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Preface

Courses on mathematical methods of physics are among the essential courses
for graduate programs in physics, which are also offered by most engineering
departments. Considering that the audience in these courses comes from
all subdisciplines of physics and engineering, the content and the level of
mathematical formalism has to be chosen very carefully. Recently, the growing
interest in interdisciplinary studies has brought scientists together from
physics, chemistry, biology, economy, and finance and has increased the
demand for these courses in which upper-level mathematical techniques are
taught. It is for this reason that the mathematics departments, who once
overlooked these courses, are now themselves designing and offering them.

Most of the available books for these courses are written with theoretical
physicists in mind and thus are somewhat insensitive to the needs of this new
multidisciplinary audience. Besides, these books should not only be tuned
to the existing practical needs of this multidisciplinary audience but should
also play a lead role in the development of new interdisciplinary science by
introducing new techniques to students and researchers.

About the Book

We give a coherent treatment of the selected topics with a style that makes
advanced mathematical tools accessible to a multidisciplinary audience. The
book is written in a modular way so that each chapter is actually a review of its
subject and can be read independently. This makes the book very useful not only
as a self-study book for students and beginning researchers but also as a refer-
ence for scientists. We emphasize physical motivation and the multidisciplinary
nature of the methods discussed. Whenever possible, we prefer to introduce
mathematical techniques through physical applications. Examples are often
used to extend discussions of specific techniques rather than as mere exercises.

Topics are introduced in a logical sequence and discussed thoroughly. Each
sequence climaxes with a part where the material of the previous chapters is
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unified in terms of a general theory, as in Chapter 7 on the Sturm–Liouville
theory, or as in Chapter 18 on Green’s functions, where the gains of the
previous chapters are utilized. Chapter 8 is on factorization method. It is a
natural extension of our discussion on the Sturm–Liouville theory. It also
presents a different and an advanced treatment of special functions. Similarly,
Chapter 19 on path integrals is a natural extension of our chapter on Green’s
functions. Chapters 9 and 10 on coordinates, tensors, and continuous groups
have been located after Chapter 8 on the Sturm–Liouville theory and the
factorization method. Chapters 11 and 12 are on complex techniques, and they
are self-contained. Chapter 13 on fractional calculus can either be integrated
into the curriculum of the mathematical methods of physics courses or used
independently to design a one-semester course.

Since our readers are expected to be at least at the graduate or the advanced
undergraduate level, a background equivalent to the contents of our under-
graduate text book Essentials of Mathematical Methods in Science and
Engineering (Bayin, 2008) is assumed. In this regard, the basics of some of the
methods discussed here can be found there. For communications about the
book, we will use the website http://users.metu.edu.tr/bayin/

The entire book contains enough material for a three-semester course
meeting three hours a week. The modular structure of the book gives
enough flexibility to adopt the book for two- or even a one-semester course.
Chapters 1–7, 11, 12, and 14–18 have been used for a two-semester compul-
sory graduate course meeting three hours a week at METU, where students
from all subdisciplines of physics meet. In other universities, colleagues have
used the book for their two or one semester courses.

During my lectures and first reading of the book, I recommend that read-
ers view equations as statements and concentrate on the logical structure of
the arguments. Later, when they go through the derivations, technical details
will be understood, alternate approaches will appear, and some of the questions
will be answered. Sufficient numbers of problems are given at the back of each
chapter. They are carefully selected and should be considered an integral part
of the learning process. Since some of the problems may require a good deal
of time, we recommend the reader to skim through the entire problem section
before attempting them. Depending on the level and the purpose of the reader,
certain parts of the book can be skipped in first reading. Since the modular
structure of the book makes it relatively easy for the readers to decide on which
chapters or sections to skip, we will not impose a particular selection.

In a vast area like mathematical methods in science and engineering, there
is always room for new approaches, new applications, and new topics. In fact,
the number of books, old and new, written on this subject shows how dynamic
this field is. Naturally, this book carries an imprint of my style and lectures.
Because the main aim of this book is pedagogy, occasionally I have followed
other books when their approaches made perfect sense to me. Main references
are given at the back of each chapter. Additional references can be found at

http://users.metu.edu.tr/bayin/
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the back. Readers of this book will hopefully be well prepared for advanced
graduate studies and research in many areas of physics. In particular, as we use
the same terminology and style, they should be ready for full-term graduate
courses based on the books: The Fractional Calculus by Oldham and Spanier
and Path Integrals in Physics, Volumes I and II by Chaichian and Demichev, or
they could jump to the advanced sections of these books, which have become
standard references in their fields. Our list of references, by all means, is not
meant to be complete or up to date. There are many other excellent sources
that nowadays the reader can locate by a simple internet search. Their exclusion
here is simply ignorance on my part and not a reflection on their quality or
importance.

About the Second Edition

The challenge in writing a mathematical methods text book is that for almost
every chapter an entire book can be devoted. Sometimes, even sections could
be expanded into another book. In this regard, it is natural that books with such
broad scope need at least another edition to settle down. The second edition
of Mathematical Methods in Science and Engineering corresponds to a major
overhaul of the entire book. In addition to 34 new examples, 34 new figures,
and 48 new problems, over 60 new sections/subsections have been included
on carefully selected topics that make the book more appealing and useful to
its multidisciplinary audience.

Among the new topics introduced, we have the discrete and fast Fourier
transforms; Cartesian tensors and the theory of elasticity; curvature; Caputo
and Riesz fractional derivatives; method of steepest descent and saddle-point
integrals; Padé approximants; Radon transforms; optimum control theory and
controlled dynamics; diffraction; time independent perturbation theory; the
anharmonic oscillator problem; anomalous diffusion; Fox’s H-functions and
many others. As Socrates has once said education is the kindling of a flame, not
the filling of a Vessel, all topics are selected and written, not to fill a vessel but
to inform, provoke further thought, and interest among the multidisciplinary
audience we address.

Besides these, throughout the book, countless changes have been made to
assure easy reading and smooth flow of the complex mathematical arguments.
Derivations are given in sufficient detail so that the reader will not be distracted
by searching for results in other parts of the book or by needing to write down
equations. We have shown carefully selected keywords in boldface and framed
key results so that information can be located easily as the reader scans through
the pages. Also, using the new Wiley style and a more efficient way of displaying
equations, we were able to keep the book at an optimum size.
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Legendre Equation and Polynomials

Legendre polynomials, Pn(x), are the solutions of the Legendre equation:

d
dx

[
(1 − x2)

dPl(x)
dx

]
+ n(n + 1)Pn(x) = 0, n = 0, 1, 2,… . (1.1)

They are named after the French mathematician Adrien-Marie Legendre
(1752–1833). They are frequently encountered in physics and engineering
applications. In particular, they appear in the solutions of the Laplace equation
in spherical polar coordinates.

1.1 Second-Order Differential Equations of Physics

Many of the second-order partial differential equations of physics and engi-
neering can be written as

−→∇2Ψ(x, y, z) + k2(x, y, z)Ψ(x, y, z) = F(x, y, z), (1.2)

where some of the frequently encountered cases are:

1. When k(x, y, z) and F(x, y, z) are zero, we have the Laplace equation:

−→∇2Ψ(x, y, z) = 0, (1.3)

which is encountered in many different areas of science like electrostatics,
magnetostatics, laminar (irrotational) flow, surface waves, heat transfer and
gravitation.

2. When the right-hand side of the Laplace equation is different from zero, we
have the Poisson equation:

−→∇2Ψ = F(x, y, z), (1.4)

where F(x, y, z) represents sources or sinks in the system.

Mathematical Methods in Science and Engineering, Second Edition. Selçuk Ş. Bayın.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2 1 Legendre Equation and Polynomials

3. The Helmholtz wave equation is written as

−→∇2Ψ(x, y, z) ± k2
0Ψ(x, y, z) = 0, (1.5)

where k0 is a constant.
4. Another important example is the time-independent Schrödinger

equation:

− ℏ2

2m
−→∇2Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z), (1.6)

where F(x, y, z) in Eq. (1.2) is zero and k(x, y, z) is given as

k(x, y, z) =
√
(2m∕ℏ2)[E − V (x, y, z)]. (1.7)

A common property of all these equations is that they are linear and
second-order partial differential equations. Separation of variables, Green’s
functions and integral transforms are among the frequently used analytic
techniques for obtaining solutions. When analytic methods fail, one can
resort to numerical techniques like Runge–Kutta. Appearance of similar
differential equations in different areas of science allows one to adopt tech-
niques developed in one area into another. Of course, the variables and
interpretation of the solutions will be very different. Also, one has to be
aware of the fact that boundary conditions used in one area may not be
appropriate for another. For example, in electrostatics, charged particles can
only move perpendicular to the conducting surfaces, whereas in laminar
(irrotational) flow, fluid elements follow the contours of the surfaces; thus
even though the Laplace equation is to be solved in both cases, solutions
obtained in electrostatics may not always have meaningful counterparts in
laminar flow.

1.2 Legendre Equation

We now solve Eq. (1.2) in spherical polar coordinates using the method of
separation of variables. We consider cases where k(x, y, z) is only a function
of the radial coordinate and also set F(x, y, z) to zero. The time-independent
Schrödinger equation (1.6) for the central force problems, V (x, y, z) = V (r), is
an important example for such cases. We first separate the radial, r, and the
angular (𝜃, 𝜙) variables and write the solution as Ψ(r, 𝜃, 𝜙) = R(r)Y (𝜃, 𝜙). This
basically assumes that the radial dependence of the solution is independent of
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the angular coordinates and vice versa. Substituting this in Eq. (1.2), we get
1
r2
𝜕

𝜕r

[
r2 𝜕

𝜕r
R(r)Y (𝜃, 𝜙)

]
+ 1

r2 sin 𝜃
𝜕

𝜕𝜃

[
sin 𝜃 𝜕

𝜕𝜃
R(r)Y (𝜃, 𝜙)

]
+ 1

r2 sin2𝜃

𝜕2

𝜕𝜙2 R(r)Y (𝜃, 𝜙) + k2(r)R(r)Y (𝜃, 𝜙) = 0.

(1.8)

After multiplying by r2∕R(r)Y (𝜃, 𝜙) and collecting the (𝜃, 𝜙) dependence on the
right-hand side, we obtain

1
R(r)

𝜕

𝜕r

[
r2 𝜕

𝜕r
R(r)
]
+ k2(r)r2 = − 1

sin 𝜃
1

Y (𝜃, 𝜙)
𝜕

𝜕𝜃

[
sin 𝜃 𝜕

𝜕𝜃
Y (𝜃, 𝜙)

]
− 1

sin2𝜃Y (𝜃, 𝜙)
𝜕2Y (𝜃, 𝜙)
𝜕𝜙2 . (1.9)

Since r and (𝜃, 𝜙) are independent variables, this equation can be satisfied for all
r and (𝜃, 𝜙) only when both sides of the equation are equal to the same constant.
We show this constant with 𝜆, which is also called the separation constant.
Now Eq. (1.9) reduces to the following two equations:

d
dr

(
r2 dR(r)

dr

)
+ r2k2(r)R(r) − 𝜆R(r) = 0, (1.10)

1
sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃 𝜕Y (𝜃, 𝜙)

𝜕𝜃

]
+ 1

sin2𝜃

𝜕2Y (𝜃, 𝜙)
𝜕𝜙2 + 𝜆Y (𝜃, 𝜙) = 0, (1.11)

where Eq. (1.10) for R(r) is an ordinary differential equation. We also separate
the 𝜃 and the 𝜙 variables in Y (𝜃, 𝜙) as Y (𝜃, 𝜙) = Θ(𝜃)Φ(𝜙) and call the new
separation constant m2, and write

sin 𝜃
Θ(𝜃)

d
d𝜃

[
sin 𝜃dΘ

d𝜃

]
+ 𝜆 sin2𝜃 = − 1

Φ(𝜙)
d2Φ(𝜙)

d𝜙2 = m2. (1.12)

The differential equations to be solved for Θ(𝜃) and Φ(𝜙) are now found,
respectively, as

sin2𝜃
d2Θ(𝜃)

d𝜃2 + cos 𝜃 sin 𝜃dΘ(𝜃)
d𝜃

+ [𝜆 sin2𝜃 − m2]Θ(𝜃) = 0, (1.13)

d2Φ(𝜙)
d𝜙2 + m2Φ(𝜙) = 0. (1.14)

In summary, using the method of separation of variables, we have reduced the
partial differential equation [Eq. (1.8)] to three ordinary differential equations
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[Eqs. (1.10), (1.13), and (1.14)]. During this process, two constant parameters, 𝜆
and m, called the separation constants have entered into our equations, which
so far have no restrictions on them.

1.2.1 Method of Separation of Variables

In the above discussion, the fact that we are able to separate the solution is
closely related to the use of the spherical polar coordinates, which reflect
the symmetry of the central force problem, where the potential, V (r),
depends only on the radial coordinate. In Cartesian coordinates, the potential
would be written as V (x, y, z) and the solution would not be separable as
Ψ(x, y, z) ≠ X(x)Y (y)Z(z). Whether a given partial differential equation is
separable or not is closely linked to the symmetries of the physical system.
Even though a proper discussion of this point is beyond the scope of this book,
we refer the reader to [9] and suffice by saying that if a partial differential
equation is not separable in a given coordinate system, it is possible to check
the existence of a coordinate system in which it would be separable. If such a
coordinate system exists, then it is possible to construct it from the generators
of the symmetries.

Among the three ordinary differential equations [Eqs. (1.10), (1.13), and
(1.14)], Eq. (1.14) can be solved immediately with the general solution

Φ(𝜙) = Aeim𝜙 + Be−im𝜙, (1.15)

where the separation constant, m, is still unrestricted. Imposing the periodic
boundary condition Φ(𝜙 + 2𝜋) = Φ(𝜙), we restrict m to integer values:
0,±1,±2,… . Note that in anticipation of applications to quantum mechanics,
we have taken the two linearly independent solutions as e±im𝜙. For the other
problems, sin m𝜙 and cos m𝜙 could be used.

For the differential equation to be solved forΘ(𝜃) [Eq. (1.13)], we define a new
independent variable, x = cos 𝜃, Θ(𝜃) = Z(x), 𝜃 ∈ [0, 𝜋], x ∈ [−1, 1], and write

(1 − x2)d2Z(x)
dx2 − 2x dZ(x)

dx
+
[
𝜆 − m2

(1 − x2)

]
Z(x) = 0. (1.16)

For m = 0, this equation is called the Legendre equation. For m ≠ 0, it is
known as the associated Legendre equation.

1.2.2 Series Solution of the Legendre Equation

Starting with the m = 0 case, we write the Legendre equation as

(1 − x2)d2Z(x)
dx2 − 2x dZ(x)

dx
+ 𝜆Z(x) = 0, x ∈ [−1, 1]. (1.17)

This has two regular singular points at x = −1 and 1. Since these points are
at the end points of our interval, we use the Frobenius method [8] and try a
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series solution about the regular point x = 0 as Z(x) =
∑∞

k=0 akxk+𝛼 , where 𝛼 is
a constant. Substituting this into Eq. (1.17), we get

∞∑
k=0

ak(k + 𝛼)(k + 𝛼 − 1)xk+𝛼−2

−
∞∑

k=0
xk+𝛼 [(k + 𝛼)(k + 𝛼 − 1) + 2(k + 𝛼) − 𝜆

]
ak = 0. (1.18)

We now write the first two terms of the first series explicitly:

a0𝛼(𝛼 − 1)x𝛼−2 + a1(𝛼 + 1)𝛼x𝛼−1 +
∞∑

k′=2
ak′ (k′ + 𝛼)(k′ + 𝛼 − 1)xk′+𝛼−2

(1.19)

and make the variable change k′ = k + 2, to write Eq. (1.18) as
a0𝛼(𝛼 − 1)x𝛼−2 + a1(𝛼 + 1)𝛼x𝛼−1

+
∞∑

k=0
xk+𝛼 {ak+2(k + 2 + 𝛼)(k + 1 + 𝛼) − ak

[
(k + 𝛼)(k + 𝛼 + 1) − 𝜆

]}
= 0.

(1.20)
From the uniqueness of power series, this equation cannot be satisfied for all x
unless the coefficients of all the powers of x vanish simultaneously. This gives
the following relations among the coefficients:

a0𝛼(𝛼 − 1) = 0, a0 ≠ 0, (1.21)

a1(𝛼 + 1)𝛼 = 0, (1.22)

ak+2

ak
=
[
(k + 𝛼)(k + 𝛼 + 1) − 𝜆

]
(k + 1 + 𝛼)(k + 𝛼 + 2)

, k = 0, 1, 2,… . (1.23)

Equation (1.21), which is obtained by setting the coefficient of the lowest power
of x to zero, is called the indicial equation. Assuming a0 ≠ 0, the two roots
of the indicial equation give the values 𝛼 = 0 and 𝛼 = 1, while the remaining
Eqs. (1.22) and (1.23) give the recursion relation among the coefficients.

Starting with the root 𝛼 = 1, we write

ak+2 = ak
(k + 1)(k + 2) − 𝜆
(k + 2)(k + 3)

, k = 0, 1, 2,… , (1.24)

and obtain the remaining coefficients as

a2 = a0
(2 − 𝜆)

6
, (1.25)
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a3 = a1
(6 − 𝜆)

12
, (1.26)

a4 = a2
(12 − 𝜆)

20
, (1.27)

⋮ (1.28)

Since Eq. (1.22) with 𝛼 = 1 implies a1 = 0, all the odd coefficients vanish, a3 =
a5 = · · · = 0, thus yielding the following series solution for 𝛼 = 1:

Z1(x) = a0

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
. (1.29)

For the other root, 𝛼 = 0, Eqs. (1.21) and (1.22) imply a0 ≠ 0 and a1 ≠ 0,
thus the recursion relation:

ak+2 = ak
k(k + 1) − 𝜆
(k + 1)(k + 2)

, k = 0, 1, 2,… , (1.30)

determines the nonzero coefficients as

a2 = a0

(
−𝜆

2

)
,

a3 = a1

(2 − 𝜆
6

)
,

a4 = a2

(6 − 𝜆
12

)
, (1.31)

a5 = a3

(12 − 𝜆
20

)
,

⋮

Now the series solution for 𝛼 = 0 is obtained as

Z2(x) = a0

[
1 − 𝜆

2
x2 − 𝜆

2
(6 − 𝜆)

12
x4 + · · ·

]
+ a1

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
. (1.32)

The Legendre equation is a second-order linear ordinary differential equation,
which in general has two linearly independent solutions. Since a0 and a1 are
arbitrary, we note that the solution for 𝛼 = 0 also contains the solution for
𝛼 = 1; hence the general solution can be written as

Z(x) = C0

[
1 −
(
𝜆

2

)
x2 −
(
𝜆

2

)(6 − 𝜆
12

)
x4 + · · ·

]
+ C1

[
x + (2 − 𝜆)

6
x3 + (2 − 𝜆)(12 − 𝜆)

120
x5 + · · ·

]
,

(1.33)

where C0 and C1 are two integration constants to be determined from the
boundary conditions. These series are called the Legendre series.
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1.2.3 Frobenius Method – Review

A second-order linear homogeneous ordinary differential equation with two
linearly independent solutions may be put in the form

d2y
dx2 + P(x)

dy
dx

+ Q(x)y(x) = 0. (1.34)

If x0 is no worse than a regular singular point, that is, when

lim
x→x0

(x − x0)P(x) → finite (1.35)

and

lim
x→x0

(x − x0)2Q(x) → finite, (1.36)

we can seek a series solution of the form

y(x) =
∞∑

k=0
ak(x − x0)k+𝛼, a0 ≠ 0. (1.37)

Substituting this series into the above differential equation and setting the
coefficient of the lowest power of (x − x0) with a0 ≠ 0 gives us a quadratic
equation for 𝛼 called the indicial equation. For almost all the physically
interesting cases, the indicial equation has two real roots. This gives us
the following possibilities for the two linearly independent solutions of the
differential equation [8]:

1. If the two roots (𝛼1 > 𝛼2) differ by a noninteger, then the two linearly inde-
pendent solutions, y1(x) and y2(x), are given as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.38)

y2(x) = |x − x0|𝛼2

∞∑
k=0

bk(x − x0)k , b0 ≠ 0. (1.39)

2. If (𝛼1 − 𝛼2) = N , where 𝛼1 > 𝛼2 and N is a positive integer, then the two lin-
early independent solutions, y1(x) and y2(x), are given as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.40)
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y2(x) = |x − x0|𝛼2

∞∑
k=0

bk(x − x0)k + Cy1(x) ln |x − x0|, b0 ≠ 0.

(1.41)

The second solution contains a logarithmic singularity, where C is a con-
stant that may or may not be zero. Sometimes, 𝛼2 will contain both solutions;
hence it is advisable to start with the smaller root with the hopes that it might
provide the general solution.

3. If the indicial equation has a double root, 𝛼1 = 𝛼2, then the Frobenius
method yields only one series solution. In this case, the two linearly
independent solutions can be taken as

y(x, 𝛼1) and
𝜕y(x, 𝛼)
𝜕𝛼

||||𝛼=𝛼1

, (1.42)

where the second solution diverges logarithmically as x → x0. In the pres-
ence of a double root, the Frobenius method is usually modified by taking
the two linearly independent solutions, y1(x) and y2(x), as

y1(x) = |x − x0|𝛼1

∞∑
k=0

ak(x − x0)k , a0 ≠ 0, (1.43)

y2(x) = |x − x0|𝛼1+1
∞∑

k=0
bk(x − x0)k + y1(x) ln |x − x0|. (1.44)

In all these cases, the general solution is written as y(x) = A1y1(x) + A2y2(x).

1.3 Legendre Polynomials

Legendre series are convergent in the interval (−1, 1). This can be checked easily
by the ratio test. To see how they behave at the end points, x = ±1, we take
the k → ∞ limit of the recursion relation in Eq. (1.30) to obtain ak+2

ak
→ 1. For

sufficiently large k values, this means that both series behave as

Z(x) = · · · + akxk (1 + x2 + x4 + · · ·
)
. (1.45)

The series inside the parentheses is nothing but the geometric series:(
1 + x2 + x4 + · · ·

)
= 1

1 − x2 . (1.46)
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Hence both of the Legendre series diverge at the end points as 1∕(1 − x2). How-
ever, the end points correspond to the north and the south poles of a sphere.
Because the problem is spherically symmetric, there is nothing special about
these points. Any two diametrically opposite points can be chosen to serve as
the end points. Hence we conclude that the physical solution should be finite
everywhere on a sphere. To avoid the divergence at the end points we termi-
nate the Legendre series after a finite number of terms. This is accomplished by
restricting the separation constant 𝜆 to integer values:

𝜆 = l(l + 1), l = 0, 1, 2,… . (1.47)

With this restriction on 𝜆, one of the Legendre series in Eq. (1.33) terminates
after a finite number of terms while the other one still diverges at the end points.
Choosing the coefficient of the divergent series in the general solution as zero,
we obtain the polynomial solutions of the Legendre equation as

Z(x) = Pl(x), l = 0, 1, 2,… . (1.48)

These polynomials are called the Legendre polynomials, which are finite
everywhere on a sphere. They are defined so that their value at x = 1 is one. In
general, they can be expressed as

Pl(x) =
[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − 2n)!(l − n)!n!

xl−2n, (1.49)

where [l∕2]means the greatest integer in the interval
(

l
2
,

l
2
− 1
]
. Restriction of

𝜆 to certain integer values for finite solutions everywhere is a physical (bound-
ary) condition and has very significant physical consequences. For example,
in quantum mechanics, it means that magnitude of the angular momentum is
quantized. In wave mechanics, like the standing waves on a string fixed at both
ends, it means that waves on a sphere can only have certain wavelengths.

Legendre Polynomials
P0(x) = 1,

P1(x) = x,
P2(x) = (1∕2)[3x2 − 1],

P3(x) = (1∕2)[5x3 − 3x],
P4(x) = (1∕8)[35x4 − 30x2 + 3],

P5(x) = (1∕8)[63x5 − 70x3 + 15x].

(1.50)
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1.3.1 Rodriguez Formula

Another definition of the Legendre polynomials is given by the Rodriguez
formula:

Pl(x) =
1

2ll!
dl

dxl

(
x2 − 1

)l
. (1.51)

To show that this is equivalent to the previous definition in Eq. (1.49), we use
the binomial formula [4]:

(x + y)m =
∞∑

n=0

m!
n!(m − n)!

xnym−n, (1.52)

to write Eq. (1.51) as

Pl(x) =
1

2ll!
dl

dxl

l∑
n=0

l!(−1)n

n!(l − n)!
x2l−2n. (1.53)

We now use the formula
dlxm

dxl
= m!

(m − l)!
xm−l, (1.54)

to obtain

Pl(x) =

[
l
2

]∑
n=0

(−1)n

2l
(2l − 2n)!

n!(l − n)!(l − 2n)!
xl−2n, (1.55)

thus proving the equivalence of Eqs. (1.51) and (1.49).

1.3.2 Generating Function

Another way to define the Legendre polynomials is using a generating
function, T(x, t), which is given as

T(x, t) = 1√
1 − 2xt + t2

=
∞∑

l=0
Pl(x)tl, |t| < 1. (1.56)

To show that T(x, t) generates the Legendre polynomials, we write T(x, t) as

T(x, t) = 1
[1 − t (2x − t)]

1
2

(1.57)

and use the binomial expansion

(1 − x)−
1
2 =

∞∑
l=0

(−1∕2)!(−1)lxl

l!
(
− 1

2
− l
)
!
. (1.58)
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Deriving the useful relation:(
− 1

2

)
!(

− 1
2
− l
)
!
=

(
− 1

2

)(
− 1

2
− 1
)(

1
2
− 2
)
· · ·(

− 1
2
− l
)(

− 1
2
− l − 1

)
· · ·

(1.59)

=
(−1)l

[(
1
2

)(
1
2
+ 1
)
· · ·
(
− 1

2
− l
)(

− 1
2
− l − 1

)
· · ·
]

[(
− 1

2
− l
)(

− 1
2
− l − 1

)
· · ·
]

(1.60)

= (−1)l
[(1

2

)(1
2
+ 1
)(1

2
+ 2
)
· · ·
(1

2
+ l − 1

)]
(1.61)

= (−1)l 1 ⋅ 3 ⋅ 5 · · · (2l − 1)
2l

= (−1)l (2l)!
22ll!

, (1.62)

we write Eq. (1.58) as

(1 − x)−
1
2 =

∞∑
l=0

(2l)!(−1)2l

22l(l!)2
xl, (1.63)

which after substituting in Eq. (1.57) gives

1
(1 − t(2x − t))

1
2

=
∞∑

l=0

(2l)!(−1)2ltl

22l(l!)2
(2x − t)l. (1.64)

Employing the binomial formula once again to expand the factor (2x − t)l, we
rewrite the right-hand side as

∞∑
l=0

(2l)!(−1)2ltl

22l(l!)2

l∑
k=0

l!
k!(l − k)!

(2x)l−k(−t)k

=
∞∑

l=0

l∑
k=0

(2l)!(−1)k(2x)l−ktk+l

22ll!k!(l − k)!
. (1.65)

We now rearrange the double sum by the substitutions k → n and l → l − n to
write the generating function as

T(x, t) =
∞∑

l=0

[[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − n)!n!(l − 2n)!

xl−2n

]
tl. (1.66)

Comparing this with the right-hand side of Eq. (1.56), which is
∞∑

l=0
Pl(x)tl, we

obtain the desired result:

Pl(x) =
[l∕2]∑
n=0

(−1)n(2l − 2n)!
2l(l − n)!n!(l − 2n)!

xl−2n. (1.67)
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1.3.3 Recursion Relations

Recursion relations are very helpful in operations with Legendre polynomials.
Let us differentiate the generating function [Eq. (1.56)] with respect to t:

𝜕

𝜕t
T(x, t) = − −2(x − t)

2(1 − 2xt + t2)
3
2

(1.68)

=
∞∑

l=1
Pl(x)l tl−1. (1.69)

We rewrite this as

(x − t)
∞∑

l=0
Pl(x)tl =

∞∑
l=1

Pl(x)l tl−1 (1 − 2xt + t2) (1.70)

and expand in powers of t to get
∞∑

l=0
tl(2l + 1)xPl(x) =

∞∑
l′=1

Pl′ l′tl′−1 +
∞∑

l′′=0
tl′′+1(l′′ + 1)Pl′′ (x). (1.71)

We now make the substitutions l′ = l + 1 and l′′ = l − 1 and collect equal pow-
ers of tl to write

∞∑
l=0

[
(2l + 1)xPl(x) − Pl+1(x)(l + 1) − lPl−1(x)

]
tl = 0. (1.72)

This equation can only be satisfied for all values of t when the expression inside
the square brackets is zero for all l, thus giving the recursion relation

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x). (1.73)

Another useful recursion relation is obtained by differentiating T(x, t) with
respect to x and following similar steps as

Pl(x) = P′
l+1(x) + P′

l−1(x) − 2xP′
l (x). (1.74)

It is also possible to find other recursion relations.

1.3.4 Special Values

In various applications, one needs special values of the Legendre polynomials
at the points x = ±1 and x = 0. If we write x = ±1 in the generating function
[Eq. (1.56)], we find

1∕(1 ∓ t) =
∞∑

l=0
Pl(1)tl(±1)l. (1.75)
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Expanding the left-hand side using the binomial formula and comparing equal
powers of t, we obtain

Pl(1) = 1, Pl(−1) = (−1)l. (1.76)

We now set x = 0 in the generating function:

1√
1 + t2

=
∞∑

l=0
Pl(0)tl =

∞∑
t=0

(−1)l (2l)!
22l(l!)2

t2l, (1.77)

to obtain the special values:

P2s+1(0) = 0, P2l(0) =
(−1)l(2l)!

22l(l!)2
. (1.78)

1.3.5 Special Integrals

1. In applications, we frequently encounter the integral ∫ 1
0 dx Pl(x). Using the

recursion relation in Eq. (1.74), we can rewrite this integral as

∫
1

0
dx Pl(x) = ∫

1

0
dx
[
P′

l+1(x) + P′
l−1(x) − 2xP′

l (x)
]
. (1.79)

The right-hand side can be integrated to write

∫
1

0
dx Pl(x) = Pl+1(1) + Pl−1(1) − Pl+1(0) − Pl−1(0) − 2xPl(x)|10

+ 2∫
1

0
dx Pl(x). (1.80)

This is simplified using the special values and leads to ∫ 1
0 dx Pl(x) =

Pl+1(0) + Pl−1(0), thus yielding

∫
1

0
dx Pl(x) =

⎧⎪⎨⎪⎩
0, l ≥ 2 and even,
1, l = 0,

1
2(s + 1)

P2s(0), l = 2s + 1, s = 0, 1,… .

(1.81)

2. Another integral useful in dipole calculations is ∫ 1
−1 dx xPl(x)Pk(x).Using the

recursion relation in Eq. (1.73), we can rewrite this as

∫
1

−1
dx xPl(x)Pk(x) = ∫

1

−1
dx

Pl(x)
(2k + 1)

[
(k + 1)Pk+1(x) + kPk−1(x)

]
,

(1.82)
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which leads to

∫
1

−1
dx xPl(x)Pk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, k ≠ l ± 1,

l
(2l − 1)

2
(2l + 1)

, k = l − 1,

l + 1
(2l + 3)

2
(2l + 1)

, k = l + 1.

(1.83)

One can also show the useful integral

∫
1

−1
dx xlPn(x) =

2n+1l!
(

l + n
2

)
!

(l + n + 1)!
(

l − n
2

)
!
, l − n = |even integer|. (1.84)

1.3.6 Orthogonality and Completeness

We can also write the Legendre equation [Eq. (1.17)] as

d
dx

[(
1 − x2) dPl(x)

dx

]
+ l(l + 1)Pl(x) = 0. (1.85)

Multiplying this with Pl′ (x) and integrating over x in the interval [−1, 1],we get

∫
1

−1
Pl′ (x)

{
d

dx

[(
1 − x2) dPl(x)

dx

]
+ l(l + 1)Pl(x)

}
dx = 0. (1.86)

Using integration by parts, this can be written as

∫
1

−1

[(
x2 − 1

) dPl(x)
dx

dPl′ (x)
dx

+ l(l + 1)Pl′ (x)Pl(x)
]

dx = 0. (1.87)

Interchanging l and l′ and subtracting from Eq. (1.87), we get[
l(l + 1) − l′(l′ + 1)

]
∫

1

−1
Pl′ (x)Pl(x) dx = 0. (1.88)

For l ≠ l′, this gives ∫ 1
−1 Pl′ (x)Pl(x) dx = 0 and for l = l′, it becomes

∫
1

−1

[
Pl(x)
]2dx = Nl, (1.89)

where Nl is a finite normalization constant.
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We can evaluate Nl using the Rodriguez formula [Eq. (1.51)]. We first write

Nl = ∫
1

−1
P2

l (x) dx = 1
22l(l!)2 ∫

1

−1

dl

dxl

(
x2 − 1

)l dl

dxl

(
x2 − 1

)ldx (1.90)

and after l-fold integration by parts, we obtain

Nl =
(−1)l

22l(l!)2 ∫
1

−1

(
x2 − 1

)l d2l

dx2l

(
x2 − 1

)ldx. (1.91)

Using the Leibniz formula:

dm

dxm A(x) B(x) =
m∑

s=0

m!
s!(m − s)!

dsA
dxs

dm−sB
dxm−s , (1.92)

we evaluate the 2l-fold derivative of (x2 − 1)l as (2l)!, thus Eq. (1.91) becomes

Nl =
(2l)!

22l(l!)2 ∫
1

−1

(
1 − x2)ldx. (1.93)

We now write (1 − x2)l as(
1 − x2)l =

(
1 − x2) (1 − x2)l−1 =

(
1 − x2)l−1 + x

2l
d

dx
(
1 − x2)l (1.94)

to obtain

Nl =
(2l − 1)

2l
Nl−1 +

(2l − 1)!
22l(l!)2 ∫

1

−1
xd
[
(1 − x2)l] , (1.95)

which gives

Nl =
(2l − 1)

2l
Nl−1 −

1
2l

Nl, (1.96)

or

(2l + 1)Nl = (2l − 1)Nl−1. (1.97)

This means that the value of (2l + 1)Nl is a constant independent of l. Evaluating
the integral in Eq. (1.93) for l = 0 gives 2, which determines the normalization
constant as

Nl =
2

(2l + 1)
. (1.98)

Using Nl, we can now define the set of polynomials

{Ul(x), l = 0, 1,…},Ul(x) =
√

2l + 1
2

Pl(x), (1.99)



16 1 Legendre Equation and Polynomials

which satisfies the orthogonality relation

∫
1

−1
Ul′ (x)Ul(x) dx = 𝛿l′l. (1.100)

At this point, we suffice by saying that this set is also complete, that is, in terms
of this set any sufficiently well-behaved and at least piecewise continuous func-
tion, Ψ(x), can be expressed as an infinite series in the interval [−1, 1] as

Ψ(x) =
∞∑

l=0
ClUl(x). (1.101)

We will be more specific about what is meant by sufficiently well-behaved when
we discuss the Sturm–Liouville theory in Chapter 7. To evaluate the expan-
sion constants Cl, we multiply both sides by Ul′ (x) and integrate over [−1, 1]
:

∫
1

−1
Ul′ (x)Ψ(x) dx =

∞∑
l=0

Cl ∫ Ul′ (x)Ul(x) dx. (1.102)

Using the orthogonality relation [Eq. (1.100)], we can free the constants Cl
under the summation sign and obtain

Cl = ∫
1

−1
Ul(x)Ψ(x) dx. (1.103)

Orthogonality and the completeness of the Legendre polynomials are very use-
ful in applications.

Example 1.1 Legendre polynomials and electrostatics problems
To find the electric potential in vacuum, we solve the Laplace equation:

−→∇2Ψ(−→r ) = 0, (1.104)

with the appropriate boundary conditions. For problems with azimuthal
symmetry, it is advantageous to use the spherical polar coordinates, where the
potential does not have any 𝜙 dependence. Therefore, in the 𝜙-dependent part
of the solution [Eq. (1.15)], we set m = 0.The differential equation to be solved
for the r-dependent part is now found by setting k = 0 in Eq. (1.10) as

d2R
dr2 + 2

r
dR
dr

− l(l + 1)
r2 R(r) = 0. (1.105)

The linearly independent solutions of this equation are easily found as rl and
1

rl+1 , thus giving the general solution of Eq. (1.104) as

Ψ(r, 𝜃) =
∞∑

l=0

[
Alrl +

Bl

rl+1

]
Pl(x), x = cos 𝜃, (1.106)


