
iPhone SDK 3 Programming

Advanced Mobile Development for Apple
iPhone and iPod touch

Maher Ali, PhD

Bell Labs, Alcatel-Lucent

A John Wiley and Sons, Ltd, Publication

iPhone SDK 3 Programming

iPhone SDK 3 Programming

Advanced Mobile Development for Apple
iPhone and iPod touch

Maher Ali, PhD

Bell Labs, Alcatel-Lucent

A John Wiley and Sons, Ltd, Publication

This edition first published 2009
© 2009, John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom.

For details of our global editorial offices, for customer services and for information about how to
apply for permission to reuse the copyright material in this book please see our website at
www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance
with the Copyright, Designs and Patents Act 1988.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the
prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product
or vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the
publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John
Wiley and Sons, Inc. and/or its affiliates in the United States and/or other countries, and may not be
used without written permission. iPhone and iPod are trademarks of Apple Computer, Inc. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with
any product or vendor mentioned in the book. This book is not endorsed by Apple Computer, Inc.

ISBN 978-0-470-68398-9

Typeset by Sunrise Setting Ltd, Torquay, UK.
Printed in the United States of America.

www.wiley.com

CONTENTS

Preface xv

1 Getting Started 1
1.1 SDK and IDE Basics 1

1.1.1 Obtaining and installing the SDK 1
1.1.2 Creating a project 2
1.1.3 Familiarizing yourself with the IDE 3
1.1.4 Looking closely at the generated code 5

1.2 Creating Interfaces 6
1.2.1 Interface Builder 7

1.3 Using the Debugger 14
1.4 Getting More Information 15
1.5 Summary 16
Problems 17

2 Objective-C and Cocoa 19
2.1 Classes 20

2.1.1 Class declaration 20
2.1.2 How do I use other declarations? 21
2.1.3 Class definition 22
2.1.4 Method invocation and definition 22
2.1.5 Important types 23
2.1.6 Important Cocoa classes 24

2.2 Memory Management 24
2.2.1 Creating and deallocating objects 24
2.2.2 Preventing memory leaks 25

2.3 Protocols 27
2.3.1 Protocol conformance 28

2.4 Properties 29
2.4.1 Property declaration 29
2.4.2 Circular references 34

2.5 Categories 36
2.6 Posing 38

vi Contents

2.7 Exceptions and Errors 38
2.7.1 Exceptions 38
2.7.2 Errors 43

2.8 Key-value coding (KVC) 45
2.8.1 An example illustrating KVC 46

2.9 Multithreading 51
2.10 Notifications 55
2.11 The Objective-C Runtime 56

2.11.1 Required header files 57
2.11.2 The NSObject class 58
2.11.3 Objective-C methods 59
2.11.4 Examples 62

2.12 Summary 79
Problems 79

3 Collections 83
3.1 Arrays 83

3.1.1 Immutable copy 86
3.1.2 Mutable copy 88
3.1.3 Deep copy 89
3.1.4 Sorting an array 93

3.2 Sets 96
3.2.1 Immutable sets 97
3.2.2 Mutable sets 99
3.2.3 Additional important methods 100

3.3 Dictionaries 101
3.3.1 Additional important methods 103

3.4 Summary 103
Problems 104

4 Anatomy of an iPhone Application 105
4.1 Hello World Application 105

4.1.1 Create a main.m file 105
4.1.2 Create the application delegate class 106
4.1.3 Create the user interface subclasses 107

4.2 Building the Hello World Application 108
4.3 Summary 113
Problems 113

5 The View 115
5.1 View Geometry 115

5.1.1 Useful geometric type definitions 115
5.1.2 The UIScreen class 117
5.1.3 The frame and center properties 118

Contents vii

5.1.4 The bounds property 119
5.2 The View Hierarchy 121
5.3 The Multitouch Interface 121

5.3.1 The UITouch class 122
5.3.2 The UIEvent class 123
5.3.3 The UIResponder class 123
5.3.4 Handling a swipe 128
5.3.5 More advanced gesture recognition 132

5.4 Animation 137
5.4.1 Using the UIView class animation support 137
5.4.2 Sliding view 141
5.4.3 Flip animation 142
5.4.4 Transition animation 142

5.5 Drawing 145
5.6 Summary 147
Problems 147

6 Controls 149
6.1 The Foundation of all Controls 149

6.1.1 UIControl attributes 149
6.1.2 Target-action mechanism 150

6.2 The Text Field 153
6.2.1 Interacting with the keyboard 155
6.2.2 The delegate 158
6.2.3 Creating and working with a UITextField 159

6.3 Sliders 160
6.4 Switches 161
6.5 Buttons 163
6.6 Segmented Controls 164
6.7 Page Controls 167
6.8 Date Pickers 168
6.9 Summary 170
Problems 170

7 View Controllers 171
7.1 The Simplest View Controller 171

7.1.1 The view controller 171
7.1.2 The view 173
7.1.3 The application delegate 174
7.1.4 Summary: creating a simple MVC application 175

7.2 Radio Interfaces 177
7.2.1 A detailed example 177
7.2.2 Some comments on tab bar controllers 182

7.3 Navigation Controllers 186

viii Contents

7.3.1 A detailed example 187
7.3.2 Customization 193

7.4 Modal View Controllers 197
7.4.1 A detailed example 197

7.5 Summary 203
Problems 203

8 Special-Purpose Views 205
8.1 Picker View 205

8.1.1 The delegate 206
8.1.2 An example 207

8.2 Progress Views 211
8.2.1 An example 213

8.3 Scroll View 215
8.4 Text View 217

8.4.1 The delegate 218
8.4.2 An example 218

8.5 Alert View 221
8.6 Action Sheet 224
8.7 Web View 225

8.7.1 A simple web view application 226
8.7.2 Viewing local files 230
8.7.3 Evaluating JavaScript 235
8.7.4 The web view delegate 242

8.8 Summary 247
Problems 247

9 Table View 249
9.1 Overview 249
9.2 The Simplest Table View Application 250
9.3 A Table View with both Images and Text 255
9.4 A Table View with Section Headers and Footers 257
9.5 A Table View with the Ability to Delete Rows 258
9.6 A Table View with the Ability to Insert Rows 265
9.7 Reordering Table Rows 270
9.8 Presenting Hierarchical Information 275

9.8.1 Detailed example 278
9.9 Grouped Table Views 285
9.10 Indexed Table Views 288
9.11 Dynamic Table Views 294
9.12 Whitening Text in Custom Cells 297
9.13 Summary 302
Problems 303

Contents ix

10 File Management 305
10.1 The Home Directory 305
10.2 Enumerating a Directory 306
10.3 Creating and Deleting a Directory 308
10.4 Creating Files 309
10.5 Retrieving and Changing Attributes 312

10.5.1 Retrieving attributes 314
10.5.2 Changing attributes 315

10.6 Working with Resources and Low-level File Access 317
10.7 Summary 320
Problems 321

11 Working with Databases 323
11.1 Basic Database Operations 323

11.1.1 Opening, creating, and closing databases 325
11.1.2 Table operations 325

11.2 Processing Row Results 327
11.3 Prepared Statements 330

11.3.1 Preparation 330
11.3.2 Execution 331
11.3.3 Finalization 331
11.3.4 Putting it together 331

11.4 User-defined Functions 333
11.5 Storing BLOBs 337
11.6 Retrieving BLOBs 341
11.7 Summary 343
Problems 343

12 XML Processing 345
12.1 XML and RSS 345

12.1.1 XML 345
12.1.2 RSS 347
12.1.3 Configuring the XCode project 350

12.2 Document Object Model (DOM) 351
12.3 Simple API for XML (SAX) 358
12.4 An RSS Reader Application 367
12.5 Putting It Together 369
12.6 Summary 371
Problems 371

13 Location Awareness 373
13.1 The Core Location Framework 373

13.1.1 The CLLocation class 375
13.2 A Simple Location-aware Application 377

x Contents

13.3 Google Maps API 380
13.3.1 A geocoding application 380

13.4 A Tracking Application with Maps 386
13.5 Working with ZIP Codes 392
13.6 Working with the Map Kit API 394

13.6.1 The MKMapView class 395
13.6.2 The MKCoordinateRegion structure 395
13.6.3 The MKAnnotation protocol 396
13.6.4 The MKAnnotationView class 397
13.6.5 The MKUserLocation class 399
13.6.6 The MKPinAnnotationView class 401

13.7 Summary 401
Problems 402

14 Working with Devices 403
14.1 Working with the Accelerometer 403

14.1.1 Basic accelerometer values 403
14.1.2 Example 405

14.2 Working with Audio 408
14.2.1 Playing short audio files 408
14.2.2 Recording audio files 410
14.2.3 Playing audio files 412
14.2.4 Using the media picker controller 412
14.2.5 Searching the iPod library 415

14.3 Playing Video 418
14.3.1 Using the MPMoviePlayerController class 418

14.4 Accessing Device Information 419
14.5 Taking and Selecting Pictures 420

14.5.1 Overall approach 420
14.5.2 Detailed example 421

14.6 Monitoring Device Battery 424
14.6.1 Battery level 424
14.6.2 Battery state 424
14.6.3 Battery state and level notifications 424
14.6.4 Putting it together 425

14.7 Accessing the Proximity Sensor 426
14.7.1 Enabling proximity monitoring 427
14.7.2 Subscribing to proximity change notification 427
14.7.3 Retrieving the proximity state 427

14.8 Summary 428
Problems 428

15 Internationalization 429
15.1 String Localization 430

Contents xi

15.2 Date Formatting 435
15.2.1 Custom formats 437

15.3 Number Formatting 438
15.4 Sorted List of Countries 441
15.5 Summary 441
Problems 441

16 Custom UI Components 443
16.1 Text Field Alert View 443
16.2 Table Alert View 447
16.3 Progress Alert View 452
16.4 Summary 456
Problems 456

17 Advanced Networking 459
17.1 Determining Network Connectivity 459

17.1.1 Determining network connectivity via EDGE or GPRS 460
17.1.2 Determining network connectivity in general 461
17.1.3 Determining network connectivity via WiFi 461

17.2 Uploading Multimedia Content 462
17.3 Computing MD5 Hash Value 465
17.4 Multithreaded Downloads 467

17.4.1 The application 467
17.5 Push Notification 474

17.5.1 Configuring push notification on the server 474
17.5.2 Configuring the client 481
17.5.3 Coding the client 484
17.5.4 Coding the server 487

17.6 Sending Email 487
17.6.1 Using the mail composition view controller 488

17.7 Summary 490
Problems 491

18 Working with the Address Book Database 493
18.1 Introduction 493
18.2 Property Types 494
18.3 Accessing Single-Value Properties 494

18.3.1 Retrieving single-value properties 495
18.3.2 Setting single-value properties 496

18.4 Accessing Multi-Value Properties 496
18.4.1 Retrieving multi-value properties 496
18.4.2 Setting multi-value properties 499

18.5 Person and Group Records 500
18.6 Address Book 501

xii Contents

18.7 Multithreading and Identifiers 503
18.8 Person Photo Retriever Application 503
18.9 Using the ABUnknownPersonViewController Class 505
18.10Using the ABPeoplePickerNavigationController Class 507
18.11Using the ABPersonViewController Class 509
18.12Using the ABNewPersonViewController Class 510
18.13Summary 512
Problems 513

19 Core Data 515
19.1 Core Data Application Components 515
19.2 Key Players 516

19.2.1 Entity 516
19.2.2 Managed object model 516
19.2.3 Persistent store coordinator 517
19.2.4 Managed object context 517
19.2.5 Managed object 517
19.2.6 Summary 518

19.3 Using the Modeling Tool 521
19.4 Create, Read, Update and Delete (CRUD) 527

19.4.1 Create 527
19.4.2 Delete 527
19.4.3 Read and update 527

19.5 Working with Relationships 530
19.6 A Search Application 531

19.6.1 The UISearchDisplayController class 531
19.6.2 Main pieces 533

19.7 Summary 538
Problems 538

20 Undo Management 539
20.1 Understanding Undo Management 539

20.1.1 Basic idea 539
20.1.2 Creating an undo manager 540
20.1.3 Registering an undo operation 540
20.1.4 Hooking into the undo management mechanism 541
20.1.5 Enabling shake to edit behavior 542

20.2 Detailed Example 543
20.2.1 The view controller class 543
20.2.2 First responder status 543
20.2.3 Editing mode and the NSUndoManager instance 544
20.2.4 Registering undo actions 544

20.3 Wrapping Up 546

Contents xiii

20.4 Summary 546
Problems 546

21 Copy and Paste 547
21.1 Pasteboards 547

21.1.1 System pasteboards 547
21.1.2 Creating pasteboards 547
21.1.3 Properties of a pasteboard 548

21.2 Pasteboard Items 548
21.2.1 Pasteboard items 549
21.2.2 Manipulating pasteboard items 549

21.3 The Editing Menu 551
21.3.1 The standard editing actions 551
21.3.2 The UIMenuController class 551
21.3.3 The role of the view controller 552

21.4 Putting it Together 553
21.4.1 The image view 553
21.4.2 The view controller 554

21.5 Summary 558
Problems 559

Appendices 561

A Saving and Restoring App State 563

B Invoking External Applications 567

C App Store Distribution 569

D Using XCode 571
D.1 XCode Shortcuts 571
D.2 Creating Custom Templates 571

D.2.1 Changing template macro definitions 573
D.3 Build-Based Configurations 574
D.4 Using Frameworks 577

E Unit Testing 581
E.1 Adding a Unit Test Target 581
E.2 Adapting to Foundation 582
E.3 The Model 584
E.4 Writing Unit Tests for the Employee Class 586

E.4.1 The setUp and tearDown methods 587
E.4.2 Testing for equality 588
E.4.3 Testing for nullity 588

xiv Contents

E.5 Adding a Build Dependency 589
E.6 Running the Tests 589

F Working with Interface Builder 591
F.1 National Debt Clock Application 591

F.1.1 Creating the project 591
F.1.2 Creating the view controller class 591
F.1.3 The application delegate class 594
F.1.4 Building the UI 595

F.2 Toolbar Application 609
F.2.1 Writing code 609
F.2.2 Building the UI 611
F.2.3 Putting it together 617

References and Bibliography 619

Index 621

PREFACE

Welcome to iPhone SDK 3 Programming, an introductory text to the development of mobile
applications for the iPhone and the iPod touch. This text covers a wide variety of essential and
advanced topics, including:

• The Objective-C programming language and runtime

• Collections

• Cocoa Touch

• Interface Builder

• Building advanced mobile user interfaces

• Core Animation and Quartz 2D

• Model-view-controller (MVC) designs

• Table views

• Core Data

• File management

• Parsing XML documents using SAX and DOM

• Working with the Map Kit API

• Push notification

• Working with the address book

• Consuming RESTful web services

• Building advanced location-based applications

• Developing database applications using the SQLite engine

• Cut, copy, and paste

• Undo management

• Unit testing

• Advanced networking

• Internationalization

• Building multimedia applications

xvi Preface

Is this book for you?

This book is aimed primarily at application developers with a basic understanding of the C language
and object orientation concepts such as encapsulation and polymorphism. You don’t need to be an
expert C coder to follow this book. All you need is a basic understanding of structures, pointers, and
functions. That said, you will find coverage of general topics such as databases and XML processing.
These topics are covered assuming basic knowledge.

What else do you need?

To master iPhone SDK programming, you will need the following:

• Intel-based Mac running Mac OS X Leopard.

• iPhone SDK 3. Download from: http://developer.apple.com/iphone.

• Optional: membership of the iPhone Developer Program so that you can use the device for
development. (You will need to pay a fee for membership.)

• Source code. The source code of the applications illustrated in this book is available online at:
http://code.google.com/p/iphone3/.

Conventions used in this book

Constant width typeface is used for:

• Code examples and fragments.

• Anything that might appear in a program, including operators, method names, function names,
class names, and literals.

Constant-width bold is used for:

• C, Objective-C, SQL, HTML, and XML keywords whether in text or in program listing.

Italic is used for:

• New terms and concepts when they are introduced.

• Specifying emphasis in text.

Organization

Chapter 1 This chapter serves as a quick introduction to the tools bundled with the SDK. It also
shows you the basic development phases that include coding, UI design, and debugging.

Chapter 2 This chapter presents the main features of the Objective-C language under the Cocoa
environment. We introduce the main concepts behind classes in Objective-C. You will learn
how to declare a new class, define it, and use it from within other classes. You will also be

Preface xvii

exposed to important Cocoa classes and data types. You will learn about memory management
in the iPhone OS. You will learn how to create new objects as well as how to deallocate them.
You will also learn about your responsibility when obtaining objects from Cocoa frameworks
or other frameworks. We also introduce the topic of Objective-C protocols. You will learn how
to adopt protocols and how to declare new ones as well. This chapter also covers language
features such as properties, categories, and posing. Exceptions and error handling techniques
are both covered in this chapter, and you will be exposed to the concept of key-value coding
(KVC). You will also learn how to utilize multithreading, use notifications, and will be exposed
to the Objective-C runtime system.

Chapter 3 This chapter addresses the topic of collections in Cocoa. It discusses arrays, sets, and
dictionaries. You will learn about immutable and mutable collections, the different approaches
used for copying collections, and several sorting techniques.

Chapter 4 In this chapter, we discuss the basic steps needed to build a simple iPhone application.
First, we demonstrate the basic structure of a simple iPhone application and then we show the
steps needed to develop the application using XCode.

Chapter 5 This chapter explains the main concepts behind views. You will learn about view
geometry, view hierarchy, the multitouch interface, animation, and basic Quartz 2D drawing.

Chapter 6 In this chapter, you will learn about the base class for all controls, UIControl, and
the important target-action mechanism. This chapter also presents several important graphical
controls that can be used in building attractive iPhone applications.

Chapter 7 In this chapter, you will learn about the available view controllers that are provided
to you in the iPhone SDK. Although you can build iPhone applications without the use of
these view controllers, you shouldn’t. As you will see in this chapter, view controllers greatly
simplify your application. This chapter provides a gentle introduction to view controllers.
After that, detailed treatment of tab bar controllers, navigation controllers, and modal view
controllers is provided.

Chapter 8 In this chapter, we present several important subclasses of the UIView class. We discuss
picker views and show how they can be used for item selection. We investigate progress views
and also talk about activity indicator views. After that, we show how to use scroll views in
order to display large views. Next, we present text views used in displaying multiline text.
After that, we show how to use alert views for the display of alert messages to the user. Similar
to alert views are action sheets which are also discussed. We also deal with several aspects of
web views.

Chapter 9 This chapter will take you through a step-by-step journey to the world of table views. We
start by presenting an overview of the main concepts behind table views. After that, we present
a simple table view application and discuss the mandatory methods you need to implement
in order to populate and respond to users’ interactions with the table view. We show how
easy it is to add images to table rows. We introduce the concept of sections and provide a
table view application that has sections, with section headers and footers. We introduce the

xviii Preface

concept of editing a table view. An application that allows the user to delete rows is presented
and the main ideas are clarified. We address the insertion of new rows in a table view. An
application is discussed that presents a data entry view to the user and adds that new data to
the table’s rows. We continue our discussion of the editing mode and present an application
for reordering table entries. The main concepts of reordering rows are presented. We discuss
the mechanism for presenting hierarchical information to the user. An application that uses
table views to present three levels of hierarchy is discussed. We deal with grouped table views
through an example. After that, we present the main concepts behind indexed table views.
Next, we present a dynamic table view controller class which can be used to show cells with
varying heights. Finally, we address the issue of turning the text color to white when a custom
cell is selected.

Chapter 10 This chapter covers the topic of file management. Here, you will learn how to use both
high- and low-level techniques for storing/retrieving data to/from files. First, we talk about the
Home directory of the application. Next, we show how to enumerate the contents of a given
directory using the high-level methods of NSFileManager. You will learn more about the
structure of the Home directory and where you can store files. After that, you will learn how
to create and delete directories. Next, we cover the creation of files. We also cover the topic
of file and directory attributes. You will learn how to retrieve and set specific file/directory
attributes in this chapter. We also demonstrate the use of application bundles and low-level file
access.

Chapter 11 In this chapter, we will cover the basics of the SQLite database engine that is available
to you, using the iPhone SDK. SQLite is an embedded database in the sense that there is no
server running, and the database engine is linked to your application. First, we describe basic
SQL statements and their implementation using SQLite function calls. Second, we discuss
handling of result sets generated by SQL statements. Third, we address the topic of prepared
statements. Fourth, we talk about extensions to the SQLite API through the use of user-defined
functions. Finally, we present a detailed example for storing and retrieving BLOBs to/from the
database.

Chapter 12 In this chapter, you will learn how to effectively use XML in your iPhone application.
The chapter follows the same theme used in other chapters and exposes the main concepts
through a working iPhone application: an RSS feed reader. First, we explain the main concepts
behind XML and RSS. Next, we present a detailed discussion of DOM and SAX parsing. After
that, we present a table-based RSS reader application. Finally, we provide a summary of the
main steps you need to take in order to effectively harness the power of XML from within
your native iPhone application.

Chapter 13 In this chapter, we will address the topic of location awareness. First, we will talk
about the Core Location framework and how to use it to build location-aware applications.
After that, we will discuss a simple location-aware application. Next, we cover the topic of
geocoding. You will learn how to translate postal addresses into geographical locations. You
will also learn how to sample movement of the device and display that information on maps.
Next, we discuss how to relate ZIP codes to geographical information. Finally, we show you
how to utilize the Map Kit API to add an interactive map to your view hierarchy.

Preface xix

Chapter 14 In this chapter, we demonstrate the use of the several devices available on the iPhone.
We discuss the use of the accelerometer, show how to play small sound files, and show how to
play video files. After that, we discuss how to obtain iPhone/iPod touch device information.
Using the built-in camera and the photo library are also discussed in this chapter. After that,
we show you how to obtain state information regarding the battery of the device. Finally, we
discuss the proximity sensor.

Chapter 15 In this chapter, we start by looking at a step-by-step procedure for localizing strings for
a set of supported languages. Next, we look at date formatting. After that, we cover formatting
currencies and numbers. Finally, we discuss how to generate a sorted list of countries of the
world.

Chapter 16 In this chapter, we show how to marry various UI components and build custom
reusable ones. First, we show how to build an alert view with a text field in it. Next, we
present a table view inside an alert view. Finally, we show how to build a progress alert view.

Chapter 17 This chapter addresses several advanced networking topics. We start by looking at
how we can determine network connectivity of the device. After that, we tackle the issue
of uploading multimedia content (e.g., photos) to remote servers. Next, we present a category
on NSString that allows you to easily compute the MD5 digest of a string. This is important
as some services, such as Flickr, require posting parameters with the appropriate signature.
After that, we show you how to present a responsive table view whose data rows are fed
from the Internet without sacrificing the user experience. Next, we address the topic of push
notification. Finally, we discuss sending email from within your iPhone application.

Chapter 18 In this chapter, we discuss the foundation of the address book API and several
UI elements that can be used to modify the contacts database. First, we provide a brief
introduction to the subject. Next, we discuss property types. After that, we show how to
access single- and multi-value properties. Next, we go into the details of the person record
and the address book. Issues related to multithreading and identifiers are then addressed. After
covering the foundation of the address book API, we provide several sample applications.

Chapter 19 In this chapter, you learn how to use the Core Data framework in your application.
First, you learn about the main components in the Core Data application. Next, we talk about
the major classes in the Core Data framework. After that, you learn how to use the graphical
modeling tool to build a data model. Next, we address the basic operations in persistence
storage using Core Data. After that, we show how to use relationships in the Core Data model.
Finally, we present a search application that utilizes Core Data for storage.

Chapter 20 In this chapter, you learn about undo management support in the iPhone OS. First, we
discuss the basic steps needed to utilize undo management. After that, we present a detailed
example that shows how to use undo management. Finally, we summarize the main rules in
using the undo capabilities in an application.

Chapter 21 This chapter examines the copy and paste capabilities of the iPhone OS and the
supporting APIs. We start by discussing pasteboards. Next, you learn about pasteboard items

xx Preface

and the various methods available to you to manipulate them. After that, we address the subject
of the editing menu which users use to issue editing commands. Finally, we put all the ideas
behind copy and paste together and present a simple image editing application.

Appendix A In this appendix, you will learn how to use property lists for saving and restoring the
application state. This will give the user the illusion that your application does not quit when
he/she hits the Home button.

Appendix B Here, you will learn how to programmatically invoke iPhone applications from within
your application. In addition, you will learn how to publish services that other iPhone
applications can utilize.

Appendix C This appendix explains the major steps needed to submit your application to the App
Store.

Appendix D In this appendix, we cover several topics related to using XCode. First, we show some
useful shortcuts. Next, we talk about writing custom templates for your classes and after that
we cover build configuration. Finally, we show you how to add references to other libraries
(also known as frameworks).

Appendix E In this appendix, we show you how to add unit tests to your project. By adding unit
testing support, you’ll be able to write tests for your business logic. These tests will be added as
a dependency on the building of your application. This will result in the tests being run before
actually building your application. The appendix walks you through a step-by-step process for
adding unit testing for a simple business model.

Appendix F In this appendix, we use Interface Builder to build a couple of iPhone applications. The
techniques you learn from building these applications should prove to be useful in building
similar iPhone applications.

1
Getting Started

This chapter serves as a quick introduction to the tools bundled with the SDK. It also shows you basic
development steps that include coding, UI design, and debugging. You do not have to understand
everything in this chapter as we will go over these concepts throughout the book. What you need to
get from this chapter is a feeling of iPhone development using XCode.

We start with some basics of the XCode IDE in Section 1.1. Next, Section 1.2 talks about the UI
design tool Interface Builder. After that, we show you how to use the built-in debugger in XCode in
Section 1.3. Next, Section 1.4 shows you different sources of information for obtaining additional
help. Finally, we summarize the chapter in Section 1.5.

1.1 SDK and IDE Basics

In this section, we walk you through the process of creating your first iPhone application. But first,
you need to obtain the iPhone SDK and install it on your Mac.

1.1.1 Obtaining and installing the SDK

Obtaining and installing the iPhone SDK is easy; just follow these steps:

1. Get your iPhone developer Apple ID and password from:
http://developer.apple.com/iphone/

2. Download the latest iPhone SDK for iPhone OS from the site mentioned above.

3. Install the iPhone SDK on your Intel-based Mac.

Now, you’re ready to create your first project – read on!

2 iPhone SDK 3 Programming

1.1.2 Creating a project

Locate XCode and launch it. You can use Spotlight to find it or you can navigate to
/Developer/Applications/XCode. XCode is the central application for writing, designing,
debugging, and deploying your iPhone applications. You will use it a lot, so go ahead and add it
to the Dock.

From XCode, select File->New Project. You should see a window, similar to the one shown in
Figure 1.1, asking you for the type of project you want to create. Choose the default and create a
window-based application. This is the most generic type of iPhone project and the one that can be
customized for different needs.

Figure 1.1 Choosing window-based application in the project creation process.

Click on Choose... and enter the name of your project (here, we’re using My Project) and hit
Save. A new directory is created with the name you entered, and several files are generated for you.
You should now see the newly created iPhone project as in Figure 1.2.

Getting Started 3

Figure 1.2 A newly created iPhone project in XCode.

1.1.3 Familiarizing yourself with the IDE

As you can see from Figure 1.2, the main window is divided into several areas. On the top, you
will find the Toolbar (Figure 1.3). The Toolbar provides quick access to common tasks. It is fully
configurable; you can add and remove tasks as you want. To customize the Toolbar, Control-click it
and choose Customize Toolbar.... There, you can drag your favorite task on the Toolbar. Hit
Done when you’re finished. To remove an item, Control-click on it and choose Remove Item.

Figure 1.3 The XCode Toolbar.

4 iPhone SDK 3 Programming

On the left-hand side, you’ll see the Groups & Files list (Figure 1.4).

Figure 1.4 The Groups & Files list in XCode.

This list is used to organize the source code, frameworks, libraries, executables, and other types of
files in your project.

The list shows several files and groups. Groups can contain other groups and files. You can delete a
group as well as create a new one. The group indicated by the blue icon whose name is the same as
the name you’ve chosen as the project name is a static group. Underneath it, you see all your headers,
implementations, resources (images, audio files, etc.), and other related files. The folder-like yellow
groups act conceptually as containers. You can have containers inside other containers and all files
inside these containers live in the same directory on the disk. The hierarchy only helps you organize
things. You have full freedom to organize your project’s layout as you like. The compiler will pick
up the resources, headers, and implementation files when it builds your application.

The other kind of groups that are listed below the project group are called smart groups. There
are two types of smart groups: 1) built-in smart groups, and 2) custom smart groups. The content
of the built-in smart groups cannot be customized. Examples of these groups include executables,
bookmarks, errors/warnings, and targets. Customized smart groups are shown in purple, and two
predefined groups are created for you when you create a new project.

Getting Started 5

Figure 1.5 The Details view with the text editor view.

Figure 1.5 shows the Details view and the text editor beneath it.

Selecting an item in the Groups & Files list will result in its details being shown in the Details
view. You can go to a full-editor window using Command-shift-E.

1.1.4 Looking closely at the generated code

Expand the Classes and Other Sources groups. You will notice several files that live underneath
these two groups. Click on the main.m file and expand to a full-editor view.

The main.m file looks very similar to a C file with a main() function. As we will see later in this
book, all that main() does is prepare for memory management and launch the application.

Click on the My_ProjectAppDelegate.h file under the Classes group. You will notice that
the editor changes its content. This file contains the declaration of the application delegate class.
Every application that runs on the iPhone OS has a delegate object that handles critical phases of its
lifecycle.

Click on My_ProjectAppDelegate.m. This file with the .m extension is the counterpart of the
previous .h file. In it, you see the actual implementation of the application delegate class. Two
methods of this class are already implemented for you. The applicationDidFinishLaunching:
method is one of those methods that handles a particular phase of the application lifecycle. The other

6 iPhone SDK 3 Programming

method, dealloc, is a method where memory used by this object is released. In iPhone OS, you
manage the allocation and freeing of memory as there is no garbage collection. Memory management
is crucial in iPhone development, and mastering it is very important. The first chapters are dedicated
to teaching you exactly that – and much more.

The generated files and resources are adequate for starting the application. To launch the application,
click on Build and Go in the Toolbar or press the Command-Enter key combination. You’ll notice
that the application starts in the Simulator and it only shows a white screen with the status bar on
top. Not very useful, but it works!

1.2 Creating Interfaces

To be useful, an iPhone application needs to utilize the amazing set of UI elements available from
the SDK. Our generated iPhone application contains a single UI element: a window.

All iPhone apps have windows (usually one.) A window is a specialized view that is used to host
other views. A view is a rectangle piece of real-estate on the 320 × 480 iPhone screen. You can
draw in a view, animate a view by flipping it, and you can receive multi-touch events on it. In iPhone
development, most of your work goes towards creating views, managing their content, and animating
their appearance and disappearance.

Views are arranged into a hierarchy that takes the shape of a tree. A tree has a root element and zero
or more child elements. In iPhone OS, the window is the root element and it contains several child
views. These child views can in turn contain other child views and so on and so forth.

To generate views and manage their hierarchy, you can use both Interface Builder (IB) and Objective-
C code. IB is an application that comes with the SDK that allows you to graphically build your view
and save it to a file. This file is then loaded at run-time and the views stored within it come to life on
the iPhone screen.

As we mentioned before, you can also use Objective-C code to build the views and manage their
hierarchy. Using code is preferred over using IB for the following reasons. First, as beginner, you
need to understand all aspects of the views and their hierarchy. Using a graphical tool, although it
simplifies the process, does hide important aspects of the process. Second, in advanced projects,
your views’ layouts are not static and change depending on the data. Only code will allow you to
manage this situation. Finally, IB does not support every UI element all the time. Therefore, you will
sometimes need to go in there and generate the views yourself.

The following section teaches you how to use IB. However, for the most part in this book, Objective-
C code is used to illustrate the UI concepts. For extensive coverage of Interface Builder, please see
Appendix F.

Getting Started 7

1.2.1 Interface Builder

The project has a basic window resource file. This file can be found under the Resources group.
Expand the Resources group and locate the file MainWindow.xib. This file contains the main
window of the application. This file is an .xib file that stores the serialized objects in the interface.
When the project is built, this file is converted to the more optimized format .nib and loaded into
memory when one or more of the UI components stored in it are requested.

Double-click on the MainWindow.xib file to launch IB. IB starts by opening four windows. The first
window shows the main window stored in the file. The second window shows the document window
listing the different objects stored in the file. The third window is the Library window containing all
the UI objects that you can add to the file. The fourth and final window is the Inspector window with
its four panes.

The Inspector window shows the attributes of the currently selected object. If you click on an object,
the Inspector windows shows you its attributes distributed among four different panes. Each pane
has several sections. You can change these attributes (such as color, position, and connections) and
the changes will propagate to your project’s user interface.

The main window of the application is white; let’s change it to yellow. Click on the window object
in the document window. In the Inspector window, make sure that the left-most pane is selected. In
the View section of this pane, change the background color to yellow as shown in Figure 1.6.

Figure 1.6 The attributes pane in the Inspector window of Interface Builder.

8 iPhone SDK 3 Programming

Go to XCode and run the application. Notice how the main window of the application has changed
to yellow. It is important to keep the project open in XCode while working with IB. XCode and IB
communicate well when both applications are open.

To build a user interface, you start with a view and add to it subviews of different types. You are
encouraged to store separate views in separate .xib files. This is important as referencing one object
in a file will result in loading all objects to main memory. Let’s go ahead and add a label view to our
window. This label will hold the static text “Hello iPhone.”

A label is one of the many UI components available for you. These components are listed under
several groups in the Library. Locate the Library window and click on Inputs & Values as
shown in Figure 1.7.

Figure 1.7 The Library window of Interface Builder.

Click on the Label item and drag it onto the middle of the window. Expand the dimensions of the
label as shown in Figure1.8.

When the label is selected, the Inspector window changes to reflect the attributes of the label.
Figure 1.9 shows a portion of the attributes of a label in the Inspector window. You can change
these attributes and observe the effect they have on the object instantaneously.

The label’s text is left justified; let’s make it center. In the Layout item of the attributes, click on
the icon indicating center. Notice how the label text becomes centered. The text of the label can be
changed in the Text item. Change Label to Hello iPhone. Go to XCode and hit Build and Go.
You will notice the window showing Hello iPhone in the middle.

Getting Started 9

Figure 1.8 Adding a label view to a window in IB.

Figure 1.9 Attributes of a label in the Inspector window.

10 iPhone SDK 3 Programming

The text of the label is small, so let’s make it bigger. Click on the Text item and choose a text size of
48 points. Go to XCode and hit Build and Go. Figure 1.10 shows a screenshot of the completed
Hello iPhone application.

Figure 1.10 A screenshot of the completed Hello iPhone application.

Congratulations on your first successful iPhone application!

You deliver the product to the client and he is happy. However, he wants the application to have more
interaction with the user. He asks you to revise the application by adding a button that the user can
tap on to change the text displayed in the label.

Open the MainWindow.xib document if it is not already open. Locate the Round Rect Button

item under Items & Values in the Library window. Drag and drop it under the label in the
main window. Change the button’s title by entering “Change” in the Title field found in the fourth
section of the attributes window. The main window should look like the one shown in Figure 1.11.

Now that we have a button, we want to have a method (a function) in our code to get executed when
the user touches the button. We can achieve that by adding a connection between the button’s touch
event and our method.

Getting Started 11

Figure 1.11 The main window after adding a new button.

Click on the button so that it becomes selected. Click on the second pane in the Inspector window.
This pane shows the connections between an object and our code. The pane should look like the one
in Figure 1.12.

Figure 1.12 The connections pane of our new button.

12 iPhone SDK 3 Programming

Now, we want to add a connection between the Touch Down event and a method we call button-
Tapped. Let’s first add this method in My_ProjectAppDelegate class.

In the My_ProjectAppDelegate.h file, add the following before @end.

-(IBAction)buttonTapped;

In the My_ProjectAppDelegate.mfile, add the buttonTappedmethod body. The My_Project-
AppDelegate.m file should look something like the one in Listing 1.1.

Listing 1.1 The application delegate class after adding a new method.

#import "My_ProjectAppDelegate.h"
@implementation My_ProjectAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after application launch
[window makeKeyAndVisible];

}

-(IBAction)buttonTapped{
UILabel *label = (UILabel*)[window viewWithTag:55];
if([label.text isEqualToString:@"Hello iPhone"])

label.text = @"Hello World";
else

label.text = @"Hello iPhone";
}

- (void)dealloc {
[window release];
[super dealloc];

}
@end

The buttonTapped method simply obtains a reference to the label and changes its text to either
“Hello World” or “Hello iPhone”. You don’t need to understand this code at this stage. All you need
to understand is that the label on the screen is encapsulated by the UILabel class and it’s tagged
with the number 55.

Now, let’s switch to IB and add a tag to the label so that it can be retrieved from the code. Click on
the label and in the Inspector window, choose the first pane. In the second section, enter 55 for the
Tag field (fourth item.)

We still need to perform one last step. We need to connect the touch event with the method we
just created. Click on the button and choose the connections pane (second pane). Control-click or
right-click on the circle on the right-hand side of Touch Down event and drag it on top of the
My_ProjectAppDelegate object in the Document window and let go as shown in Figure 1.13.

Getting Started 13

Figure 1.13 Making a connection between an event and a method in another object.

When you release the mouse, IB shows you potential methods (actions) that you can connect this
event to. Right now we only have one action and that action is buttonTapped. Select that action
and you’ll notice that a connection has been made as shown in Figure 1.14.

Figure 1.14 A connection between a touch event and an action.

Now, switch to XCode and hit Build and Go. You’ll notice that tapping on the button changes the
text value of the label.

14 iPhone SDK 3 Programming

1.3 Using the Debugger

During the development of your applications, often things go wrong and the feature that you’ve just
added is not functioning properly. At these moments, the built-in debugger becomes invaluable.

Let’s introduce a bug into our code. Go to My_ProjectAppDelegate.m file and change the tag’s
value used to obtain the label from 55 to 54, then Build and Go. Now, tapping the button has no
effect on the label’s text.

First, you want to make sure that the buttonTapped method gets called. In XCode, click in the left
margin of the first line in the buttonTapped method as shown in Figure 1.15. After you click there,
a breakpoint (shown in blue) is added.

Figure 1.15 Adding a breakpoint in the buttonTapped method.

Click Build and Go to debug the application. When the application launches, tap on the button.
You’ll notice that the execution hits the breakpoint as shown in Figure 1.16. At least we know that
we made our connection correctly.

Figure 1.16 Hitting a breakpoint in the buttonTapped method.

Let’s step over the statement that obtains the label from the window. Click on the Step Over button
located beneath the Toolbar as shown in Figure 1.17.

After stepping over the statement, we need to inspect the value obtained. Hover the mouse over
label in the statement just executed as shown in Figure 1.18. A tip appears showing its value.
Notice that the value is 0x0. In Objective-C, this value is called nil and means that no object is
stored in this variable. After inspecting the tag value and going back-and-forth between XCode and
IB, we find the problem, fix it, remove the breakpoint by clicking on it to turn it off, and hit Build
and Go.

Getting Started 15

Figure 1.17 Step over a function or a method call button.

Figure 1.18 Inspecting the value of the label after obtaining it from the window.

1.4 Getting More Information

There are plenty of sources for information on the SDK. These sources include the following:

• Developer Documentation. The best locally stored source of information is the Developer
Documentation. In XCode, select Help->Documentation. The documentation window
appears as shown in Figure 1.19. You can search using the search box on the left-hand corner
for any defined type in the SDK. The documentation is hyper-linked and you can go back-
and-forth between different pieces of information. It’s easy to use and it will become your
friend.

• Developer Documentation from within XCode. If you’re in XCode and you need more
information about something, Option-double-click it and the Developer Documentation opens
with more information.

• Other help from within XCode. If you’re in XCode and you need to get the declaration and
possible implementation of a given token (e.g., class, tag, variable, etc.), Command-double-
click it. If there are multiple pieces of information, or disambiguation is needed, a list of items
to choose from will be shown.

• iPhone Dev Center. The center is located at http://developer.apple.com/iphone/.
The iPhone Dev Center has a large collection of technical resources and sample code to help
you master the latest iPhone technologies.

• Apple’s Fora. You can start with the site at https://devforums.apple.com/.

• The Web. There is plenty of information on the web. Just enter a relevant query and let Google
do its magic!

16 iPhone SDK 3 Programming

Figure 1.19 The Developer Documentation in XCode.

1.5 Summary

This chapter provided a gentle introduction to the world of iPhone development. We showed you
in Section 1.1 how to download and install the iPhone SDK. After that, we iterated through the
development of an iPhone application and showed you how to use Interface Builder to design user
interfaces. Next, Section 1.3 discussed how to debug an iPhone application using the built-in visual
debugger in XCode. You were also exposed to different sources for obtaining further help on the
tools and the SDK in general in Section 1.4.

The rest of the book will detail all aspects of iPhone development. However, from now on, since we
want to teach you everything you need, we will stop using Interface Builder and show you how to
build your UI using code. This will help you gain a solid understanding of the process. You can, of
course, mix and match with Interface Builder as you wish.

Getting Started 17

The next two chapters cover the Objective-C language and the coding environment that you will be
working with: Cocoa. We hope you’re as excited as we are!

Problems

(1) Check out the UILabel.h header file and read about the UILabel class in the documentation.

(2) What’s an IBOutlet and IBAction? Use Command-double-click to see their definitions in
the UINibDeclarations.h header file.

(3) Explore the XCode IDE by reading the XCode Workspace Guide under the Help menu of
the XCode application.

(4) Explore Interface Builder by choosing Interface Builder Help under the Help menu of
the Interface Builder application.

