming, Adriaan Meeling, Martijn
Boeker, Vladimir Grafov, Jeff Keustermans, Teun Mentzel, Ilona Hooft Graafland
and many more. For all others who have had some form of involvement with me
throughout the years, many thanks to you as well.

This work has been importantly influenced by several major sources. Firstly,
Michael Jackson who is the originator of Problem Frames and who sparked a number
of ideas that led to Domain Architectures. Secondly, the researchers in the Design
Patterns movement (too many to mention) who realize that software development is
a repetitive process and that a multitude of patterns can be discovered, documented
and used in many different contexts. Finally, to Bjarne Stroustrup, the inventor of
C++ for his efforts in making OO more accessible to a wide audience. A word of
thanks is due to the ‘three amigos’ Booch, Jacobson and Rumbaugh for their hugely
successful efforts in making UML the defacto standard for object-oriented analysis
and design.

A special word of thanks is due to the staff at Wiley in Chichester who had
infinite patience with me.

Finally, I wish to thank my family, Ilona Hooft Graafland and Brendan Duffy for
their patience during the preparation of this book. They probably wondered when
the book would finally be finished. Hopefully as I write this sentence. . .

Daniel J. Duffy
Datasim Education BV, Amsterdam

February 2004
dduffy@datasim.nl

PART I

Background and
fundamentals

1 Introducing and motivating
domain architectures

‘Architecture is born, not made—must consistently grow from within to what-
ever it becomes. Such forms as it takes must be spontaneous generation of
materials, building methods and purpose.’

Frank Lloyd Wright

1.1 WHAT IS THIS BOOK?

This book describes how to analyse large enterprise systems. In particular, we define
a process that maps high-level business concerns and business processes to artefacts
in the Unified Modelling Language (UML). This is one of the first books that
explicitly links the business world with the IT world. We achieve this end by first
of all providing the reader with a number of ready-made reference models that
he or she can use as a basis for specific applications. These reference models are
called domain architectures in this book. Second, and just as important, we adopt,
adapt and (hopefully) improve current understanding on how software systems are
analysed and designed. In particular, our interest is in creating flexible and main-
tainable software systems using proven technology. We document the products of
our endeavours using the visual notation in UML. This adds to the usability of
our process because UML is a de facto standard and we shall use it as a universal
communication language.

A domain architecture is a reference model for a set of applications sharing simi-
lar functionality, behaviour and structure. It describes the essential features in some
business domain. In this book we introduce five major domain architecture types.
These types describe recurring themes in software development. We could loosely
define a domain architecture as a pattern that describes structure, functionality and
behaviour in the earliest stages of the software lifecycle. We discuss generic archi-
tectures for management information, process control, access control, manufacturing
and tracking systems. We devote a chapter to each of these five architecture types.
Specific instances of these architectures occur in real-life software development
projects and we describe a number of such instances in this book.

4 Introducing and motivating domain architectures

Our domain architectures are models in the so-called problem domain (roughly
speaking, the domain of the sponsor and user of the system) while design and system
patterns are models for the solution domain (the domain of the object-oriented
analyst and designer). Domain architectures fill the gap between the business and
the IT worlds. In short, we provide the reader with a set of documented reference
models that he or she can specialize to produce analysis artefacts for specific instance
systems. We devote six chapters to show how this specialization works; each chapter
deals with a well-known application.

1.2 WHY HAVE WE WRITTEN THIS BOOK?

The main reason for writing this book was to describe and document a number of
recurring patterns and models that we have discovered in software projects. These
models describe a set of applications having similar structure, functionality and
behaviour. Each model is documented in handbook form and the reader can use
the handbook to ‘clone’ specific applications. We are primarily interested in large
enterprise systems because we have seen that traditional object-oriented technology
is not suitable as the driving force for systems of this magnitude. The old maxim
of ‘looking for the objects and the rest will take care of itself’ is not applicable
in these situations, in my opinion. It becomes very difficult to manage the object
networks that result from this approach. Furthermore, it would seem that the levels of
reusability with the object paradigm are quite low; we are interested in reusability at
system and architecture level. For example, a system that we have already analysed
and designed can be used as a first approximation to some new system that we
suspect is similar to it in some way.

Another reason for writing this book is that we wish to integrate the world of
business processing modelling, requirements analysis and UML into a coherent
whole. In particular, we create a well-defined and hopefully seamless path that
maps high-level requirements and business concerns to analysis artefacts such as
class diagrams, interaction diagrams and other artefacts in UML. We are not aware
of such a process in the literature. This is why we have created the Datasim Devel-
opment Process (DDP) that does provide a step-by-step plan to get you to the UML
finish line. The DDP describes the following phases: business processing modelling,
architecture, requirements analysis, object-oriented analysis in UML and design. It
is a lightweight process and can be used by novice developers. We give an intro-
duction to the DDP in Chapter 3. Each of these topics is discussed in this book with
the exception of design.

Finally, we have written this book because we wish to improve the communication
lines between customers and developer.

What is a domain architecture, really? 5

1.3 FOR WHOM IS THIS BOOK INTENDED?

This book is aimed at software architects, (structured and object-oriented) analysts
and other software specialists who are involved with the creation of stable architec-
tures for medium and large systems. We describe a step-by-step process that takes
the system goals and business processes and maps them to a software architecture
consisting of a network of interrelated systems and classes. We describe how to
decompose the systems into subsystems and classes. To this end, we use a subset
of the UML syntax that is sufficiently rich to allow a detailed design. Thus, this
book is also suitable for those developers who analyse and document systems using
UML and who wish to integrate them with the ‘Gang of Four’ (GOF) and system
(POSA) patterns. In general, this book focuses on that part of the software lifecycle
between business process modelling and object-oriented analysis and it provides a
stable architectural framework on which to place customer requirements.

This book is also of interest to analysts who are involved in requirements determi-
nation activities and who need to align functional and non-functional requirements
with architectural models.

1.4 WHY SHOULD I READ THIS BOOK?

We think that this is one of the first books that attempts to use UML for large
enterprise systems. It provides the reader with tools, concepts and advice on how to
map the business world to the IT world. We use standards wherever possible, such
as UML, standard architectures, business process modelling and patterns. We also
improve these standards whenever necessary.

This book should help you produce stable, understandable and high-quality soft-
ware systems. New key features that we see as important are:

• A defined software process from A to Z
• Integration of proven technology with our software process
• Ready-made reference models that you can use in projects
• Using the UML artefacts in a predictable and usable way
• Reference models that are based on real-world experience
• Software development as a continuous improvement process.

1.5 WHAT IS A DOMAIN ARCHITECTURE, REALLY?

A domain architecture is a reference model for a range of applications that share
similar structure, functionality and behaviour. It is not an application as such but

6 Introducing and motivating domain architectures

Business Process Modelling

Domain Architectures

Buschmann Patterns

Gamma Patterns

C++/C#/Java

Problem Domain

Grey
Area

Solution Domain

System-Level (Design)

Class-Level

Problem Frames

1

2

3

4

0

Figure 1.1 Taxonomy of domain architectures.

is in fact a meta model that describes how more specific instance systems (‘real
applications for real customers’) are created. A domain architecture subsumes much
of the current techniques in software development and is positioned between a
number of other methods as shown in Figure 1.1. This diagram should help the
reader position domain architecture in the galaxy of methods. For a discussion of
the methods in Figure 1.1 and how they have influenced our work, we refer to
Appendix 3 at the end of this book. We thus see that our work and results are
positioned between the problem domain and the solution domain. Once you have
determined in which domain architecture type (or types) your application falls,
you can then use the ready-made templates to map the business artefacts to UML
artefacts. You have a foot in both camps, as it were. This can’t be a bad thing.

We discuss five basic forms and one ‘composite’ form in this book:

• MIS (Management Information Systems): Produce high-level and consolidated
decision-support data and reports based on transaction data from various inde-
pendent sources.

• PCS (Process Control Systems): Monitor and control values of certain variables
that must satisfy certain constraints.

• RAT (Resource Allocation and Tracking) systems: Monitor a request or some other
entity in a system. The request is registered, resources are assigned to it, and its
status in time and space is monitored.

• MAN (Manufacturing) systems: Create finished products and services from raw
materials.

• ACS (Access Control Systems): Allow access to passive objects from active sub-
jects. They are similar to security systems.

• LCM (Lifecycle Model): A ‘composite’ model that describes the full lifecycle of
an entity; an aggregate of MAN, RAT and MIS models.

What is a domain architecture, really? 7

We realize that some of the above names may be confusing to some readers, or
that readers may infer some wrong conclusions based on those names. For example,
the author once spoke to a software engineer who developed reporting functionality
in the telecom industry. For example, the system to be developed should create
invoices at different levels. The author suggested analysing the system as a MIS
category. The response from the engineer was ‘Oh no, my system is technical!’.

In order to fit domain architectures in a hierarchy that improves understandability
and discovery we create a semantic network model as shown in Figure 1.2. This
is an application of well-known techniques in cognitive psychology (Eysenck and
Keane 2000). There are three main categories:

• Superordinate level (level 1): This is a high level of abstraction in a conceptual
hierarchy and corresponds to a very general type. In our case we have cate-
gories for object creation, aligning objects in some structure, and modelling object
behaviour. The basic assumption is that these three categories model the lifecycle
of any object in any phase of the software lifecycle.

• Subordinate level (level 3): This is the lowest level in the conceptual hierarchy
and contains specific objects and systems. This is, for example, where all the
specific applications that we discuss in Part III of this book are to be found.

• Basic level (level 2): This is an intermediate level of abstraction in the conceptual
hierarchy and fits between the superordinate and subordinate levels. This is the
level where the current domain architecture types are placed.

The reader can use the hierarchy in Figure 1.2 as a navigational aid. For example, he
or she can try to place a system to be developed as a subordinate level system under
a more general basic level category. For example, a system that produces invoices

Domain
Architecture

Object Creational
Systems

Object Alignment
Systems

Object Behavioural
Systems

MAN
GOF

Creational
RAT

GOF
Structural

Reporting
System ACS

GOF
Behavioural

BGS HDS ELS MIS PCS.

LEVEL 1

LEVEL 2

LEVEL 3

Composite

*

Figure 1.2 Hierarchy of patterns and reference models.

8 Introducing and motivating domain architectures

on mobile telephone usage is seen as an instance of an Object Reporting System.
This can be refined by modelling the system as an instance of a MIS category.

The domain architecture types are fully documented in Part II. The documentation
style is similar to how the patterns community document their design and system
patterns (see GOF 1995, POSA 1996). The structure is roughly as follows (‘DA’
stands for Domain Architecture):

• Motivation section
— Background to DA and its history
— Motivational examples (one small example, one larger example)
— The general applicability of the DA

• Functional modelling, architecture and structure
— The goals, processes and activities for the DA
— Context diagram, system discovery and system decomposition

• Behavioural modelling
— Stakeholders and their viewpoints
— Requirements and use cases

• Object-Oriented Analysis (OOA)
— Class architecture UML classes in the DA
— Use cases (and possibly sequence diagrams)

• Extensions to the DA
— Specializations of the DA
— Using the DA with other systems (as client, server, collaborator).

Each of the artefacts in the above list is documented using UML whenever possible.

1.6 THE DATASIM DEVELOPMENT PROCESS (DDP)

This book would not be complete if we did not pay some attention to the actual
process of mapping high-level concepts and requirements to lower-level artefacts
that we use in UML. We describe a step-by-step constructive process that actually
shows you how to do this. This topic is discussed in Chapter 3. In particular, we
develop processes for the following important phases:

• Architecture discovery and decomposition
• Requirements analysis
• Object-oriented analysis.

Furthermore, we discuss the integration problems when we wish to align the artefacts
of the different phases. We note that it is possible to use the DDP as described here
without having to refer to domain architectures at all! This makes the book useful

The structure of this book 9

for those readers who do not have the time to study the domain architectures in
detail but who will still want to use a solid software process.

A full treatment of project management issues for DDP is outside the scope of
this book.

1.7 THE STRUCTURE OF THIS BOOK

This book consists of four main parts and 18 chapters. In Part I (Chapters 1–4)
we motivate domain architectures by describing what they are and how to use and
document them and by giving examples. In Part II we discuss and document the six
basic forms of domain architecture. We discuss these categories in Chapters 5–10.
Each chapter in this part is documented using a standard template structure. Part III
analyses six instance systems of the domain architecture types from Part II and
these instances are described in Chapters 11–16. The cases are well known in the
software literature or have been distilled from real-life software projects in the
past. Finally, Part IV contains two chapters that summarize the similarities and
differences between the different domain architecture types and how to use them in
your software projects.

The chapters in Parts II and III have been written in handbook form. We have
written several chapters and appendices to help the reader understand the rationale
behind the structure of the book.

An important feature in this book is that we resurrect information models that
have been used for many years to help systems analysts design software systems
and we have dressed them in a more object-oriented suit. In this way we hope to
save these useful models for future applications.

How do we use this book? We attempt to answer this question by posing a number
of standard questions that we hope will encompass those that readers might ask,
and then directing the reader to the most appropriate chapters:

• Question: Where can I find a summary of domain architectures and their instance
systems?
Answer: Chapter 2.

• Question: Where are domain architectures and UML artefacts documented?
Answer: Chapter 4.

• Question: Where are domain architectures and their instances documented in
detail?
Answer: Parts II and III of this book. Furthermore, Chapter 17 summarizes the
domain architectures and the client/server relationships between them and their
instance systems.

• Question: How do I start?

10 Introducing and motivating domain architectures

Answer: Chapter 18 discusses the different ways of tackling software projects.
We develop a number of practical techniques to help you get up to speed.

• Question: Does this book help me to develop interviewing skills?
Answer: Yes. Please read Appendix 1.

1.8 WHAT THIS BOOK DOES NOT COVER

First, this book is not a UML tutorial and we assume that the reader has experience
of UML syntax. Second, this book is not concerned with design issues or design
patterns, although the artefacts can be mapped to the GOF and POSA patterns. This
topic is beyond the scope of this book.

Finally, this book does not deal with component technology, although it is possible
to first model domain architectures using this technology and then create systems
in which the component and object technologies dovetail. We thus see the object
paradigm evolving into something to adapt to the realities of the modern software
development environment.

2 Domain architecture
catalogue

‘Any problem in geometry can easily be reduced to such terms that a knowledge
of the lengths of certain straight lines is sufficient for its construction. Just as
arithmetic consists of only four or five operations, namely, addition, subtraction,
multiplication, division and the extraction of roots . . . so in geometry, to find
required lines it is merely necessary to add or subtract other lines.’

René Descartes, The Geometry

2.1 INTRODUCTION AND OBJECTIVES

This chapter summarizes the major domain architectures that we discuss in this
book as well as several instance systems in each category. It has been included
mainly for reference purposes and it may be skipped on a first reading. The added
value of this chapter is that the reader can use it as a kind of Yellow Pages to
help find applications that are similar to his or her current applications. This topic
will be further developed in Chapter 18 when we develop some guidelines to help
us discover the structure and functionality of an application by comparing it with
known applications. This is called analogical reasoning.

In short, this chapter is a quick reference to the domains and instance systems in
this book. It is not meant to be read from start to finish but gathers all the domain
architectures and their instances in one place for perusal and reference.

We assemble all the domain architectures, their instances and exercises in one
place. This is where you can begin before you consult the chapters in Parts II and
III because your specific application will hopefully be analogous to one or more
categories or instances. You can use this chapter as you would a real catalogue,
namely by browsing until you come across something that interests you.

One of the assumptions in this book is that each new application is similar to an
instance of some domain architecture (or category as we shall sometimes call it).
In order to help the reader determine which category is ‘best’ we have introduced
domain architectures and their instances. A domain architecture encapsulates the

12 Domain architecture catalogue

assumption that all applications in a given domain have a central description that
then stands for all of them. An application is a member of the category if there is a
good correspondence between its attributes and that of the more general architecture.
For example, we suggest that the following applications are good prototypes for their
respective domain architecture types:

• Manpower Control (MPC) is a prototype for MIS
• Home Heating System (HHS) is a prototype for PCS
• Order Realization System (ORS) is a prototype for RAT
• A compiler is a prototype for MAN
• The Reference Monitor model is a prototype for ACS
• The Product Lifecycle Model (LCM) is a prototype for lifecycle and composite

models.

We note that the domain architectures themselves may be used as prototypes for
new systems. The disadvantage is that it may not be possible to fit your application
to a prototype. Then we must resort to the so-called exemplar-based view. Rather
than working from an abstraction of the central tendency of all the instances of
a category, people simply make use of particular instances or exemplars of the
category (Eysenck and Keane 2000). For example, some exemplars in the RAT
category are:

• Help Desk System (HDS)
• Order Realization System (ORS)
• Call handling systems.

People relate to instance systems more quickly than to abstract reference models.
However, you have a choice! Basically, we choose between one representative
application and several exemplars as the target when using analogical reasoning
to help us discover the architecture and behaviour of the system under discussion
(SUD). A prototype approach assumes that there is a single ‘best’ system that is
representative of all other systems in the same category, while the exemplar-based
view contradicts this assumption. Instead, we need several instance systems to help
us discover system structure and behaviour. We discuss prototypes and exemplars
in more detail in Chapter 18.

In order to focus on the problem at hand we attempt to define the major defining
features of a system or domain architecture type. We reduce the scope by focusing
on the initial business and analysis phases of the software lifecycle. To this end, we
think that the following set will provide a good starting point:

• C1: What are the main goals of a system?
• C2: What are the main core processes and key systems?
• C3: What are external stakeholder systems and their viewpoints?
• C4: What are the most important use cases?

Management Information Systems (MIS) 13

For point C3 we are using the term ‘viewpoint’ as defined in Sommerville and
Sawyer 1997, for example. This is a term that we use in the very early stages of
the software lifecycle to denote perspectives taken by different system stakeholder
groups. We give a fuller definition in Chapter 3.

Note that these questions are mainly of relevance during the early analysis phases.
Unfortunately, these are the problems that tend to get glossed over in large systems
in the rush to UML nirvana.

Answers to Questions C1 to C4 should be forthcoming as soon as possible and
before commencing with object-oriented analysis. The risks are great if you gloss
over or ‘fudge’ these issues.

2.2 MANAGEMENT INFORMATION SYSTEMS (MIS) (CHAPTER 5)

Management Information Systems produce decision-support information that can
be used as input to other systems such as data mining, statistical analysis and
executive information systems. The motivation and vocabulary for MIS date from
the 1960s and 1970s (see Section 5.2 for a description) and we have subsumed the
corresponding models under an object-oriented framework. The core process is to
produce decision-support information based on low-level or transaction input data
from various sources. The output is presented in various ways. The main activities
in the core process are:

• Register, validate and create basic transaction objects
• Consolidate and aggregate transaction objects
• Present, dispatch and report on consolidated data.

The MIS category subsumes many industrial, technical and administrative applica-
tions. The word ‘management’ should not be interpreted as just being of relevance
to business domains. It has a broader scope.

We now give a brief discussion of the MIS instances in this book. These are
useful for reference purposes.

1. Simple Digital Watch (SDW) (Section 5.3.1)
SDW accepts pulses (one pulse every second). The pulses are buffered until the
number of pulses reaches 60. Then the current time (in hours and minutes) is
(re)calculated and the new time is displayed on an output panel. SDW can be
configured on a 12-hour or 24-hour time regime.

SDW contains a panel consisting of two buttons for setting the time. We see
the current version of SDW as an instance of MIS for a number of reasons. First,
low-level data (seconds) is registered and merged to high-level data (time, that is
hours and minutes). Second, we need different kinds of merging and consolidation

14 Domain architecture catalogue

algorithms to create this high-level data. Finally, this data is displayed on a LED
and is in fact decision-support information (for example, it’s time to get up!).

2. Instrumentation and control systems (Section 5.3.2)
This technical problem occurs in many industrial applications. Nonetheless, it can
still be modelled as a MIS instance. All instrumentation and control systems convert
physical quantities and display the converted information on a recording device
or recorder. The recorder stores the results of the measurements. The difference
between a recorder and a display is that the former produces a permanent (persistent)
record while the latter shows the results in volatile form. In general, we use a
database system to store results permanently while displays can be implemented by
some kind of light-emitting diode (LED) display or a graphics screen.

3. Noise control engineering (Section 5.10.1)
This is another technical example of MIS. In this case we imagine a petrochemical
plant consisting of various noise-producing equipment. The equipment is grouped
into various areas, clusters and assemblies. The system calculates noise levels (in
decibels) in the petrochemical plant and the main goal is to produce high-level
decision information for health inspectors and local authorities. Typing reporting
functions are:

• What are the noise levels at various distances from the plant?
• What are the noise levels caused by various assemblies?
• Compare actual noise levels with levels allowed by the law.

4. Reporting activities in the ‘Rent-a-machine’ system (Section 10.3.1)
This system is an instance of a lifecycle model (LCM) and its core process is
the tracking of a customer request from A to Z. The lifecycle system has the
following subsystems:

• Reservation: create the basic customer order (MAN instance)
• Contracting: create a binding contract between the customer and garden centre

(RAT instance)
• Reporting: marketing and sales information on rented equipment (MIS instance).

This last system is an instance of a MIS because we are interested in monitoring
the status of each rented machine. Some typical questions to be answered are:

• Report on the usage levels for a given group of machines
• How many machines need repair?
• What is the garden centre’s profit in the last six months?

Management Information Systems (MIS) 15

5. Manpower Control (MPC) system (Chapter 11)
An engineering company works on projects for internal and external customers.
A project represents the sequence of activities that are executed by the different
departments. The project is deemed to be complete when each activity has been
completed. An employee works on several activities in a project and is allocated a
certain number of hours and other resources for each activity. Each department has
its own area of expertise.

Departments are grouped into divisions. Customers are the sponsors of exter-
nal projects. The resources (in this case hours) are allocated to departments and
employees on a project basis.

A system needs to be built that registers, validates and monitors project resource
usage (in this case man-hours). In particular, the following requirements must be
supported in the system:

• MPC processes transaction data (resource usage) once per period (e.g. per month)
• Resource utilization must be monitored
• Status reporting capabilities must be available to stakeholders.

We model this problem as a MIS instance because we wish to monitor project status.
We could have modelled this as an instance of RAT (a kind of time-tracking) but
the fit may be less clear. For example, RAT does not say much about high-level
reporting and consolidation algorithms, while MIS does.

6. Portfolio management
A financial instrument (or instrument for short) is an entity that can be traded in
the marketplace. Examples of instruments are cash, equities, equity options, index
options, bonds and futures (see Jarrow and Turnbull 1996). We can create MIS
systems for a given instrument type, for example:

• Calculate the value of the instrument
• Get the instrument history (historic prices of a selected instrument).

Thus, we can monitor instrument behaviour using a MIS, albeit at the level of a
single instrument. You could also model it using a RAT, in which case you have a
competing solution.

A portfolio is a set of instruments. We now wish to monitor the performance of the
portfolio so that we can generate an optimal return on the portfolio. In particular, we
wish to calculate a strategy of buys and sells and we achieve this by using simulation
techniques, for example using the Monte Carlo method (see Wilmott 1998).

The main reporting functions in a portfolio system are:

• Get portfolio history (display the historic values in a graph)
• Calculate performance (sum performance of instruments in portfolio)
• Calculate the Value At Risk (VAR) of the portfolio.

Some other examples of MIS applications are discussed in Section 5.10.

16 Domain architecture catalogue

2.3 PROCESS CONTROL SYSTEMS (PCS) (CHAPTER 6)

Process Control Systems model differences between the scheduled and actual values
of certain attributes and variables in a system. The main objective is to keep these
two sets of values within close proximity to each other. The system monitors the
values and corrective or control action is taken if the values drift too much away from
each other. Process control systems are well understood and we discuss the basic
model and its variants in Sections 6.4 (reference model and main components) and
6.4.2 (control engineering). We subsume these models under a domain architecture
that we call PCS. The core process in PCS is the activation of actuators that ensure
that the system returns to equilibrium. The main concurrent activities are:

• Monitor disturbances and other changes in the system’s environment
• Activate actuators to bring the system to a steady state
• Monitor and control the life of the system (for example, via an operator panel).

As we shall see in Chapter 6, we map each activity to a subsystem that contains
the necessary structure, functionality and behaviour to approximate the correspond-
ing activity.

Process Control Systems occur in many industrial, real-time and business domains.
In fact, any application where part of the problem is to monitor and control dis-
parities between actual and ideal values of some variable will almost certainly be a
candidate for one or more PCS instance systems.

1. Water level control (Section 6.3.1)
The water level in a tank must be monitored and controlled. If the water level is
too high we open a valve to let the water escape, while if the level is too low we
close the valve and start a pump motor that consequently delivers water to the tank
in order to increase the level.

2. Bioreactor (Section 6.3.2)
This problem is similar to the previous problem. Instead of monitoring water level
the bioreactor system monitors and controls the temperature of the water (or other
liquid) in the tank. An example of a bioreactor system is a sewage plant.

Real applications monitor several variables such as temperature, pressure, pH level
and percentage of oxygen in the liquid. We then speak of a multi-parameter problem.

3. Barrier options (Section 6.3.3)
In this case we are interested in situations where stock price fluctuates between
critical ‘barrier’ values. Upper and lower barriers may be defined and stock value is
measured against these scheduled values. For example, a so-called knock-out option
becomes worthless if its underlying stock value reaches the barrier value.

Process Control Systems (PCS) 17

Whereas a plain option is unconstrained, a barrier option is constrained by the
predefined barrier values of the stock. Control action is executed when these bar-
riers are reached, thus confirming that we are indeed looking at an instance of the
PCS category.

4. Control engineering (Section 6.4.2)
This is a specialized discipline and it is concerned (among other things) with the def-
inition of models that ensure that a system behaves in a certain way. We distinguish
between open, closed, feedback and feedforward systems.

You can skip this section on a first reading. It may not be to everybody’s taste.

5. Complexity of object-oriented applications
Systems built using objects and classes tend to become more complex and difficult
to maintain as time goes on. In particular, classes may have associations with several
other classes. The more relationships a class has with other classes, the less under-
standable and maintainable this class becomes. In order to redress this problem, we
can define a number of so-called software metrics, define target values for them and
describe the problem of defining the resulting system as an instance of the PCS
category. For example, we could define an upper threshold value for the number
of attributes in a class; a warning message is sent to the software risk manager if
this value is exceeded. Of course, risk and quality managers are interested in risks
and potential calamities. Modelling their world using PCS systems may not be a
bad idea after all because these systems inform the managers when things start to
go wrong.

6. Home Heating System (HHS) (Chapter 12)
This system is a prototype for the PCS category. It is a standard benchmark case in
the software literature. Our approach to the HHS is unique, in our opinion. Some
of the issues that we address in a comprehensive manner are:

• Integration of HHS with process-control terminology (from Chapter 6)
• Benchmark previous analyses of HHS (Booch, Hatley and Pirbhai)
• Thorough description of behaviour with use cases
• Integration of the PAC model with use cases.

Furthermore, we have used HHS as a reference model for new systems. We can
employ a form of analogical reasoning to ‘morph’ HHS into the current system under
discussion. This is easier than approaching the analysis of HHS using traditional
object-oriented technology and its related methods such as using nouns for classes,
CRC cards and so on. Our approach is better because we have decomposed HHS
into loosely coupled systems and each system encapsulates a difficult and volatile
design decision. Furthermore, we have integrated this approach with the object
paradigm.

18 Domain architecture catalogue

2.4 RESOURCE ALLOCATION AND TRACKING (RAT)
SYSTEMS (CHAPTER 7)

The main added value of the RAT category is that it provides us with a model for
registering and tracking entities in a system. It must be possible to query the status
of the entity at all times. The primary input to RAT systems is some kind of request.
The core process produces status information and the main activities are:

• Register and verify the request
• Assign resources to execute the request
• Monitor the status of the request and present this to stakeholders.

RAT systems occur in many industrial and business applications and we consider
the RAT category to be one of the most important categories in our repertoire. We
now summarize the specific RAT instances that are discussed in this book.

1. Help Desk System (HDS) (Section 7.3.1)
This is a good prototypical instance of a RAT category and it contains enough infor-
mation to allow us to generalize it to other applications. We discuss the viewpoints
and requirements of a number of stakeholder groups. Furthermore, we create a con-
text diagram for HDS that is able to support stakeholder requirements and that can
be used as a prototype for other applications in the same category.

2. Discrete manufacturing (Section 7.3.2)
This real-life problem discusses the process of trimming and forming computer
chips once they have been manufactured. To this end, pallets of chips are loaded
into a machine, the chips are trimmed and formed and finally unloaded. There is a
clear tracking metaphor in this problem.

3. Tracking systems in financial risk management (Section 7.11)
This is a large system in general but there is a strong tracking element and this is
modelled as a number of ‘layered’ RAT systems. One layer tracks real-time market
data, the next layer tracks individual portfolios, while the highest-level layer tracks
all portfolios in an organization.

4. Elevator Control System (Chapter 13)
We devote a chapter to this problem. We discuss how the RAT category is a good fit
to this problem. We analyse the problem as three loosely coupled RAT instances, one
for elevator reservation (by would-be passengers), the second for elevator utilization
(by passengers) and finally a RAT system that is responsible for the actual scheduling
and dispatching of physical elevators.

Manufacturing (MAN) systems 19

A thorough discussion of goals, processes, stakeholders and requirements is given
in this chapter and we document these artefacts using the standard templates as
discussed in Chapter 4.

5. Order Realization System (ORS) (Chapter 14)
This is a RAT instance that is embedded in a Lifecycle Model (LCM). We create
the context diagram for ORS in order to reduce scope and risk. Furthermore, we
show how to construct a PAC model for ORS and we integrate this model with
the requirements and use cases. We also discover a number of critical classes in
ORS and we document them using UML. Finally, we discuss how ORS should be
designed and we place particular emphasis on database design and how the software
components actually communicate.

6. Rent-a-machine (Section 10.3)
This is an application from the retail industry. We wish to track the whereabouts of
a machine that is rented from a garden centre.

2.5 MANUFACTURING (MAN) SYSTEMS (CHAPTER 8)

This category defines applications where there is a clear idea of creating products
and services. In general, a MAN instance creates a product from raw materials. This
is the core process and its activities are:

• Process and check raw materials
• Convert raw materials to ‘half-products’
• Package and dispatch half-products.

There is a clear idea of procuring raw materials, designing a product based on these
materials and packaging the product for different kinds of customers. We are not
interested in tracking the manufacturing process as such (this is done by a RAT
system), nor in historical information concerning the product (this is done by a
MIS system). We could say that a MAN is a MIS or a RAT without memory; in
other words, we create a product but we have no historical data on it and we do
not know how, when or by whom it was created. Of course, complementary RAT
and MIS systems will be needed in real applications if we do wish to model these
requirements.

The MAN category is needed by other applications because we must first create
objects before we can do something with them.

1. Reference models in manufacturing domains (Section 8.2)
Models for manufacturing processes are well known in the literature. We use these
models to describe and document the MAN category. We note that there are many

20 Domain architecture catalogue

flows in MAN systems, for example material, cost and information flows. We must
model these flows.

2. Compiler construction (Section 8.3.1)
This is probably the prototypical MAN instance. Compiler models are well docu-
mented in the literature.

3. Graphics and CAD applications (Section 8.3.2)
These are applications that create entities that are then displayed on a screen.
The raw input data is usually an ASCII or binary file that describes graphics
objects.

4. Human memory models (Section 8.3.3)
These are models that describe how long-term memory works and how we remember
events based on sensory perception. We see this problem as a MAN instance because
we are interested in how long-term memory is created and stored.

5. Rent-a-machine (Section 10.3)
This is a lifecycle model and it has an ‘embedded’ MAN component. In this case
we create a basic request object. This object will then be assigned to resources in
an upstream RAT system.

6. Tracking plastic manufacturing processes (Section 16.3)
This is a lifecycle model and it has an ‘embedded’ MAN component. In this case we
create a basic request object. This object will then be assigned to certain resources
in an upstream RAT system.

We note that there are many similarities between this problem and Rent-a-machine;
in the latter case we are tracking rented machines while in the former case we are
tracking a customer request for a supply of processed plastic film.

2.6 ACCESS CONTROL SYSTEMS (ACS) (CHAPTER 9)

This class of applications includes security systems and systems where controlled
access to valuable resources must be defined. These systems are well understood
because there are many reference models for them. There are two main processes
in ACS systems:

• Authorization: securely identifying principals
• Authentication: controlling which principals can execute which operations on

which resources.

Lifecycle and composite models 21

The main activities in the Authentication process are:

• Accept a request from a subject to gain access to an object
• Check whether access is allowed
• If successful, execute the request on behalf of the subject.

ACS systems are ‘helper’ systems for other applications because they realize require-
ments such as Security (a sub-characteristic of Functionality) and to a lesser extent
Reliability.

1. The Reference Monitor model (Section 9.3.1)
This can be seen as the original model for this class of problems. We can learn a
lot about ACS systems by looking at the model and its corresponding architecture.
We have modified this model to suit an object-oriented context. In particular, we
have mapped the architecture in the Reference Monitor model to a context diagram
in ACS.

2. Security issues in Web applications (Section 9.10.1)
Here we give a short description of some modern versions of the Reference Mon-
itor model from Section 9.3.1, including role-based access mechanisms that we
conveniently document by an UML class diagram.

3. The proxy design pattern as a special ACS system (Section 9.10.2)
We subsume the well-known proxy pattern under the ACS banner. In particular, the
different kinds of proxy as described in POSA 1996 are discussed in relation to the
ISO 9126 quality characteristics.

4. Drink Vending Machine (Chapter 15)
A classic! This problem is discussed in many books on software development. We
model the problem as an instance of ACS and we show how our solution compares
well to the somewhat ad hoc approaches taken to analyse this problem. Just looking
for the objects is no longer good enough!

2.7 LIFECYCLE AND COMPOSITE MODELS (CHAPTER 10)

The systems in this category have three components, namely a MAN instance, a RAT
instance and a MIS instance. Lifecycle Models (LCM) are very important because
most real-life applications are in fact composed of multiple lifecycle models.

Many reference models exist for this class of applications. These models have
been standardized and institutionalized in mature disciplines such as retail, manu-
facturing, marketing and oil (where the author got the model).

22 Domain architecture catalogue

1. Product lifecycle in general (Section 10.2)
This is a general discussion of the lifecycle model for any kind of product. The reader
should consult technical marketing literature to understand just how organizations
view this problem.

2. Rent-a-machine (Section 10.3)
This problem discusses the lifetime of a request from a customer to rent a machine
at a garden centre. We sketch the core processes in this system as well as the
context diagram and main activities in each subsystem. Special emphasis is paid to
how customer-defined features (which are always a bit fuzzy) are mapped to more
concrete requirements.

3. Order Processing System (OPS) (Chapter 14)
This is a large chapter that discusses a lifecycle model that tracks a request or
order from the moment that it is created to when it is completed and archived. We
concentrate on the structure of the subsystems and the different kinds of stakeholders
that have their own specific viewpoints on the system.

4. Plastics extrusion (Chapter 16)
This chapter describe how we have applied the LCM to an industrial application,
namely the production of plastic film. We pay attention to defining robust context
diagrams and black-box interfaces between the systems and components in this
problem. Some design topics are introduced to show the reader how the artefacts
from the DDP map to design patterns. Special emphasis is paid to how user-defined
features (which are always a bit fuzzy) are mapped to more concrete requirements.

