
Michael ffirs.tex V2 - 03/24/2008 4:19pm Page iii

Mastering UNIX®Shell
Scripting

Bash, Bourne, and Korn Shell
Scripting for Programmers, System

Administrators, and UNIX Gurus

Second Edition

Randal K. Michael

Wiley Publishing, Inc.

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page ii

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page i

Mastering UNIX®Shell
Scripting

Second Edition

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page ii

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page iii

Mastering UNIX®Shell
Scripting

Bash, Bourne, and Korn Shell
Scripting for Programmers, System

Administrators, and UNIX Gurus

Second Edition

Randal K. Michael

Wiley Publishing, Inc.

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page iv

Mastering UNIX®Shell Scripting: Bash, Bourne, and Korn Shell Scripting for
Programmers, System Administrators, and UNIX Gurus, Second Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Randal K. Michael

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-18301-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the contents
of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by
sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact
that an organization or Website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make.
Further, readers should be aware that Internet Websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside
the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. UNIX is a registered
trademark of The Open Group. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

www.wiley.com

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page v

This book is dedicated to my wife Robin, the girls, Andrea and Ana, and
the grandchildren, Gavin, Jocelyn, and Julia — my true inspiration.

Michael ffirs.tex V2 - 03/24/2008 4:19pm Page vi

Michael fabout.tex V1 - 03/24/2008 4:34pm Page vii

About the Author

Randal K. Michael is a UNIX Systems Administrator working as a contract consultant.
He teaches UNIX shell scripting in corporate settings, where he writes shell scripts to
address a variety of complex problems and tasks, ranging from monitoring systems to
replicating large databases. He has more than 30 years of experience in the industry
and 15 years of experience as a UNIX Systems Administrator, working on AIX, HP-UX,
Linux, OpenBSD, and Solaris.

vii

Michael fabout.tex V1 - 03/24/2008 4:34pm Page viii

Michael fcre.tex V1 - 03/24/2008 4:35pm Page ix

Credits

Executive Editor
Carol Long

Development Editor
John Sleeva

Technical Editor
John Kennedy

Production Editor
Dassi Zeidel

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Candace English

Indexer
Robert Swanson

ix

Michael fcre.tex V1 - 03/24/2008 4:35pm Page x

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xi

Contents

Acknowledgments xxv

Introduction xxvii

Part One The Basics of Shell Scripting

Chapter 1 Scripting Quick Start and Review 3
Case Sensitivity 3
UNIX Special Characters 3
Shells 4
Shell Scripts 4
Functions 4
Running a Shell Script 5

Declare the Shell in the Shell Script 6
Comments and Style in Shell Scripts 6
Control Structures 8

if . . . then statement 8
if . . . then . . . else statement 8
if . . . then . . . elif . . . (else) statement 9
for . . . in statement 9
while statement 9
until statement 9
case statement 10

Using break, continue, exit, and return 10
Here Document 11
Shell Script Commands 12
Symbol Commands 14
Variables 15
Command-Line Arguments 15
shift Command 16
Special Parameters $* and $@ 17

Special Parameter Definitions 17
Double Quotes, Forward Tics, and Back Tics 18

xi

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xii

xii Contents

Using awk on Solaris 19
Using the echo Command Correctly 19
Math in a Shell Script 20

Operators 20
Built-In Mathematical Functions 21
File Permissions, suid and sgid Programs 21

chmod Command Syntax for Each Purpose 22
To Make a Script Executable 22
To Set a Program to Always Execute as the Owner 23
To Set a Program to Always Execute as a Member of the

File Owner’s Group 23
To Set a Program to Always Execute as Both the File

Owner and the File Owner’s Group 23
Running Commands on a Remote Host 23
Setting Traps 25
User-Information Commands 25

who Command 26
w Command 26
last Command 26

ps Command 27
Communicating with Users 27
Uppercase or Lowercase Text for Easy Testing 28
Check the Return Code 29
Time-Based Script Execution 30

Cron Tables 30
Cron Table Entry Syntax 31

at Command 31
Output Control 32

Silent Running 32
Using getopts to Parse Command-Line Arguments 33
Making a Co-Process with Background Function 34

Catching a Delayed Command Output 36
Fastest Ways to Process a File Line-by-Line 37
Using Command Output in a Loop 40
Mail Notification Techniques 41

Using the mail and mailx Commands 41
Using the sendmail Command to Send Outbound Mail 41

Creating a Progress Indicator 43
A Series of Dots 43
A Rotating Line 43
Elapsed Time 44

Working with Record Files 45
Working with Strings 46

Creating a Pseudo-Random Number 47
Using /dev/random and /dev/urandom 48

Checking for Stale Disk Partitions in AIX 48

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xiii

Contents xiii

Automated Host Pinging 49
Highlighting Specific Text in a File 49
Keeping the Printers Printing 50

AIX ‘‘Classic’’ Printer Subsystem 50
System V and CUPS Printing 50

Automated FTP File Transfer 51
Using rsync to Replicate Data 51

Simple Generic rsync Shell Script 52
Capturing a List of Files Larger than $MEG 53
Capturing a User’s Keystrokes 53
Using the bc Utility for Floating-Point Math 54
Number Base Conversions 55

Using the typeset Command 55
Using the printf Command 55

Create a Menu with the select Command 56
Removing Repeated Lines in a File 58
Removing Blank Lines from a File 58
Testing for a Null Variable 58
Directly Access the Value of the Last Positional Parameter, $# 59
Remove the Column Headings in a Command Output 59
Arrays 60

Loading an Array 60
Testing a String 61
Summary 65

Chapter 2 24 Ways to Process a File Line-by-Line 67
Command Syntax 67

Using File Descriptors 68
Creating a Large File to Use in the Timing Test 68

24 Methods to Parse a File Line-by-Line 73
Method 1: cat while read LINE 74
Method 2: while read LINE bottom 75
Method 3: cat while LINE line 76
Method 4: while LINE line bottom 77
Method 5: cat while LINE line cmdsub2 78
Method 6: while LINE line bottom cmdsub2 79
Method 7: for LINE cat FILE 79
Method 8: for LINE cat FILE cmdsub2 80
Method 9: while line outfile 81
Method 10: while read LINE FD IN 81
Method 11: cat while read LINE FD OUT 83
Method 12: while read LINE bottom FD OUT 85
Method 13: while LINE line bottom FD OUT 86
Method 14: while LINE line bottom cmdsub2 FD OUT 87
Method 15: for LINE cat FILE FD OUT 87
Method 16: for LINE cat FILE cmdsub2 FD OUT 88
Method 17: while line outfile FD IN 89

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xiv

xiv Contents

Method 18: while line outfile FD OUT 90
Method 19: while line outfile FD IN AND OUT 91
Method 20: while LINE line FD IN 92
Method 21: while LINE line cmdsub2 FD IN 93
Method 22: while read LINE FD IN AND OUT 94
Method 23: while LINE line FD IN AND OUT 96
Method 24: while LINE line cmdsub2 FD IN AND OUT 97

Timing Each Method 98
Timing Script 99

Timing Data for Each Method 117
Timing Command-Substitution Methods 127

What about Using Command Input Instead of File Input? 128
Summary 129
Lab Assignments 129

Chapter 3 Automated Event Notification 131
Basics of Automating Event Notification 131

Using the mail and mailx Commands 132
Setting Up a sendmail Alias 134

Problems with Outbound Mail 134
Creating a ‘‘Bounce’’ Account with a .forward File 136
Using the sendmail Command to Send Outbound Mail 137

Dial-Out Modem Software 139
SNMP Traps 139
Summary 140
Lab Assignments 141

Chapter 4 Progress Indicators Using a Series of Dots, a Rotating
Line, or Elapsed Time 143
Indicating Progress with a Series of Dots 143
Indicating Progress with a Rotating Line 145
Indicating Progress with Elapsed Time 148
Combining Feedback Methods 151
Other Options to Consider 153
Summary 153
Lab Assignments 154

Part Two Scripts for Programmers, Testers, and Analysts

Chapter 5 Working with Record Files 157
What Is a Record File? 157

Fixed-Length Record Files 158
Variable-Length Record Files 159

Processing the Record Files 160
Tasks for Records and Record Files 164

Tasks on Fixed-Length Record Files 164
Tasks on Variable-Length Record Files 166

The Merge Process 169

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xv

Contents xv

Working with Strings 171
Putting It All Together 173
Other Things to Consider 183
Summary 184
Lab Assignments 184

Chapter 6 Automated FTP Stuff 187
Syntax 187
Automating File Transfers and Remote Directory Listings 190

Using FTP for Directory Listings on a Remote Machine 190
Getting One or More Files from a Remote System 192

Pre and Post Events 195
Script in Action 196

Uploading One or More Files to a Remote System 196
Replacing Hard-Coded Passwords with Variables 199

Example of Detecting Variables in a Script’s Environment 200
Modifying Our FTP Scripts to Use Password Variables 203

What about Encryption? 209
Creating Encryption Keys 210
Setting Up No-Password Secure Shell Access 210
Secure FTP and Secure Copy Syntax 211
Automating FTP with autoexpect and expect Scripts 212

Other Things to Consider 217
Use Command-Line Switches to Control Execution 217
Keep a Log of Activity 217
Add a Debug Mode to the Scripts 217
Reading a Password into a Shell Script 217

Summary 218
Lab Assignments 218

Chapter 7 Using rsync to Efficiently Replicate Data 219
Syntax 219
Generic rsync Shell Script 220
Replicating Multiple Directories with rsync 222
Replicating Multiple Filesystems with rsync 237
Replicating an Oracle Database with rsync 251

Filesystem Structures 252
rsync Copy Shell Script 254
Summary 289
Lab Assignments 289

Chapter 8 Automating Interactive Programs with Expect and
Autoexpect 291
Downloading and Installing Expect 291
The Basics of Talking to an Interactive Script or Program 293
Using autoexpect to Automatically Create an Expect Script 296
Working with Variables 304
What about Conditional Tests? 306

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xvi

xvi Contents

Expect’s Version of a case Statement 306
Expect’s Version of an if...then...else Loop 313
Expect’s Version of a while Loop 314
Expect’s Version of a for Loop 315
Expect’s Version of a Function 317

Using Expect Scripts with Sun Blade Chassis and JumpStart 318
Summary 323
Lab Assignments 324

Chapter 9 Finding Large Files and Files of a Specific Type 325
Syntax 326
Remember That File and Directory Permissions Thing 327
Don’t Be Shocked by the Size of the Files 327
Creating the Script 327

Narrowing Down the Search 333
Other Options to Consider 333
Summary 334
Lab Assignments 334

Chapter 10 Process Monitoring and Enabling Pre-Processing, Startup,
and Post-Processing Events 335
Syntax 336
Monitoring for a Process to Start 336
Monitoring for a Process to End 338
Monitor and Log as a Process Starts and Stops 342
Timed Execution for Process Monitoring, Showing Each PID,

and Timestamp with Event and Timing Capability 347
Other Options to Consider 367

Common Uses 367
Modifications to Consider 367

Summary 367
Lab Assignments 368

Chapter 11 Pseudo-Random Number and Data Generation 369
What Makes a Random Number? 369
The Methods 370

Method 1: Creating a Pseudo-Random Number Utilizing the
PID and the RANDOM Shell Variable 371

Method 2: Creating Numbers between 0 and 32,767 371
Method 3: Creating Numbers between 1 and a User-Defined

Maximum 372
Method 4: Creating Fixed-Length Numbers between 1 and a

User-Defined Maximum 373
Why Pad the Number with Zeros the Hard Way? 375

Method 5: Using the /dev/random and /dev/urandom
Character Special Files 376

Shell Script to Create Pseudo-Random Numbers 379
Creating Unique Filenames 384

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xvii

Contents xvii

Creating a File Filled with Random Characters 392
Other Things to Consider 399
Summary 399
Lab Assignments 400

Chapter 12 Creating Pseudo-Random Passwords 401
Randomness 401
Creating Pseudo-Random Passwords 402
Syntax 403

Arrays 403
Loading an Array 403

Building the Password-Creation Script 405
Order of Appearance 405

Define Functions 406
Testing and Parsing Command-Line Arguments 414

Beginning of Main 418
Setting a Trap 418
Checking for the Keyboard File 419
Loading the KEYS Array 419
Building a New Pseudo-Random Password 420
Printing the Manager’s Password Report for Safekeeping 421

Other Options to Consider 431
Password Reports? 432
Which Password? 432
Other Uses? 432

Summary 432
Lab Assignments 432

Chapter 13 Floating-Point Math and the bc Utility 433
Syntax 433
Creating Some Shell Scripts Using bc 434

Creating the float add.ksh Shell Script 434
Testing for Integers and Floating-Point Numbers 440
Building a Math Statement for the bc Command 441
Using a Here Document 442
Creating the float subtract.ksh Shell Script 443
Using getopts to Parse the Command Line 449
Building a Math Statement String for bc 450
Here Document and Presenting the Result 451
Creating the float multiply.ksh Shell Script 452
Parsing the Command Line for Valid Numbers 458
Creating the float divide.ksh Shell Script 460
Creating the float average.ksh Shell Script 467

Other Options to Consider 472
Creating More Functions 472

Summary 473
Lab Assignments 473

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xviii

xviii Contents

Chapter 14 Number Base Conversions 475
Syntax 475

Example 1: Converting from Base 10 to Base 16 476
Example 2: Converting from Base 8 to Base 16 476
Example 3: Converting Base 10 to Octal 477
Example 4: Converting Base 10 to Hexadecimal 477

Scripting the Solution 477
Base 2 (Binary) to Base 16 (Hexadecimal) Shell Script 478
Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script 481
Script to Create a Software Key Based on the Hexadecimal

Representation of an IP Address 485
Script to Translate between Any Number Base 490
Using getopts to Parse the Command Line 495

Example 5: Correct Usage of the equate any base.ksh
Shell Script 495

Example 6: Incorrect Usage of the equate any base.ksh
Shell Script 495

Continuing with the Script 497
Beginning of Main 498

An Easy, Interactive Script to Convert Between Bases 500
Using the bc Utility for Number Base Conversions 506
Other Options to Consider 512

Software Key Shell Script 512
Summary 512
Lab Assignments 513

Chapter 15 hgrep: Highlighted grep Script 515
Reverse Video Control 516
Building the hgrep.Bash Shell Script 517
Other Options to Consider 524

Other Options for the tput Command 524
Summary 525
Lab Assignments 525

Chapter 16 Monitoring Processes and Applications 527
Monitoring Local Processes 527
Remote Monitoring with Secure Shell and Remote Shell 530

Checking for Active Oracle Databases 536
Using autoexpect to Create an expect Script 539
Checking if the HTTP Server/Application Is Working 545

What about Waiting for Something to Complete Executing? 546
Other Things to Consider 547

Proper echo Usage 548
Application APIs and SNMP Traps 548

Summary 548
Lab Assignments 549

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xix

Contents xix

Part Three Scripts for Systems Administrators

Chapter 17 Filesystem Monitoring 553
Syntax 553
Adding Exceptions Capability to Monitoring 559

The Exceptions File 559
Using the MB-of-Free-Space Method 565
Using MB of Free Space with Exceptions 568
Percentage Used — MB Free and Large Filesystems 573
Running Filesystem Scripts on AIX, Linux, HP-UX, OpenBSD,

and Solaris 583
Command Syntax and Output Varies between Operating

Systems 585
Programming a Shell-Neutral Script 590

Other Options to Consider 600
Event Notification 600
Automated Execution 600
Modify the egrep Statement 601

Summary 601
Lab Assignments 602

Chapter 18 Monitoring Paging and Swap Space 603
Syntax 604

AIX lsps Command 604
HP-UX swapinfo Command 605
Linux free Command 606
OpenBSD swapctl Command 606
Solaris swap Command 607

Creating the Shell Scripts 607
AIX Paging Monitor 607
HP-UX Swap-Space Monitor 613
Linux Swap-Space Monitor 618
OpenBSD Swap-Space Monitor 622
Solaris Swap-Space Monitor 625
All-in-One Paging- and Swap-Space Monitor 630

Other Options to Consider 638
Event Notification 638
Log File 638
Scheduled Monitoring 638

Summary 638
Lab Assignments 639

Chapter 19 Monitoring System Load 641
Installing the System-Statistics Programs in Linux 642
Syntax 644

Syntax for uptime 644

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xx

xx Contents

Linux 645
What’s the Common Denominator? 645

Syntax for iostat 645
AIX 646
HP-UX 646
Linux 647
OpenBSD 647
Solaris 647
What Is the Common Denominator? 648

Syntax for sar 649
AIX 649
HP-UX 649
Linux 650
Solaris 650
What Is the Common Denominator? 650

Syntax for vmstat 651
AIX 652
HP-UX 652
Linux 652
OpenBSD 652
Solaris 653
What Is the Common Denominator? 653

Scripting the Solutions 654
Using uptime to Measure the System Load 655

Scripting with the uptime Command 655
Using sar to Measure the System Load 659

Scripting with the sar Command 660
Using iostat to Measure the System Load 665

Scripting with the iostat Command 665
Using vmstat to Measure the System Load 670

Scripting with the vmstat Command 670
Other Options to Consider 674

Try to Detect Any Possible Problems for the User 674
Show the User the Top CPU Hogs 675
Gathering a Large Amount of Data for Plotting 675

Summary 675
Lab Assignments 675

Chapter 20 Monitoring for Stale Disk Partitions (AIX-Specific) 677
AIX Logical Volume Manager (LVM) 677
The Commands and Methods 678

Disk Subsystem Commands 678
Method 1: Monitoring for Stale PPs at the LV Level 679
Method 2: Monitoring for Stale PPs at the PV Level 684
Method 3: VG, LV, and PV Monitoring with a resync 687

Other Options to Consider 694
SSA Disks 694

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xxi

Contents xxi

Log Files 695
Automated Execution 695
Event Notification 695

Summary 696
Lab Assignment 696

Chapter 21 Turning On/Off SSA Identification Lights 697
Syntax 698

Translating an hdisk to a pdisk 698
Identifying an SSA Disk 698

The Scripting Process 698
Usage and User Feedback Functions 699
Control Functions 703
The Full Shell Script 709

Other Things to Consider 721
Error Log 721
Cross-Reference 721
Root Access and sudo 721

Summary 721
Lab Assignment 722

Chapter 22 Automated Hosts Pinging with Notification of Failure 723
Syntax 723
Creating the Shell Script 725

Define the Variables 725
Creating a Trap 728
The Whole Shell Script 728

Other Options to Consider 736
$PINGLIST Variable-Length-Limit Problem 736
Ping the /etc/hosts File Instead of a List File 737
Logging 737
Notification of ‘‘Unknown Host’’ 738
Notification Method 738
Automated Execution Using a Cron Table Entry 739

Summary 739
Lab Assignments 739

Chapter 23 Creating a System-Configuration Snapshot 741
Syntax 742
Creating the Shell Script 744
Other Options to Consider 774
Summary 774
Lab Assignment 775

Chapter 24 Compiling, Installing, Configuring, and Using sudo 777
The Need for sudo 777
Configuring sudo on Solaris 778
Downloading and Compiling sudo 778

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xxii

xxii Contents

Compiling sudo 779
Configuring sudo 790
Using sudo 797
Using sudo in a Shell Script 798
Logging to the syslog with sudo 801
The sudo Log File 806
Summary 806
Lab Assignments 807

Chapter 25 Print-Queue Hell: Keeping the Printers Printing 809
System V versus BSD versus CUPS Printer Systems 809

AIX Print-Control Commands 810
Classic AIX Printer Subsystem 810
System V Printing on AIX 814
More System V Printer Commands 818

CUPS — Common UNIX Printing System 820
HP-UX Print-Control Commands 823
Linux Print-Control Commands 825

Controlling Queuing and Printing Individually 831
Solaris Print-Control Commands 833

More System V Printer Commands 837
Putting It All Together 839
Other Options to Consider 849

Logging 849
Exceptions Capability 849
Maintenance 849
Scheduling 849

Summary 850
Lab Assignments 850

Chapter 26 Those Pesky Sarbanes-Oxley (SOX) Audits 851
What to Expect 852
How to Work with the Auditors 852
What the Auditors Want to See 853
Some Handy Commands 854

Using the id Command 854
Using the find Command 855
Using the awk and cut Commands 856
Using the sed Command 862

Using the dirname and basename Commands 863
Other Things to Consider 864
Summary 864
Lab Assignments 865

Chapter 27 Using Dirvish with rsync to Create Snapshot-Type Backups 867
How Does Dirvish Work? 868

How Much Disk Storage Will I Need? 868
Configuring Dirvish 868

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xxiii

Contents xxiii

Installing Dirvish 869
Modifying the master.conf Dirvish Configuration File 872
Creating the default.conf File for Each Filesystem Backup 873

Performing a Full System Backup 874
Using Dirvish on the Command Line 875
A Menu-Interface Shell Script to Control Dirvish 876

Running All Backups 878
Running a Particular Backup 879
Locating and Restoring Images 880
Expiring and Deleting Backup Images 881
Using sed to Modify the summary File 883
Adding a New Backup 884
Removing a Backup 889
Managing the Dirvish Backup Banks 890

Adding a New Dirvish Backup Bank 891
Deleting a Dirvish Backup Bank 892

Putting It All Together 893
Using the dirvish ctrl Shell Script 918

Running All Backups Defined in the Runall: Stanza 918
Running One Particular Backup 919
Locating and Restoring Files 919
Deleting Expired Backups and Expiring Backups 921
Adding a New Dirvish Backup Vault 925
Removing a Dirvish Vault 930
Managing Dirvish Backup Banks 930
Adding a New Dirvish Backup Bank 931
Removing a Dirvish Backup Bank 932

Other Things to Consider 932
Summary 933
Lab Assignments 933

Chapter 28 Monitoring and Auditing User Keystrokes 935
Syntax 936
Scripting the Solution 937

Logging User Activity 937
Starting the Monitoring Session 939
Where Is the Repository? 939
The Scripts 940
Logging root Activity 942

Some sudo Stuff 946
Monitoring Other Administration Users 948

Other Options to Consider 951
Emailing the Audit Logs 951
Compression 952
Need Better Security? 953
Inform the Users 953
Sudoers File 953

Michael ftoc.tex V3 - 03/24/2008 4:38pm Page xxiv

xxiv Contents

Summary 953
Lab Assignments 954
A Closing Note from the Author 954

Appendix A What’s on the Web Site 955
Shell Scripts 955
Functions 966

Index 977

Michael fack.tex V3 - 03/24/2008 4:40pm Page xxv

Acknowledgments

The information that I gathered together in this book is the result of working with some
of the most talented UNIX professionals on the topic. I have enjoyed every minute
of my association with these UNIX gurus and it has been my pleasure to have the
opportunity to gain so much knowledge from the pros. I want to thank every one of
these people for asking and answering questions over the past 20 years. If my brother
Jim had not kept telling me, ‘‘you should write a book,’’ after querying me for UNIX
details on almost a weekly basis, I doubt the first edition of this book would have ever
been written.

I especially want to thank Jack Renfro at Chrysler Corporation for giving me my
first shell scripting project so long ago. I had to start with the man pages, but that is
how I learned to dig deep to get the answer. Since then I have been on a mission to
automate, through shell scripting, support tasks on every system I come in contact
with. I certainly value the years I was able to work with Jack.

I must also thank the talented people at Wiley Publishing. As executive editor, Carol
Long helped keep things going smoothly. Development editor John Sleeva kept me
on schedule and made the edits that make my writing flow with ease. Dassi Zeidel,
my production editor, helped with the final edits and prepared the book for layout.
John Kennedy, my technical editor, kept me honest, gave me some tips, and ensured
the code did not have any errors. It has been a valuable experience for me to work
with such a fine group of professionals at Wiley Publishing. I also want to thank my
agent, Carole McClendon, at Waterside Productions for all her support on this project.
Carole is the best agent that anyone could ever ask for. She is a true professional with
the highest ethics.

Of course, my family had a lot to do with my success on this and every project. I want
to thank Mom, Pop, Gene, Jim, Marcia, Rusty, Mallory, Anica, and Chad. I want to
thank my beautiful bride forever, Robin, for her understanding, patience, and support
for the long hours required to complete this project. The girls, Andrea and Ana, always
keep a smile on my face, and Steve is always on my mind. The grandchildren, Gavin,
Jocelyn, and Julia, are an inspiration for long life, play time, learning, and adventure.
I am truly living the dream.

I could not have written this book without the support of all these people and the
many others that remain unnamed. It has been an honor!

xxv

Michael fack.tex V3 - 03/24/2008 4:40pm Page xxvi

Michael fintro.tex V3 - 03/25/2008 2:45pm Page xxvii

Introduction

In UNIX there are many ways to accomplish the same task. Given a problem to solve,
we may be able to get to a solution in any number of ways. Of course, some techniques
will be more efficient, use fewer system resources, and may or may not give the user
feedback on what is going on or give more accurate details and more precision to the
result. In this book we are going to step through every detail of creating shell scripts
to solve real-world UNIX problems and tasks. The shell scripts range from using a
pseudo-random number generator to creating passwords using arrays to replicating
data with rsync to working with record files. The scope of solutions is broad and
detailed. The details required to write a good shell script include commenting each
step for future reference. Other details include combining many commands together
into a single command statement when desirable, separating commands on several
lines of code when readability and understanding the concept may be diminished, and
making a script readable and easy to maintain through the life cycle. We will see the
benefits of variables and files to store data, show methods to strip out unneeded data
from command output, and format data for a particular purpose. Additionally, we are
going to show how to write and use functions in our shell scripts and demonstrate the
benefits of functions over a shell script written without functions.

This book is intended for any flavor of UNIX, but it emphasizes the AIX, HP-UX,
Linux, OpenBSD, and Solaris operating systems. Almost every script in the book is also
included on the book’s companion web site (www.wiley.com/go/michael2e). Many
of the shell scripts are rewritten for various UNIX flavors, when it is necessary. Other
shell scripts are not platform-dependent. These script rewrites are necessary because
command syntax and output vary, sometimes in a major way, between UNIX flavors.
The variations are sometimes as small as extracting data out of a different column
or using a different command switch to get the same result, or they can be as major
as putting several commands together to accomplish the same task and get a similar
output or result on different flavors of UNIX.

In each chapter we start with the very basic concepts to accomplish a task, and then
work our way up to some very complex and difficult concepts. The primary purpose
of a shell script is to automate repetitive and complex tasks. This alleviates keystroke
errors and allows for time-scheduled execution of the shell scripts. It is always better to
have the system tell us that it has a problem than to find out too late to be proactive. This
book will help us to be more proactive and efficient in our dealing with the system.
At every level you will gain more knowledge to allow you to move on to ever

xxvii

Michael fintro.tex V3 - 03/25/2008 2:45pm Page xxviii

xxviii Introduction

increasingly complex ideas with ease. You are going to see different ways to solve
real-world example tasks. There is not just one way to solve a challenge, and we are
going to look at the pros and cons of attacking a problem in various ways. Our goal
is to be confident and flexible problem solvers. Given a task, we can solve it in any
number of ways, and the solution will be intuitively obvious when you complete
this book.

Overview of the Book and Technology

This book is intended as a learning tool and study guide to learn how to write shell
scripts to solve a multitude of problems by starting with a clear goal. We will cover
most shell scripting techniques about seven times, each time hitting the topic from
a different angle, solving a different problem. I have found this technique to work
extremely well for retention of the material.

Each chapter ends with Lab Assignments that let you either write a new script or
modify a shell script covered in the chapter. There is not a ‘‘solutions’’ book. The
solution is to make it work! I urge everyone to read this book from cover to cover to
get the maximum benefit. The shells covered in this book include Bash, Bourne, and
Korn. C shell is not covered. Advanced topics include using rsync to replicate data,
creating snapshot-style backups utilizing Dirvish, working with record files to parse
data, and many others.

This book goes from some trivial task solutions to some rather advanced concepts
that everyone from high school and college students to Systems Administrators
will benefit from, and a lot in between. There are several chapters at each level of
complexity scattered throughout the book. The shell scripts presented in this book are
complete shell scripts, which is one of the things that sets this book apart from other
shell-scripting books on the market. The solutions are explained thoroughly, with each
part of the shell scripts explained in minute detail down to the philosophy and mindset
of the author.

How This Book Is Organized

Each chapter starts with a typical UNIX challenge that occurs every day in the
computer world. With each challenge we define a specific goal and start the shell script
by defining the correct command syntax to solve the problem. After we present the
goal and command syntax, we start by building the shell script around the commands.
The next step is to filter the commands’ output to strip out the unneeded data, or
we may decide to just extract the data we need from the output. If the syntax varies
between UNIX flavors, we show the correct syntax to get the same or a similar result.
When we get to this point we go further to build options into the shell script to give
the end user more flexibility on the command line.

When a shell script has to be rewritten for each operating system, a combined shell
script is shown at the end of the chapter that will run on all the UNIX flavors studied in
this book, except where noted. To do this last step, we query the system for the UNIX
flavor using the uname command. By knowing the flavor of the operating system,
we are able to execute the proper commands for each UNIX flavor by using a simple

Michael fintro.tex V3 - 03/25/2008 2:45pm Page xxix

Introduction xxix

case statement. If this is new to you, don’t worry; everything is explained in detail
throughout the book.

Each chapter targets a different real-world problem. Some challenges are very
complex, whereas others are just interesting to play around with. Some chapters
hit the problem from several different angles in a single chapter, and others leave
you the challenge to solve on your own — of course, with a few hints to get you
started. Each chapter solves the challenge presented and can be read as a single unit
without referencing other chapters in the book, except where noted. Some of the
material, though, is explained in great detail in one chapter and lightly covered in
other chapters. Because of this variation, I recommend that you start at the beginning
of the book and read and study every chapter, and solve each of the Lab Assignments
through to the end of the book, because this is a learning experience!

Who Should Read this Book

This book is intended for anyone who works with UNIX from the command line on
a daily basis. The topics covered in this book are mainly for UNIX professionals —
computer science students, programmers, programmer-analysts, Systems Operators,
application support personnel, Systems Administrators, and anyone who is interested
in getting ahead in the support and development arenas. Beginners will get a lot out
of this book, too, although some of the material may be a little high-level, so a basic
UNIX book may be needed to answer some questions. Everyone should have a good
working knowledge of common UNIX commands before starting this book; we do not
explain basic UNIX commands in much detail.

I started my career in UNIX by learning on the job how to be a Systems Operator.
I wish I had a book like this when I started. Having this history, I wanted others to get
a jump-start on their careers. I wrote this book with the knowledge that I was in your
shoes at one time, and I remember that I had to learn everything from the man pages,
one command at a time. Use this book as a study guide, and you will have a jump-start
to get ahead quickly in the UNIX world, which is getting bigger all the time.

Tools You Will Need

To get the most benefit from this book you need access to a UNIX machine, preferably
with AIX, HP-UX, Linux, OpenBSD, or Solaris installed. You can run Linux, Solaris,
and OpenBSD on standard PC hardware, and this is relatively inexpensive, if not free.
Your default shell should be set to Bash or Korn shell. You can find your default
shell by entering echo $SHELL on the command line. None of the shell scripts in this
book requires a graphical terminal, but it does not hurt to have Gnome, CDE, KDE, or
X-Windows running. This way you can work in multiple windows at the same time
and cut and paste code between windows.

You also need a text editor that you are comfortable using. UNIX operating systems
come with the vi editor, and many include emacs. You can also use the text editor that
comes with KDE, CDE, and Gnome. Remember that the editor must be a text editor
that stores files in a standard ANSII format. You will also need some time, patience,
and an open, creative mind that is ready to learn.

Michael fintro.tex V3 - 03/25/2008 2:45pm Page xxx

xxx Introduction

Another thing to note is that all of the variables used in the shell scripts and functions
in this book are in uppercase characters. I did this because it is much easier to follow
along with the shell script if you know quickly where the variables are located in the
code. When you write your own shell scripts, please use lowercase for all shell script
and function variables. The reason this is important is that the operating system, and
applications, use environment variables that are uppercase. If you are not careful, you
can overwrite a critical system or application variable with your own value and hose
the system; however, this is dependent on the scope of where the variable is in the
code. Just a word of warning: be careful with uppercase variables!

What’s on the Web Site

On the book’s companion web site, www.wiley.com/go/michael2e, all the shell
scripts and most of the functions that are studied in the book can be found. The
functions are easy to cut and paste directly into your own shell scripts to make the
scripting process a little easier. Additionally, there is a shell script stub that you can
copy to another filename. This script stub has everything to get started writing quickly.
The only thing you need to do is fill in the fields for the following: Script Name,
Author, Date, Version, Platform, and Rev. List, when revisions are made. There is
a place to define variables and functions, and then you have the ‘‘BEGINNING OF
MAIN’’ section to start the main body of the shell script.

Summary

This book is for learning how to be creative, proactive, and professional problem
solvers. Given a task, the solution will be intuitively obvious to you on completion of
this book. This book will help you attack problems logically and present you with a
technique of building on what you know. With each challenge presented you will see
how to take basic syntax and turn it into the basis for a shell scripting solution. We
always start with the basics and build more and more logic into the solution before we
add additional options the end user can use for more flexibility.

Speaking of end users, we must always keep our users informed about how
processing is proceeding. Giving the user a blank screen to look at is the worst thing
that you can do, so for this we can create progress indicators. You will learn how to be
proactive by building tools that monitor for specific system events and situations that
indicate the beginning stages of an upcoming problem. This is where knowing how to
query the system puts you ahead of the game.

With the techniques presented in this book, you will learn. You will learn about
problem resolution. You will learn about starting with what you know about a situation
and building a solution effectively. You will learn how to make a single shell script
work on other platforms without further modifications. You will learn how to be
proactive. You will learn how to use plenty of comments in a shell script. You will
learn how to write a shell script that is easy to read and follow through the logic.
Basically, you will learn to be an effective problem solver, and the solution to any
challenge will be intuitively obvious!

Michael c01.tex V4 - 03/24/2008 4:45pm Page 1

P A R T

I

The Basics of Shell Scripting
Chapter 1: Scripting Quick Start and Review

Chapter 2: 24 Ways to Process a File Line-by-Line

Chapter 3: Automated Event Notification

Chapter 4: Progress Indicators Using a Series of Dots,
a Rotating Line, or Elapsed Time

Michael c01.tex V4 - 03/24/2008 4:45pm Page 2

Michael c01.tex V4 - 03/24/2008 4:45pm Page 3

C H A P T E R

1
Scripting Quick Start

and Review

We are going to start out by giving a targeted refresher course. The topics that follow
are short explanations of techniques that we always have to search the book to find;
here they are all together in one place. The explanations range from showing the fastest
way to process a file line-by-line to the simple matter of case sensitivity of UNIX and
shell scripts. This should not be considered a full and complete list of scripting topics,
but it is a very good starting point and it does point out a sample of the topics covered
in the book. For each topic listed in this chapter there is a very detailed explanation
later in the book.

We urge everyone to study this entire book. Every chapter hits a different topic
using a different approach. The book is written this way to emphasize that there is
never only one technique to solve a challenge in UNIX. All the shell scripts in this book
are real-world examples of how to solve a problem. Thumb through the chapters, and
you can see that we tried to hit most of the common (and some uncommon!) tasks
in UNIX. All the shell scripts have a good explanation of the thinking process, and
we always start out with the correct command syntax for the shell script targeting a
specific goal. I hope you enjoy this book as much as I enjoyed writing it. Let’s get
started!

Case Sensitivity

UNIX is case sensitive. Because UNIX is case sensitive, our shell scripts are also case
sensitive.

UNIX Special Characters

All of the following characters have a special meaning or function. If they are used
in a way that their special meaning is not needed, they must be escaped. To escape,

3

Michael c01.tex V4 - 03/24/2008 4:45pm Page 4

4 Part I ■ The Basics of Shell Scripting

or remove its special function, the character must be immediately preceded with a
backslash, \, or enclosed within ’ ’forward tic marks (single quotes).

\ / ; , . ~ # $? & * () [] ‘ ’ " + - ! ^ = | < >

Shells

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions. This book works with the Bourne, Bash, and Korn shells. Shells are located
in either the /usr/bin/ directory or the /bin/ directory, depending on the UNIX
flavor and specific version.

Table 1-1

SHELL DIRECTORY

Bourne /bin/sh or /usr/bin/sh

Bash /bin/Bash or /usr/bin/Bash

Korn /bin/ksh or /usr/bin/ksh

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign or hash
mark, #, describing the steps. There are conditional tests, such as value A is greater
than value B, loops allowing us to go through massive amounts of data, files to read
and store data, variables to read and store data, and the script may include functions.

We are going to write a lot of scripts in the next several hundred pages, and we
should always start with a clear goal in mind. With a clear goal, we have a specific
purpose for the script, and we have a set of expected results. We will also hit on some
tips, tricks, and, of course, the gotchas in solving a challenge one way as opposed to
another to get the same result. All techniques are not created equal.

Shell scripts and functions are both interpreted. This means they are not compiled.
Both shell scripts and functions are ASCII text that is read by the shell command
interpreter. When we execute a shell script, or function, a command interpreter
goes through the ASCII text line-by-line, loop-by-loop, test-by-test, and executes each
statement as each line is reached from the top to the bottom.

Functions

A function is written in much the same way as a shell script but is different in that it
is defined, or written, within a shell script most of the time, and is called within the

Michael c01.tex V4 - 03/24/2008 4:45pm Page 5

Chapter 1 ■ Scripting Quick Start and Review 5

script. This way we can write a piece of code, which is used over and over, just once
and use it without having to rewrite the code every time. We just call the function
instead.

We can also define functions at the system level that is always available in our
environment, but this is a topic for later discussion.

A function has the following form:

function function_name

{

commands to execute

}

or

function_name ()

{

commands to execute

}

When we write functions into our scripts we must remember to declare, or write,
the function before we use it. The function must appear above the command statement
calling the function. We can’t use something that does not yet exist.

Running a Shell Script

A shell script can be executed in the following ways:

ksh shell_script_name

will create a Korn shell and execute the shell_script_name in the newly created
Korn shell environment. The same is true for sh and Bash shells.

shell_script_name

will execute shell_script_name if the execution bit is set on the file (see the manual
page on the chmod command, man chmod). The script will execute in the shell that
is declared on the first line of the shell script. If no shell is declared on the first line of
the shell script, it will execute in the default shell, which is the user’s system-defined
shell. Executing in an unintended shell may result in a failure and give unpredictable
results.

Michael c01.tex V4 - 03/24/2008 4:45pm Page 6

6 Part I ■ The Basics of Shell Scripting

Table 1-2 Different Types of Shells to Declare

COMMAND DESCRIPTION

#!/bin/sh or #!/usr/bin/sh Declares a Bourne shell

#!/bin/ksh or #!/usr/bin/ksh Declares a Korn shell

#!/bin/csh or #!/usr/bin/csh Declares a C shell

#!/bin/Bash or #!/usr/bin/Bash Declares a Bourne-Again (Bash) shell

Declare the Shell in the Shell Script
Declare the shell! If we want to have complete control over how a shell script is going
to run and in which shell it is to execute, we must declare the shell in the first line of the
script. If no shell is declared, the script will execute in the default shell, defined by the
system for the user executing the shell script. If the script was written, for example,
to execute in Bash shell, Bash, and the default shell for the user executing the shell
script is the C shell, csh, the script will most likely have a failure during execution. To
declare a shell, one of the declaration statements in Table 1-2 must appear on the first
line of the shell script.

Comments and Style in Shell Scripts

Making good comments in our scripts is stressed throughout this book. What is
intuitively obvious to us may be total Greek to others who follow in our footsteps.
We have to write code that is readable and has an easy flow. This involves writing
a script that is easy to read and easy to maintain, which means that it must have
plenty of comments describing the steps. For the most part, the person who writes
the shell script is not the one who has to maintain it. There is nothing worse than
having to hack through someone else’s code that has no comments to find out what
each step is supposed to do. It can be tough enough to modify the script in the first
place, but having to figure out the mindset of the author of the script will sometimes
make us think about rewriting the entire shell script from scratch. We can avoid this
by writing a clearly readable script and inserting plenty of comments describing what
our philosophy is and how we are using the input, output, variables, and files.

For good style in our command statements, we need it to be readable. For this
reason it is sometimes better, for instance, to separate a command statement onto three
separate lines instead of stringing, or piping, everything together on the same line of
code; it may be just too difficult to follow the pipe and understand what the expected
result should be for a new script writer. However, in some cases it is more desirable to
create a long pipe. But, again, it should have comments describing our thinking step
by step. This way someone later will look at our code and say, ‘‘Hey, now that’s a
groovy way to do that.’’

Michael c01.tex V4 - 03/24/2008 4:45pm Page 7

Chapter 1 ■ Scripting Quick Start and Review 7

Command readability and step-by-step comments are just the very basics of a
well-written script. Using a lot of comments will make our life much easier when we
have to come back to the code after not looking at it for six months, and believe me; we
will look at the code again. Comment everything! This includes, but is not limited to,
describing what our variables and files are used for, describing what loops are doing,
describing each test, maybe including expected results and how we are manipulating
the data and the many data fields. A hash mark, #, precedes each line of a comment.

The script stub that follows is on this book’s companion web site at www.wiley.com/
go/michael2e. The name is script.stub. It has all the comments ready to get started
writing a shell script. The script.stub file can be copied to a new filename. Edit the
new filename, and start writing code. The script.stub file is shown in Listing 1-1.

#!/bin/Bash

#

SCRIPT: NAME_of_SCRIPT

AUTHOR: AUTHORS_NAME

DATE: DATE_of_CREATION

REV: 1.1.A (Valid are A, B, D, T and P)

(For Alpha, Beta, Dev, Test and Production)

#

PLATFORM: (SPECIFY: AIX, HP-UX, Linux, OpenBSD, Solaris

or Not platform dependent)

#

PURPOSE: Give a clear, and if necessary, long, description of the

purpose of the shell script. This will also help you stay

focused on the task at hand.

#

REV LIST:

DATE: DATE_of_REVISION

BY: AUTHOR_of_MODIFICATION

MODIFICATION: Describe what was modified, new features, etc--

#

#

set -n # Uncomment to check script syntax, without execution.

NOTE: Do not forget to put the comment back in or

the shell script will not execute!

set -x # Uncomment to debug this shell script

#

##

DEFINE FILES AND VARIABLES HERE

##

Listing 1-1 script.stub shell script starter listing

Michael c01.tex V4 - 03/24/2008 4:45pm Page 8

8 Part I ■ The Basics of Shell Scripting

##

DEFINE FUNCTIONS HERE

##

##

BEGINNING OF MAIN

##

End of script

Listing 1-1 (continued)

The shell script starter shown in Listing 1-1 gives you the framework to start writing
the shell script with sections to declare variables and files, create functions, and write
the final section, BEGINNING OF MAIN, where the main body of the shell script is
written.

Control Structures

The following control structures will be used extensively.

if . . . then statement

if [test_command]

then

commands

fi

if . . . then . . . else statement

if [test_command]

then

commands

else

commands

fi

