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Introduction

In UNIX there are many ways to accomplish the same task. Given a problem to solve,
we may be able to get to a solution in any number of ways. Of course, some techniques
will be more efficient, use fewer system resources, and may or may not give the user
feedback on what is going on or give more accurate details and more precision to the
result. In this book we are going to step through every detail of creating shell scripts
to solve real-world UNIX problems and tasks. The shell scripts range from using a
pseudo-random number generator to creating passwords using arrays to replicating
data with rsync to working with record files. The scope of solutions is broad and
detailed. The details required to write a good shell script include commenting each
step for future reference. Other details include combining many commands together
into a single command statement when desirable, separating commands on several
lines of code when readability and understanding the concept may be diminished, and
making a script readable and easy to maintain through the life cycle. We will see the
benefits of variables and files to store data, show methods to strip out unneeded data
from command output, and format data for a particular purpose. Additionally, we are
going to show how to write and use functions in our shell scripts and demonstrate the
benefits of functions over a shell script written without functions.

This book is intended for any flavor of UNIX, but it emphasizes the AIX, HP-UX,
Linux, OpenBSD, and Solaris operating systems. Almost every script in the book is also
included on the book’s companion web site (www.wiley.com/go/michael2e). Many
of the shell scripts are rewritten for various UNIX flavors, when it is necessary. Other
shell scripts are not platform-dependent. These script rewrites are necessary because
command syntax and output vary, sometimes in a major way, between UNIX flavors.
The variations are sometimes as small as extracting data out of a different column
or using a different command switch to get the same result, or they can be as major
as putting several commands together to accomplish the same task and get a similar
output or result on different flavors of UNIX.

In each chapter we start with the very basic concepts to accomplish a task, and then
work our way up to some very complex and difficult concepts. The primary purpose
of a shell script is to automate repetitive and complex tasks. This alleviates keystroke
errors and allows for time-scheduled execution of the shell scripts. It is always better to
have the system tell us that it has a problem than to find out too late to be proactive. This
book will help us to be more proactive and efficient in our dealing with the system.
At every level you will gain more knowledge to allow you to move on to ever
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increasingly complex ideas with ease. You are going to see different ways to solve
real-world example tasks. There is not just one way to solve a challenge, and we are
going to look at the pros and cons of attacking a problem in various ways. Our goal
is to be confident and flexible problem solvers. Given a task, we can solve it in any
number of ways, and the solution will be intuitively obvious when you complete
this book.

Overview of the Book and Technology

This book is intended as a learning tool and study guide to learn how to write shell
scripts to solve a multitude of problems by starting with a clear goal. We will cover
most shell scripting techniques about seven times, each time hitting the topic from
a different angle, solving a different problem. I have found this technique to work
extremely well for retention of the material.

Each chapter ends with Lab Assignments that let you either write a new script or
modify a shell script covered in the chapter. There is not a ‘‘solutions’’ book. The
solution is to make it work! I urge everyone to read this book from cover to cover to
get the maximum benefit. The shells covered in this book include Bash, Bourne, and
Korn. C shell is not covered. Advanced topics include using rsync to replicate data,
creating snapshot-style backups utilizing Dirvish, working with record files to parse
data, and many others.

This book goes from some trivial task solutions to some rather advanced concepts
that everyone from high school and college students to Systems Administrators
will benefit from, and a lot in between. There are several chapters at each level of
complexity scattered throughout the book. The shell scripts presented in this book are
complete shell scripts, which is one of the things that sets this book apart from other
shell-scripting books on the market. The solutions are explained thoroughly, with each
part of the shell scripts explained in minute detail down to the philosophy and mindset
of the author.

How This Book Is Organized

Each chapter starts with a typical UNIX challenge that occurs every day in the
computer world. With each challenge we define a specific goal and start the shell script
by defining the correct command syntax to solve the problem. After we present the
goal and command syntax, we start by building the shell script around the commands.
The next step is to filter the commands’ output to strip out the unneeded data, or
we may decide to just extract the data we need from the output. If the syntax varies
between UNIX flavors, we show the correct syntax to get the same or a similar result.
When we get to this point we go further to build options into the shell script to give
the end user more flexibility on the command line.

When a shell script has to be rewritten for each operating system, a combined shell
script is shown at the end of the chapter that will run on all the UNIX flavors studied in
this book, except where noted. To do this last step, we query the system for the UNIX
flavor using the uname command. By knowing the flavor of the operating system,
we are able to execute the proper commands for each UNIX flavor by using a simple
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case statement. If this is new to you, don’t worry; everything is explained in detail
throughout the book.

Each chapter targets a different real-world problem. Some challenges are very
complex, whereas others are just interesting to play around with. Some chapters
hit the problem from several different angles in a single chapter, and others leave
you the challenge to solve on your own — of course, with a few hints to get you
started. Each chapter solves the challenge presented and can be read as a single unit
without referencing other chapters in the book, except where noted. Some of the
material, though, is explained in great detail in one chapter and lightly covered in
other chapters. Because of this variation, I recommend that you start at the beginning
of the book and read and study every chapter, and solve each of the Lab Assignments
through to the end of the book, because this is a learning experience!

Who Should Read this Book

This book is intended for anyone who works with UNIX from the command line on
a daily basis. The topics covered in this book are mainly for UNIX professionals —
computer science students, programmers, programmer-analysts, Systems Operators,
application support personnel, Systems Administrators, and anyone who is interested
in getting ahead in the support and development arenas. Beginners will get a lot out
of this book, too, although some of the material may be a little high-level, so a basic
UNIX book may be needed to answer some questions. Everyone should have a good
working knowledge of common UNIX commands before starting this book; we do not
explain basic UNIX commands in much detail.

I started my career in UNIX by learning on the job how to be a Systems Operator.
I wish I had a book like this when I started. Having this history, I wanted others to get
a jump-start on their careers. I wrote this book with the knowledge that I was in your
shoes at one time, and I remember that I had to learn everything from the man pages,
one command at a time. Use this book as a study guide, and you will have a jump-start
to get ahead quickly in the UNIX world, which is getting bigger all the time.

Tools You Will Need

To get the most benefit from this book you need access to a UNIX machine, preferably
with AIX, HP-UX, Linux, OpenBSD, or Solaris installed. You can run Linux, Solaris,
and OpenBSD on standard PC hardware, and this is relatively inexpensive, if not free.
Your default shell should be set to Bash or Korn shell. You can find your default
shell by entering echo $SHELL on the command line. None of the shell scripts in this
book requires a graphical terminal, but it does not hurt to have Gnome, CDE, KDE, or
X-Windows running. This way you can work in multiple windows at the same time
and cut and paste code between windows.

You also need a text editor that you are comfortable using. UNIX operating systems
come with the vi editor, and many include emacs. You can also use the text editor that
comes with KDE, CDE, and Gnome. Remember that the editor must be a text editor
that stores files in a standard ANSII format. You will also need some time, patience,
and an open, creative mind that is ready to learn.
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Another thing to note is that all of the variables used in the shell scripts and functions
in this book are in uppercase characters. I did this because it is much easier to follow
along with the shell script if you know quickly where the variables are located in the
code. When you write your own shell scripts, please use lowercase for all shell script
and function variables. The reason this is important is that the operating system, and
applications, use environment variables that are uppercase. If you are not careful, you
can overwrite a critical system or application variable with your own value and hose
the system; however, this is dependent on the scope of where the variable is in the
code. Just a word of warning: be careful with uppercase variables!

What’s on the Web Site

On the book’s companion web site, www.wiley.com/go/michael2e, all the shell
scripts and most of the functions that are studied in the book can be found. The
functions are easy to cut and paste directly into your own shell scripts to make the
scripting process a little easier. Additionally, there is a shell script stub that you can
copy to another filename. This script stub has everything to get started writing quickly.
The only thing you need to do is fill in the fields for the following: Script Name,
Author, Date, Version, Platform, and Rev. List, when revisions are made. There is
a place to define variables and functions, and then you have the ‘‘BEGINNING OF
MAIN’’ section to start the main body of the shell script.

Summary

This book is for learning how to be creative, proactive, and professional problem
solvers. Given a task, the solution will be intuitively obvious to you on completion of
this book. This book will help you attack problems logically and present you with a
technique of building on what you know. With each challenge presented you will see
how to take basic syntax and turn it into the basis for a shell scripting solution. We
always start with the basics and build more and more logic into the solution before we
add additional options the end user can use for more flexibility.

Speaking of end users, we must always keep our users informed about how
processing is proceeding. Giving the user a blank screen to look at is the worst thing
that you can do, so for this we can create progress indicators. You will learn how to be
proactive by building tools that monitor for specific system events and situations that
indicate the beginning stages of an upcoming problem. This is where knowing how to
query the system puts you ahead of the game.

With the techniques presented in this book, you will learn. You will learn about
problem resolution. You will learn about starting with what you know about a situation
and building a solution effectively. You will learn how to make a single shell script
work on other platforms without further modifications. You will learn how to be
proactive. You will learn how to use plenty of comments in a shell script. You will
learn how to write a shell script that is easy to read and follow through the logic.
Basically, you will learn to be an effective problem solver, and the solution to any
challenge will be intuitively obvious!
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C H A P T E R

1
Scripting Quick Start

and Review

We are going to start out by giving a targeted refresher course. The topics that follow
are short explanations of techniques that we always have to search the book to find;
here they are all together in one place. The explanations range from showing the fastest
way to process a file line-by-line to the simple matter of case sensitivity of UNIX and
shell scripts. This should not be considered a full and complete list of scripting topics,
but it is a very good starting point and it does point out a sample of the topics covered
in the book. For each topic listed in this chapter there is a very detailed explanation
later in the book.

We urge everyone to study this entire book. Every chapter hits a different topic
using a different approach. The book is written this way to emphasize that there is
never only one technique to solve a challenge in UNIX. All the shell scripts in this book
are real-world examples of how to solve a problem. Thumb through the chapters, and
you can see that we tried to hit most of the common (and some uncommon!) tasks
in UNIX. All the shell scripts have a good explanation of the thinking process, and
we always start out with the correct command syntax for the shell script targeting a
specific goal. I hope you enjoy this book as much as I enjoyed writing it. Let’s get
started!

Case Sensitivity

UNIX is case sensitive. Because UNIX is case sensitive, our shell scripts are also case
sensitive.

UNIX Special Characters

All of the following characters have a special meaning or function. If they are used
in a way that their special meaning is not needed, they must be escaped. To escape,

3
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or remove its special function, the character must be immediately preceded with a
backslash, \, or enclosed within ’ ’forward tic marks (single quotes).

\ / ; , . ~ # $ ? & * ( ) [ ] ‘ ’ " + - ! ^ = | < >

Shells

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions. This book works with the Bourne, Bash, and Korn shells. Shells are located
in either the /usr/bin/ directory or the /bin/ directory, depending on the UNIX
flavor and specific version.

Table 1-1

SHELL DIRECTORY

Bourne /bin/sh or /usr/bin/sh

Bash /bin/Bash or /usr/bin/Bash

Korn /bin/ksh or /usr/bin/ksh

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign or hash
mark, #, describing the steps. There are conditional tests, such as value A is greater
than value B, loops allowing us to go through massive amounts of data, files to read
and store data, variables to read and store data, and the script may include functions.

We are going to write a lot of scripts in the next several hundred pages, and we
should always start with a clear goal in mind. With a clear goal, we have a specific
purpose for the script, and we have a set of expected results. We will also hit on some
tips, tricks, and, of course, the gotchas in solving a challenge one way as opposed to
another to get the same result. All techniques are not created equal.

Shell scripts and functions are both interpreted. This means they are not compiled.
Both shell scripts and functions are ASCII text that is read by the shell command
interpreter. When we execute a shell script, or function, a command interpreter
goes through the ASCII text line-by-line, loop-by-loop, test-by-test, and executes each
statement as each line is reached from the top to the bottom.

Functions

A function is written in much the same way as a shell script but is different in that it
is defined, or written, within a shell script most of the time, and is called within the
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script. This way we can write a piece of code, which is used over and over, just once
and use it without having to rewrite the code every time. We just call the function
instead.

We can also define functions at the system level that is always available in our
environment, but this is a topic for later discussion.

A function has the following form:

function function_name

{

commands to execute

}

or

function_name ()

{

commands to execute

}

When we write functions into our scripts we must remember to declare, or write,
the function before we use it. The function must appear above the command statement
calling the function. We can’t use something that does not yet exist.

Running a Shell Script

A shell script can be executed in the following ways:

ksh shell_script_name

will create a Korn shell and execute the shell_script_name in the newly created
Korn shell environment. The same is true for sh and Bash shells.

shell_script_name

will execute shell_script_name if the execution bit is set on the file (see the manual
page on the chmod command, man chmod). The script will execute in the shell that
is declared on the first line of the shell script. If no shell is declared on the first line of
the shell script, it will execute in the default shell, which is the user’s system-defined
shell. Executing in an unintended shell may result in a failure and give unpredictable
results.
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Table 1-2 Different Types of Shells to Declare

COMMAND DESCRIPTION

#!/bin/sh or #!/usr/bin/sh Declares a Bourne shell

#!/bin/ksh or #!/usr/bin/ksh Declares a Korn shell

#!/bin/csh or #!/usr/bin/csh Declares a C shell

#!/bin/Bash or #!/usr/bin/Bash Declares a Bourne-Again (Bash) shell

Declare the Shell in the Shell Script
Declare the shell! If we want to have complete control over how a shell script is going
to run and in which shell it is to execute, we must declare the shell in the first line of the
script. If no shell is declared, the script will execute in the default shell, defined by the
system for the user executing the shell script. If the script was written, for example,
to execute in Bash shell, Bash, and the default shell for the user executing the shell
script is the C shell, csh, the script will most likely have a failure during execution. To
declare a shell, one of the declaration statements in Table 1-2 must appear on the first
line of the shell script.

Comments and Style in Shell Scripts

Making good comments in our scripts is stressed throughout this book. What is
intuitively obvious to us may be total Greek to others who follow in our footsteps.
We have to write code that is readable and has an easy flow. This involves writing
a script that is easy to read and easy to maintain, which means that it must have
plenty of comments describing the steps. For the most part, the person who writes
the shell script is not the one who has to maintain it. There is nothing worse than
having to hack through someone else’s code that has no comments to find out what
each step is supposed to do. It can be tough enough to modify the script in the first
place, but having to figure out the mindset of the author of the script will sometimes
make us think about rewriting the entire shell script from scratch. We can avoid this
by writing a clearly readable script and inserting plenty of comments describing what
our philosophy is and how we are using the input, output, variables, and files.

For good style in our command statements, we need it to be readable. For this
reason it is sometimes better, for instance, to separate a command statement onto three
separate lines instead of stringing, or piping, everything together on the same line of
code; it may be just too difficult to follow the pipe and understand what the expected
result should be for a new script writer. However, in some cases it is more desirable to
create a long pipe. But, again, it should have comments describing our thinking step
by step. This way someone later will look at our code and say, ‘‘Hey, now that’s a
groovy way to do that.’’
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Command readability and step-by-step comments are just the very basics of a
well-written script. Using a lot of comments will make our life much easier when we
have to come back to the code after not looking at it for six months, and believe me; we
will look at the code again. Comment everything! This includes, but is not limited to,
describing what our variables and files are used for, describing what loops are doing,
describing each test, maybe including expected results and how we are manipulating
the data and the many data fields. A hash mark, #, precedes each line of a comment.

The script stub that follows is on this book’s companion web site at www.wiley.com/
go/michael2e. The name is script.stub. It has all the comments ready to get started
writing a shell script. The script.stub file can be copied to a new filename. Edit the
new filename, and start writing code. The script.stub file is shown in Listing 1-1.

#!/bin/Bash

#

# SCRIPT: NAME_of_SCRIPT

# AUTHOR: AUTHORS_NAME

# DATE: DATE_of_CREATION

# REV: 1.1.A (Valid are A, B, D, T and P)

# (For Alpha, Beta, Dev, Test and Production)

#

# PLATFORM: (SPECIFY: AIX, HP-UX, Linux, OpenBSD, Solaris

# or Not platform dependent)

#

# PURPOSE: Give a clear, and if necessary, long, description of the

# purpose of the shell script. This will also help you stay

# focused on the task at hand.

#

# REV LIST:

# DATE: DATE_of_REVISION

# BY: AUTHOR_of_MODIFICATION

# MODIFICATION: Describe what was modified, new features, etc--

#

#

# set -n # Uncomment to check script syntax, without execution.

# # NOTE: Do not forget to put the comment back in or

# # the shell script will not execute!

# set -x # Uncomment to debug this shell script

#

##########################################################

# DEFINE FILES AND VARIABLES HERE

##########################################################

Listing 1-1 script.stub shell script starter listing
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##########################################################

# DEFINE FUNCTIONS HERE

##########################################################

##########################################################

# BEGINNING OF MAIN

##########################################################

# End of script

Listing 1-1 (continued)

The shell script starter shown in Listing 1-1 gives you the framework to start writing
the shell script with sections to declare variables and files, create functions, and write
the final section, BEGINNING OF MAIN, where the main body of the shell script is
written.

Control Structures

The following control structures will be used extensively.

if . . . then statement

if [ test_command ]

then

commands

fi

if . . . then . . . else statement

if [ test_command ]

then

commands

else

commands

fi


