## SECOND EDITION

## MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING

Mathematical Methods in Science and Engineering

# Mathematical Methods in Science and Engineering 

Selçuk Ş. Bayın<br>Institute of Applied Mathematics<br>Middle East Technical University<br>Ankara Turkey

Second Edition

Wiley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Selçuk Ş. Bayın to be identified as the author(s) of this work has been asserted in accordance with law.

## Registered Office

John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

## Editorial Office

111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

## Limit of Liability/Disclaimer of Warranty

The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties; including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of on-going research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from.

## Library of Congress Cataloguing-in-Publication Data:

Names: Bayın, Ş. Selçuk, 1951- author.
Title: Mathematical methods in science and engineering / by Selçuk Ş. Bayın.
Description: Second edition. | Hoboken, NJ : John Wiley \& Sons, 2018. |
Includes bibliographical references and index. |
Identifiers: LCCN 2017042888 (print) | LCCN 2017048224 (ebook) | ISBN
9781119425410 (pdf) | ISBN 9781119425458 (epub) | ISBN 9781119425397
(cloth)
Subjects: LCSH: Mathematical physics-Textbooks. | Engineering mathematics-Textbooks.
Classification: LCC QC20 (ebook) | LCC QC20 .B35 2018 (print) | DDC 530.15-dc23

LC record available at https://lccn.loc.gov/2017042888
Cover Design: Wiley
Cover Images: (Background) © Studio-Pro/Gettyimages;
(Image inset) Courtesy of Selcuk S. Bayin
Set in 10/12pt WarnockPro by SPi Global, Chennai, India
Printed in the United States of America

## Contents

Preface ..... xix
1 Legendre Equation and Polynomials ..... 1
1.1 Second-Order Differential Equations of Physics ..... 1
1.2 Legendre Equation ..... 2
1.2.1 Method of Separation of Variables ..... 4
1.2.2 Series Solution of the Legendre Equation ..... 4
1.2.3 Frobenius Method - Review ..... 7
1.3 Legendre Polynomials ..... 8
1.3.1 Rodriguez Formula ..... 10
1.3.2 Generating Function ..... 10
1.3.3 Recursion Relations ..... 12
1.3.4 Special Values ..... 12
1.3.5 Special Integrals ..... 13
1.3.6 Orthogonality and Completeness ..... 14
1.3.7 Asymptotic Forms ..... 17
1.4 Associated Legendre Equation and Polynomials ..... 18
1.4.1 Associated Legendre Polynomials $P_{l}^{m}(x)$ ..... 20
1.4.2 Orthogonality ..... 21
1.4.3 Recursion Relations ..... 22
1.4.4 Integral Representations ..... 24
1.4.5 Associated Legendre Polynomials for $m<0$ ..... 26
1.5 Spherical Harmonics ..... 27
1.5.1 Addition Theorem of Spherical Harmonics ..... 30
1.5.2 Real Spherical Harmonics ..... 33
Bibliography ..... 33
Problems ..... 34
2 Laguerre Polynomials ..... 39
2.1 Central Force Problems in Quantum Mechanics ..... 39
2.2 Laguerre Equation and Polynomials ..... 41
2.2.1 Generating Function ..... 42
2.2.2 Rodriguez Formula ..... 43
2.2.3 Orthogonality ..... 44
2.2.4 Recursion Relations ..... 45
2.2.5 Special Values ..... 46
2.3 Associated Laguerre Equation and Polynomials ..... 46
2.3.1 Generating Function ..... 48
2.3.2 Rodriguez Formula and Orthogonality ..... 49
2.3.3 Recursion Relations ..... 49
Bibliography ..... 49
Problems ..... 50
3 Hermite Polynomials ..... 53
3.1 Harmonic Oscillator in Quantum Mechanics ..... 53
3.2 Hermite Equation and Polynomials ..... 54
3.2.1 Generating Function ..... 56
3.2.2 Rodriguez Formula ..... 56
3.2.3 Recursion Relations and Orthogonality ..... 57
Bibliography ..... 61
Problems ..... 62
4 Gegenbauer and Chebyshev Polynomials ..... 65
4.1 Wave Equation on a Hypersphere ..... 65
4.2 Gegenbauer Equation and Polynomials ..... 68
4.2.1 Orthogonality and the Generating Function ..... 68
4.2.2 Another Representation of the Solution ..... 69
4.2.3 The Second Solution ..... 70
4.2.4 Connection with the Gegenbauer Polynomials ..... 71
4.2.5 Evaluation of the Normalization Constant ..... 72
4.3 Chebyshev Equation and Polynomials ..... 72
4.3.1 Chebyshev Polynomials of the First Kind ..... 72
4.3.2 Chebyshev and Gegenbauer Polynomials ..... 73
4.3.3 Chebyshev Polynomials of the Second Kind ..... 73
4.3.4 Orthogonality and Generating Function ..... 74
4.3.5 Another Definition ..... 75
Bibliography ..... 76
Problems ..... 76
5 Bessel Functions ..... 81
5.1 Bessel's Equation ..... 83
5.2 Bessel Functions ..... 83
5.2.1 Asymptotic Forms ..... 84
5.3 Modified Bessel Functions ..... 86
5.4 Spherical Bessel Functions ..... 87
5.5 Properties of Bessel Functions ..... 88
5.5.1 Generating Function ..... 88
5.5.2 Integral Definitions ..... 89
5.5.3 Recursion Relations of the Bessel Functions ..... 89
5.5.4 Orthogonality and Roots of Bessel Functions ..... 90
5.5.5 Boundary Conditions for the Bessel Functions ..... 91
5.5.6 Wronskian of Pairs of Solutions ..... 94
5.6 Transformations of Bessel Functions ..... 95
5.6.1 Critical Length of a Rod ..... 96
Bibliography ..... 98
Problems ..... 99
6 Hypergeometric Functions ..... 103
6.1 Hypergeometric Series ..... 103
6.2 Hypergeometric Representations of Special Functions ..... 107
6.3 Confluent Hypergeometric Equation ..... 108
6.4 Pochhammer Symbol and Hypergeometric Functions ..... 109
6.5 Reduction of Parameters ..... 113
Bibliography ..... 115
Problems ..... 115
7 Sturm-Liouville Theory ..... 119
7.1 Self-Adjoint Differential Operators ..... 119
7.2 Sturm-Liouville Systems ..... 120
7.3 Hermitian Operators ..... 121
7.4 Properties of Hermitian Operators ..... 122
7.4.1 Real Eigenvalues ..... 122
7.4.2 Orthogonality of Eigenfunctions ..... 123
7.4.3 Completeness and the Expansion Theorem ..... 123
7.5 Generalized Fourier Series ..... 125
7.6 Trigonometric Fourier Series ..... 126
7.7 Hermitian Operators in Quantum Mechanics ..... 127
Bibliography ..... 129
Problems ..... 130
8 Factorization Method ..... 133
8.1 Another Form for the Sturm-Liouville Equation ..... 133
8.2 Method of Factorization ..... 135
8.3 Theory of Factorization and the Ladder Operators ..... 136
8.4 Solutions via the Factorization Method ..... 141
8.4.1 Case I $(m>0$ and $\mu(m)$ is an increasing function) ..... 141
8.4.2 Case II ( $m>0$ and $\mu(m)$ is a decreasing function) ..... 142
8.5 Technique and the Categories of Factorization ..... 143
8.5.1 Possible Forms for $k(z, m)$ ..... 143
8.5.1.1 Positive powers of $m$ ..... 143
8.5.1.2 Negative powers of $m$ ..... 146
8.6 Associated Legendre Equation (Type A) ..... 148
8.6.1 Determining the Eigenvalues, $\lambda_{l}$ ..... 149
8.6.2 Construction of the Eigenfunctions ..... 150
8.6.3 Ladder Operators for $m$ ..... 151
8.6.4 Interpretation of the $L_{+}$and $L_{-}$Operators ..... 153
8.6.5 Ladder Operators for $l$ ..... 155
8.6.6 Complete Set of Ladder Operators ..... 159
8.7 Schrödinger Equation and Single-Electron Atom (Type F) ..... 160
8.8 Gegenbauer Functions (Type A) ..... 162
$8.9 \quad$ Symmetric Top (Type A) ..... 163
8.10 Bessel Functions (Type C) ..... 164
8.11 Harmonic Oscillator (Type D) ..... 165
8.12 Differential Equation for the Rotation Matrix ..... 166
8.12.1 Step-Up/Down Operators for $m$ ..... 166
8.12.2 Step-Up/Down Operators for $m^{\prime}$ ..... 167
8.12.3 Normalized Functions with $m=m^{\prime}=l$ ..... 168
8.12.4 Full Matrix for $l=2$ ..... 168
8.12.5 Step-Up/Down Operators for $l$ ..... 170
Bibliography ..... 171
Problems ..... 171
9 Coordinates and Tensors ..... 175
9.1 Cartesian Coordinates ..... 175
9.1.1 Algebra of Vectors ..... 176
9.1.2 Differentiation of Vectors ..... 177
9.2 Orthogonal Transformations ..... 178
9.2.1 Rotations About Cartesian Axes ..... 182
9.2.2 Formal Properties of the Rotation Matrix ..... 183
9.2.3 Euler Angles and Arbitrary Rotations ..... 183
9.2.4 Active and Passive Interpretations of Rotations ..... 185
9.2.5 Infinitesimal Transformations ..... 186
9.2.6 Infinitesimal Transformations Commute ..... 188
9.3 Cartesian Tensors ..... 189
9.3.1 Operations with Cartesian Tensors ..... 190
9.3.2 Tensor Densities or Pseudotensors ..... 191
9.4 Cartesian Tensors and the Theory of Elasticity ..... 192
9.4.1 Strain Tensor ..... 192
9.4.2 Stress Tensor ..... 193
9.4.3 Thermodynamics and Deformations ..... 194
9.4.4 Connection between Shear and Strain ..... 196
9.4.5 Hook's Law ..... 200
9.5 Generalized Coordinates and General Tensors ..... 201
9.5.1 Contravariant and Covariant Components ..... 202
9.5.2 Metric Tensor and the Line Element ..... 203
9.5.3 Geometric Interpretation of Components ..... 206
9.5.4 Interpretation of the Metric Tensor ..... 207
9.6 Operations with General Tensors ..... 214
9.6.1 Einstein Summation Convention ..... 214
9.6.2 Contraction of Indices ..... 214
9.6.3 Multiplication of Tensors ..... 214
9.6.4 The Quotient Theorem ..... 214
9.6.5 Equality of Tensors ..... 215
9.6.6 Tensor Densities ..... 215
9.6.7 Differentiation of Tensors ..... 216
9.6.8 Some Covariant Derivatives ..... 219
9.6.9 Riemann Curvature Tensor ..... 220
9.7 Curvature ..... 221
9.7.1 Parallel Transport ..... 222
9.7.2 Round Trips via Parallel Transport ..... 223
9.7.3 Algebraic Properties of the Curvature Tensor ..... 225
9.7.4 Contractions of the Curvature Tensor ..... 226
9.7.5 Curvature in $n$ Dimensions ..... 227
9.7.6 Geodesics ..... 229
9.7.7 Invariance Versus Covariance ..... 229
9.8 Spacetime and Four-Tensors ..... 230
9.8.1 Minkowski Spacetime ..... 230
9.8.2 Lorentz Transformations and Special Relativity ..... 231
9.8.3 Time Dilation and Length Contraction ..... 233
9.8.4 Addition of Velocities ..... 233
9.8.5 Four-Tensors in Minkowski Spacetime ..... 234
9.8.6 Four-Velocity ..... 237
9.8.7 Four-Momentum and Conservation Laws ..... 238
9.8.8 Mass of a Moving Particle ..... 240
9.8.9 Wave Four-Vector ..... 240
9.8.10 Derivative Operators in Spacetime ..... 241
9.8.11 Relative Orientation of Axes in $\bar{K}$ and $K$ Frames ..... 241
9.9 Maxwell's Equations in Minkowski Spacetime ..... 243
9.9.1 Transformation of Electromagnetic Fields ..... 246
9.9.2 Maxwell's Equations in Terms of Potentials ..... 246
9.9.3 Covariance of Newton's Dynamic Theory ..... 247
Bibliography ..... 248
Problems ..... 249
10 Continuous Groups and Representations ..... 257
10.1 Definition of a Group ..... 258
10.1.1 Nomenclature ..... 258
10.2 Infinitesimal Ring or Lie Algebra ..... 259
10.2.1 Properties of ${ }^{r} G$ ..... 260
10.3 Lie Algebra of the Rotation Group $R(3)$ ..... 260
10.3.1 Another Approach to ${ }^{r} R(3)$ ..... 262
10.4 Group Invariants ..... 264
10.4.1 Lorentz Transformations ..... 266
10.5 Unitary Group in Two Dimensions $U(2)$ ..... 267
10.5.1 Special Unitary Group $S U(2)$ ..... 269
10.5.2 Lie Algebra of $S U(2)$ ..... 270
10.5.3 Another Approach to ${ }^{r} S U(2)$ ..... 272
10.6 Lorentz Group and Its Lie Algebra ..... 274
10.7 Group Representations ..... 279
10.7.1 Schur's Lemma ..... 279
10.7.2 Group Character ..... 280
10.7.3 Unitary Representation ..... 280
10.8 Representations of $R(3)$ ..... 281
10.8.1 Spherical Harmonics and Representations of $R(3)$ ..... 281
10.8.2 Angular Momentum in Quantum Mechanics ..... 281
10.8.3 Rotation of the Physical System ..... 282
10.8.4 Rotation Operator in Terms of the Euler Angles ..... 282
10.8.5 Rotation Operator in the Original Coordinates ..... 283
10.8.6 Eigenvalue Equations for $L_{z}, L_{ \pm}$, and $L^{2}$ ..... 287
10.8.7 Fourier Expansion in Spherical Harmonics ..... 287
10.8.8 Matrix Elements of $L_{x}, L_{y}$, and $L_{z}$ ..... 289
10.8.9 Rotation Matrices of the Spherical Harmonics ..... 290
10.8.10 Evaluation of the $d_{m^{\prime} m}^{l}(\beta)$ Matrices ..... 292
10.8.11 Inverse of the $d_{m^{\prime} m}^{l}(\beta)$ Matrices ..... 292
10.8.12 Differential Equation for $d_{m^{\prime} m}^{l}(\beta)$ ..... 293
10.8.13 Addition Theorem for Spherical Harmonics ..... 296
10.8.14 Determination of $I_{l}$ in the Addition Theorem ..... 298
10.8.15 Connection of $D_{m m^{\prime}}^{l}(\beta)$ with Spherical Harmonics ..... 300
10.9 Irreducible Representations of $S U(2)$ ..... 302
10.10 Relation of $S U(2)$ and $R(3)$ ..... 303
10.11 Group Spaces ..... 306
10.11.1 Real Vector Space ..... 306
10.11.2 Inner Product Space ..... 307
10.11.3 Four-Vector Space ..... 307
10.11.4 Complex Vector Space ..... 308
10.11.5 Function Space and Hilbert Space ..... 308
10.11.6 Completeness ..... 309
10.12 Hilbert Space and Quantum Mechanics ..... 310
10.13 Continuous Groups and Symmetries ..... 311
10.13.1 Point Groups and Their Generators ..... 311
10.13.2 Transformation of Generators and Normal Forms ..... 312
10.13.3 The Case of Multiple Parameters ..... 314
10.13.4 Action of Generators on Functions ..... 315
10.13.5 Extension or Prolongation of Generators ..... 316
10.13.6 Symmetries of Differential Equations ..... 318
Bibliography ..... 321
Problems ..... 322
11 Complex Variables and Functions ..... 327
11.1 Complex Algebra ..... 327
11.2 Complex Functions ..... 329
11.3 Complex Derivatives and Cauchy-Riemann Conditions ..... 330
11.3.1 Analytic Functions ..... 330
11.3.2 Harmonic Functions ..... 332
11.4 Mappings ..... 334
11.4.1 Conformal Mappings ..... 348
11.4.2 Electrostatics and Conformal Mappings ..... 349
11.4.3 Fluid Mechanics and Conformal Mappings ..... 352
11.4.4 Schwarz-Christoffel Transformations ..... 358
Bibliography ..... 368
Problems ..... 368
12 Complex Integrals and Series ..... 373
12.1 Complex Integral Theorems ..... 373
12.1.1 Cauchy-Goursat Theorem ..... 373
12.1.2 Cauchy Integral Theorem ..... 374
12.1.3 Cauchy Theorem ..... 376
12.2 Taylor Series ..... 378
12.3 Laurent Series ..... 379
12.4 Classification of Singular Points ..... 385
12.5 Residue Theorem ..... 386
12.6 Analytic Continuation ..... 389
12.7 Complex Techniques in Taking Some Definite Integrals ..... 392
12.8 Gamma and Beta Functions ..... 399
12.8.1 Gamma Function ..... 399
12.8.2 Beta Function ..... 401
12.8.3 Useful Relations of the Gamma Functions ..... 403
12.8.4 Incomplete Gamma and Beta Functions ..... 403
12.8.5 Analytic Continuation of the Gamma Function ..... 404
12.9 Cauchy Principal Value Integral ..... 406
12.10 Integral Representations of Special Functions ..... 410
12.10.1 Legendre Polynomials ..... 410
12.10.2 Laguerre Polynomials ..... 411
12.10.3 Bessel Functions ..... 413
Bibliography ..... 416
Problems ..... 416
13 Fractional Calculus ..... 423
13.1 Unified Expression of Derivatives and Integrals ..... 425
13.1.1 Notation and Definitions ..... 425
13.1.2 The $n$th Derivative of a Function ..... 426
13.1.3 Successive Integrals ..... 427
13.1.4 Unification of Derivative and Integral Operators ..... 429
13.2 Differintegrals ..... 429
13.2.1 Grünwald's Definition of Differintegrals ..... 429
13.2.2 Riemann-Liouville Definition of Differintegrals ..... 431
13.3 Other Definitions of Differintegrals ..... 434
13.3.1 Cauchy Integral Formula ..... 434
13.3.2 Riemann Formula ..... 439
13.3.3 Differintegrals via Laplace Transforms ..... 440
13.4 Properties of Differintegrals ..... 442
13.4.1 Linearity ..... 443
13.4.2 Homogeneity ..... 443
13.4.3 Scale Transformations ..... 443
13.4.4 Differintegral of a Series ..... 443
13.4.5 Composition of Differintegrals ..... 444
13.4.5.1 Composition Rule for General $q$ and $Q$ ..... 447
13.4.6 Leibniz Rule ..... 450
13.4.7 Right- and Left-Handed Differintegrals ..... 450
13.4.8 Dependence on the Lower Limit ..... 452
13.5 Differintegrals of Some Functions ..... 453
13.5.1 Differintegral of a Constant ..... 453
13.5.2 Differintegral of $[x-a]$ ..... 454
13.5.3 Differintegral of $[x-a]^{p}(p>-1)$ ..... 455
13.5.4 Differintegral of $[1-x]^{p}$ ..... 456
13.5.5 Differintegral of $\exp ( \pm x)$ ..... 456
13.5.6 Differintegral of $\ln (x)$ ..... 457
13.5.7 Some Semiderivatives and Semi-Integrals ..... 459
13.6 Mathematical Techniques with Differintegrals ..... 459
13.6.1 Laplace Transform of Differintegrals ..... 459
13.6.2 Extraordinary Differential Equations ..... 463
13.6.3 Mittag-Leffler Functions ..... 463
13.6.4 Semidifferential Equations ..... 464
13.6.5 Evaluating Definite Integrals by Differintegrals ..... 466
13.6.6 Evaluation of Sums of Series by Differintegrals ..... 468
13.6.7 Special Functions Expressed as Differintegrals ..... 469
13.7 Caputo Derivative ..... 469
13.7.1 Caputo and the Riemann-Liouville Derivative ..... 470
13.7.2 Mittag-Leffler Function and the Caputo Derivative ..... 473
13.7.3 Right- and Left-Handed Caputo Derivatives ..... 474
13.7.4 A Useful Relation of the Caputo Derivative ..... 475
13.8 Riesz Fractional Integral and Derivative ..... 477
13.8.1 Riesz Fractional Integral ..... 477
13.8.2 Riesz Fractional Derivative ..... 480
13.8.3 Fractional Laplacian ..... 482
13.9 Applications of Differintegrals in Science and Engineering ..... 482
13.9.1 Fractional Relaxation ..... 482
13.9.2 Continuous Time Random Walk (CTRW) ..... 483
13.9.3 Time Fractional Diffusion Equation ..... 486
13.9.4 Fractional Fokker-Planck Equations ..... 487
Bibliography ..... 489
Problems ..... 490
14 Infinite Series ..... 495
14.1 Convergence of Infinite Series ..... 495
14.2 Absolute Convergence ..... 496
14.3 Convergence Tests ..... 496
14.3.1 Comparison Test ..... 497
14.3.2 Ratio Test ..... 497
14.3.3 Cauchy Root Test ..... 497
14.3.4 Integral Test ..... 497
14.3.5 Raabe Test ..... 499
14.3.6 Cauchy Theorem ..... 499
14.3.7 Gauss Test and Legendre Series ..... 500
14.3.8 Alternating Series ..... 503
14.4 Algebra of Series ..... 503
14.4.1 Rearrangement of Series ..... 504
14.5 Useful Inequalities About Series ..... 505
14.6 Series of Functions ..... 506
14.6.1 Uniform Convergence ..... 506
14.6.2 Weierstrass M-Test ..... 507
14.6.3 Abel Test ..... 507
14.6.4 Properties of Uniformly Convergent Series ..... 508
14.7 Taylor Series ..... 508
14.7.1 Maclaurin Theorem ..... 509
14.7.2 Binomial Theorem ..... 509
14.7.3 Taylor Series with Multiple Variables ..... 510
14.8 Power Series ..... 511
14.8.1 Convergence of Power Series ..... 512
14.8.2 Continuity ..... 512
14.8.3 Differentiation and Integration of Power Series ..... 512
14.8.4 Uniqueness Theorem ..... 513
14.8.5 Inversion of Power Series ..... 513
14.9 Summation of Infinite Series ..... 514
14.9.1 Bernoulli Polynomials and their Properties ..... 514
14.9.2 Euler-Maclaurin Sum Formula ..... 516
14.9.3 Using Residue Theorem to Sum Infinite Series ..... 519
14.9.4 Evaluating Sums of Series by Differintegrals ..... 522
14.10 Asymptotic Series ..... 523
14.11 Method of Steepest Descent ..... 525
14.12 Saddle-Point Integrals ..... 528
14.13 Padé Approximants ..... 535
14.14 Divergent Series in Physics ..... 539
14.14.1 Casimir Effect and Renormalization ..... 540
14.14.2 Casimir Effect and MEMS ..... 542
14.15 Infinite Products ..... 542
14.15.1 Sine, Cosine, and the Gamma Functions ..... 544
Bibliography ..... 546
Problems ..... 546
15 Integral Transforms ..... 553
15.1 Some Commonly Encountered Integral Transforms ..... 553
15.2 Derivation of the Fourier Integral ..... 555
15.2.1 Fourier Series ..... 555
15.2.2 Dirac-Delta Function ..... 557
15.3 Fourier and Inverse Fourier Transforms ..... 557
15.3.1 Fourier-Sine and Fourier-Cosine Transforms ..... 558
15.4 Conventions and Properties of the Fourier Transforms ..... 560
15.4.1 Shifting ..... 561
15.4.2 Scaling ..... 561
15.4.3 Transform of an Integral ..... 561
15.4.4 Modulation ..... 561
15.4.5 Fourier Transform of a Derivative ..... 563
15.4.6 Convolution Theorem ..... 564
15.4.7 Existence of Fourier Transforms ..... 565
15.4.8 Fourier Transforms in Three Dimensions ..... 565
15.4.9 Parseval Theorems ..... 566
15.5 Discrete Fourier Transform ..... 572
15.6 Fast Fourier Transform ..... 576
15.7 Radon Transform ..... 578
15.8 Laplace Transforms ..... 581
15.9 Inverse Laplace Transforms ..... 581
15.9.1 Bromwich Integral ..... 582
15.9.2 Elementary Laplace Transforms ..... 583
15.9.3 Theorems About Laplace Transforms ..... 584
15.9.4 Method of Partial Fractions ..... 591
15.10 Laplace Transform of a Derivative ..... 593
15.10.1 Laplace Transforms in $n$ Dimensions ..... 600
15.11 Relation Between Laplace and Fourier Transforms ..... 601
15.12 Mellin Transforms ..... 601
Bibliography ..... 602
Problems ..... 602
16 Variational Analysis ..... 607
16.1 Presence of One Dependent and One Independent Variable ..... 608
16.1.1 Euler Equation ..... 608
16.1.2 Another Form of the Euler Equation ..... 610
16.1.3 Applications of the Euler Equation ..... 610
16.2 Presence of More than One Dependent Variable ..... 617
16.3 Presence of More than One Independent Variable ..... 617
16.4 Presence of Multiple Dependent and Independent Variables ..... 619
16.5 Presence of Higher-Order Derivatives ..... 619
16.6 Isoperimetric Problems and the Presence of Constraints ..... 622
16.7 Applications to Classical Mechanics ..... 626
16.7.1 Hamilton's Principle ..... 626
16.8 Eigenvalue Problems and Variational Analysis ..... 628
16.9 Rayleigh-Ritz Method ..... 632
16.10 Optimum Control Theory ..... 637
16.11 Basic Theory: Dynamics versus Controlled Dynamics ..... 638
16.11.1 Connection with Variational Analysis ..... 641
16.11.2 Controllability of a System ..... 642
Bibliography ..... 646
Problems ..... 647
17 Integral Equations ..... 653
17.1 Classification of Integral Equations ..... 654
17.2 Integral and Differential Equations ..... 654
17.2.1 Converting Differential Equations into Integral Equations ..... 656
17.2.2 Converting Integral Equations into Differential Equations ..... 658
17.3 Solution of Integral Equations ..... 659
17.3.1 Method of Successive Iterations: Neumann Series ..... 659
17.3.2 Error Calculation in Neumann Series ..... 660
17.3.3 Solution for the Case of Separable Kernels ..... 661
17.3.4 Solution by Integral Transforms ..... 663
17.3.4.1 Fourier Transform Method ..... 663
17.3.4.2 Laplace Transform Method ..... 664
17.4 Hilbert-Schmidt Theory ..... 665
17.4.1 Eigenvalues for Hermitian Operators ..... 665
17.4.2 Orthogonality of Eigenfunctions ..... 666
17.4.3 Completeness of the Eigenfunction Set ..... 666
17.5 Neumann Series and the Sturm-Liouville Problem ..... 668
17.6 Eigenvalue Problem for the Non-Hermitian Kernels ..... 672
Bibliography ..... 672
Problems ..... 672
18 Green's Functions ..... 675
18.1 Time-Independent Green's Functions in One Dimension ..... 675
18.1.1 Abel's Formula ..... 677
18.1.2 Constructing the Green's Function ..... 677
18.1.3 Differential Equation for the Green's Function ..... 679
18.1.4 Single-Point Boundary Conditions ..... 679
18.1.5 Green's Function for the Operator $d^{2} / d x^{2}$ ..... 680
18.1.6 Inhomogeneous Boundary Conditions ..... 682
18.1.7 Green's Functions and Eigenvalue Problems ..... 684
18.1.8 Green's Functions and the Dirac-Delta Function ..... 686
18.1.9 Helmholtz Equation with Discrete Spectrum ..... 687
18.1.10 Helmholtz Equation in the Continuum Limit ..... 688
18.1.11 Another Approach for the Green's function ..... 697
18.2 Time-Independent Green's Functions in Three Dimensions ..... 701
18.2.1 Helmholtz Equation in Three Dimensions ..... 701
18.2.2 Green's Functions in Three Dimensions ..... 702
18.2.3 Green's Function for the Laplace Operator ..... 704
18.2.4 Green's Functions for the Helmholtz Equation ..... 705
18.2.5 General Boundary Conditions and Electrostatics ..... 710
18.2.6 Helmholtz Equation in Spherical Coordinates ..... 712
18.2.7 Diffraction from a Circular Aperture ..... 716
18.3 Time-Independent Perturbation Theory ..... 721
18.3.1 Nondegenerate Perturbation Theory ..... 721
18.3.2 Slightly Anharmonic Oscillator in One Dimension ..... 726
18.3.3 Degenerate Perturbation Theory ..... 728
18.4 First-Order Time-Dependent Green's Functions ..... 729
18.4.1 Propagators ..... 732
18.4.2 Compounding Propagators ..... 732
18.4.3 Diffusion Equation with Discrete Spectrum ..... 733
18.4.4 Diffusion Equation in the Continuum Limit ..... 734
18.4.5 Presence of Sources or Interactions ..... 736
18.4.6 Schrödinger Equation for Free Particles ..... 737
18.4.7 Schrödinger Equation with Interactions ..... 738
18.5 Second-Order Time-Dependent Green's Functions ..... 738
18.5.1 Propagators for the Scalar Wave Equation ..... 741
18.5.2 Advanced and Retarded Green's Functions ..... 743
18.5.3 Scalar Wave Equation ..... 745
Bibliography ..... 747
Problems ..... 748
19 Green's Functions and Path Integrals ..... 755
19.1 Brownian Motion and the Diffusion Problem ..... 755
19.1.1 Wiener Path Integral and Brownian Motion ..... 757
19.1.2 Perturbative Solution of the Bloch Equation ..... 760
19.1.3 Derivation of the Feynman-Kac Formula ..... 763
19.1.4 Interpretation of $V(x)$ in the Bloch Equation ..... 765
19.2 Methods of Calculating Path Integrals ..... 767
19.2.1 Method of Time Slices ..... 769
19.2.2 Path Integrals with the ESKC Relation ..... 770
19.2.3 Path Integrals by the Method of Finite Elements ..... 771
19.2.4 Path Integrals by the "Semiclassical" Method ..... 772
19.3 Path Integral Formulation of Quantum Mechanics ..... 776
19.3.1 Schrödinger Equation For a Free Particle ..... 776
19.3.2 Schrödinger Equation with a Potential ..... 778
19.3.3 Feynman Phase Space Path Integral ..... 780
19.3.4 The Case of Quadratic Dependence on Momentum ..... 781
19.4 Path Integrals Over Lévy Paths and Anomalous Diffusion ..... 783
19.5 Fox's $H$-Functions ..... 788
19.5.1 Properties of the $H$-Functions ..... 789
19.5.2 Useful Relations of the $H$-Functions ..... 791
19.5.3 Examples of $H$-Functions ..... 792
19.5.4 Computable Form of the H -Function ..... 796
19.6 Applications of $H$-Functions ..... 797
19.6.1 Riemann-Liouville Definition of Differintegral ..... 798
19.6.2 Caputo Fractional Derivative ..... 798
19.6.3 Fractional Relaxation ..... 799
19.6.4 Time Fractional Diffusion via R-L Derivative ..... 800
19.6.5 Time Fractional Diffusion via Caputo Derivative ..... 801
19.6.6 Derivation of the Lévy Distribution ..... 803
19.6.7 Lévy Distributions in Nature ..... 806
19.6.8 Time and Space Fractional Schrödinger Equation ..... 806
19.6.8.1 Free Particle Solution ..... 808
19.7 Space Fractional Schrödinger Equation ..... 809
19.7.1 Feynman Path Integrals Over Lévy Paths ..... 810
19.8 Time Fractional Schrödinger Equation ..... 812
19.8.1 Separable Solutions ..... 812
19.8.2 Time Dependence ..... 813
19.8.3 Mittag-Leffler Function and the Caputo Derivative ..... 814
19.8.4 Euler Equation for the Mittag-Leffler Function ..... 814
Bibliography ..... 817
Problems ..... 818
Further Reading ..... 825
Index ..... 827

## Preface

Courses on mathematical methods of physics are among the essential courses for graduate programs in physics, which are also offered by most engineering departments. Considering that the audience in these courses comes from all subdisciplines of physics and engineering, the content and the level of mathematical formalism has to be chosen very carefully. Recently, the growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance and has increased the demand for these courses in which upper-level mathematical techniques are taught. It is for this reason that the mathematics departments, who once overlooked these courses, are now themselves designing and offering them.

Most of the available books for these courses are written with theoretical physicists in mind and thus are somewhat insensitive to the needs of this new multidisciplinary audience. Besides, these books should not only be tuned to the existing practical needs of this multidisciplinary audience but should also play a lead role in the development of new interdisciplinary science by introducing new techniques to students and researchers.

## About the Book

We give a coherent treatment of the selected topics with a style that makes advanced mathematical tools accessible to a multidisciplinary audience. The book is written in a modular way so that each chapter is actually a review of its subject and can be read independently. This makes the book very useful not only as a self-study book for students and beginning researchers but also as a reference for scientists. We emphasize physical motivation and the multidisciplinary nature of the methods discussed. Whenever possible, we prefer to introduce mathematical techniques through physical applications. Examples are often used to extend discussions of specific techniques rather than as mere exercises.

Topics are introduced in a logical sequence and discussed thoroughly. Each sequence climaxes with a part where the material of the previous chapters is
unified in terms of a general theory, as in Chapter 7 on the Sturm-Liouville theory, or as in Chapter 18 on Green's functions, where the gains of the previous chapters are utilized. Chapter 8 is on factorization method. It is a natural extension of our discussion on the Sturm-Liouville theory. It also presents a different and an advanced treatment of special functions. Similarly, Chapter 19 on path integrals is a natural extension of our chapter on Green's functions. Chapters 9 and 10 on coordinates, tensors, and continuous groups have been located after Chapter 8 on the Sturm-Liouville theory and the factorization method. Chapters 11 and 12 are on complex techniques, and they are self-contained. Chapter 13 on fractional calculus can either be integrated into the curriculum of the mathematical methods of physics courses or used independently to design a one-semester course.

Since our readers are expected to be at least at the graduate or the advanced undergraduate level, a background equivalent to the contents of our undergraduate text book Essentials of Mathematical Methods in Science and Engineering (Bayin, 2008) is assumed. In this regard, the basics of some of the methods discussed here can be found there. For communications about the book, we will use the website http://users.metu.edu.tr/bayin/

The entire book contains enough material for a three-semester course meeting three hours a week. The modular structure of the book gives enough flexibility to adopt the book for two- or even a one-semester course. Chapters $1-7,11,12$, and $14-18$ have been used for a two-semester compulsory graduate course meeting three hours a week at METU, where students from all subdisciplines of physics meet. In other universities, colleagues have used the book for their two or one semester courses.

During my lectures and first reading of the book, I recommend that readers view equations as statements and concentrate on the logical structure of the arguments. Later, when they go through the derivations, technical details will be understood, alternate approaches will appear, and some of the questions will be answered. Sufficient numbers of problems are given at the back of each chapter. They are carefully selected and should be considered an integral part of the learning process. Since some of the problems may require a good deal of time, we recommend the reader to skim through the entire problem section before attempting them. Depending on the level and the purpose of the reader, certain parts of the book can be skipped in first reading. Since the modular structure of the book makes it relatively easy for the readers to decide on which chapters or sections to skip, we will not impose a particular selection.

In a vast area like mathematical methods in science and engineering, there is always room for new approaches, new applications, and new topics. In fact, the number of books, old and new, written on this subject shows how dynamic this field is. Naturally, this book carries an imprint of my style and lectures. Because the main aim of this book is pedagogy, occasionally I have followed other books when their approaches made perfect sense to me. Main references are given at the back of each chapter. Additional references can be found at
the back. Readers of this book will hopefully be well prepared for advanced graduate studies and research in many areas of physics. In particular, as we use the same terminology and style, they should be ready for full-term graduate courses based on the books: The Fractional Calculus by Oldham and Spanier and Path Integrals in Physics, Volumes I and II by Chaichian and Demichev, or they could jump to the advanced sections of these books, which have become standard references in their fields. Our list of references, by all means, is not meant to be complete or up to date. There are many other excellent sources that nowadays the reader can locate by a simple internet search. Their exclusion here is simply ignorance on my part and not a reflection on their quality or importance.

## About the Second Edition

The challenge in writing a mathematical methods text book is that for almost every chapter an entire book can be devoted. Sometimes, even sections could be expanded into another book. In this regard, it is natural that books with such broad scope need at least another edition to settle down. The second edition of Mathematical Methods in Science and Engineering corresponds to a major overhaul of the entire book. In addition to 34 new examples, 34 new figures, and 48 new problems, over 60 new sections/subsections have been included on carefully selected topics that make the book more appealing and useful to its multidisciplinary audience.

Among the new topics introduced, we have the discrete and fast Fourier transforms; Cartesian tensors and the theory of elasticity; curvature; Caputo and Riesz fractional derivatives; method of steepest descent and saddle-point integrals; Padé approximants; Radon transforms; optimum control theory and controlled dynamics; diffraction; time independent perturbation theory; the anharmonic oscillator problem; anomalous diffusion; Fox's H-functions and many others. As Socrates has once said education is the kindling of a flame, not the filling of a Vessel, all topics are selected and written, not to fill a vessel but to inform, provoke further thought, and interest among the multidisciplinary audience we address.

Besides these, throughout the book, countless changes have been made to assure easy reading and smooth flow of the complex mathematical arguments. Derivations are given in sufficient detail so that the reader will not be distracted by searching for results in other parts of the book or by needing to write down equations. We have shown carefully selected keywords in boldface and framed key results so that information can be located easily as the reader scans through the pages. Also, using the new Wiley style and a more efficient way of displaying equations, we were able to keep the book at an optimum size.

## Acknowledgments

I would again like to start by paying tribute to all the scientists and mathematicians whose works contributed to the subjects discussed in this book. I would also like to compliment the authors of the existing books on mathematical methods of physics. I appreciate the time and dedication that went into writing them. Most of them existed even before I was a graduate student and I have benefitted from them greatly. As in the first edition, I am indebted to Prof. K. T. Hecht of the University of Michigan, whose excellent lectures and clear style had a great influence on me. I am grateful to Prof. P. G. L. Leach for sharing his wisdom with me and for meticulously reading Chapters 8,13 , and 19. I also thank Prof. N. K. Pak for many interesting and stimulating discussions, encouragement, and critical reading of the chapter on path integrals. Their comments kept illuminating my way during the preparation of this edition as well. I thank Prof. E. Akyıldız and Prof. B. Karasözen for encouragement and support at the Institute of Applied Mathematics at METU, which became home to me. I also thank my editors Jon Gurstelle and Kathleen Pagliaro, and the publication team at Wiley for sharing my excitement and their utmost care in bringing this book into existence. Finally, I thank my beloved wife Adalet and darling daughter Sumru. Without their endless love and support, this project, which spanned over a decade, would not have been possible.

METU/IAM
Selçuk Ş. Bayın
Ankara/TURKEY
July 2017

## 1

## Legendre Equation and Polynomials

Legendre polynomials, $P_{n}(x)$, are the solutions of the Legendre equation:

$$
\begin{equation*}
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{l}(x)}{d x}\right]+n(n+1) P_{n}(x)=0, \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

They are named after the French mathematician Adrien-Marie Legendre (1752-1833). They are frequently encountered in physics and engineering applications. In particular, they appear in the solutions of the Laplace equation in spherical polar coordinates.

### 1.1 Second-Order Differential Equations of Physics

Many of the second-order partial differential equations of physics and engineering can be written as

$$
\begin{equation*}
\vec{\nabla}^{2} \Psi(x, y, z)+k^{2}(x, y, z) \Psi(x, y, z)=F(x, y, z) \tag{1.2}
\end{equation*}
$$

where some of the frequently encountered cases are:

1. When $k(x, y, z)$ and $F(x, y, z)$ are zero, we have the Laplace equation:

$$
\begin{equation*}
\vec{\nabla}^{2} \Psi(x, y, z)=0 \tag{1.3}
\end{equation*}
$$

which is encountered in many different areas of science like electrostatics, magnetostatics, laminar (irrotational) flow, surface waves, heat transfer and gravitation.
2. When the right-hand side of the Laplace equation is different from zero, we have the Poisson equation:

$$
\begin{equation*}
\vec{\nabla}^{2} \Psi=F(x, y, z) \tag{1.4}
\end{equation*}
$$

where $F(x, y, z)$ represents sources or sinks in the system.
3. The Helmholtz wave equation is written as

$$
\begin{equation*}
\vec{\nabla}^{2} \Psi(x, y, z) \pm k_{0}^{2} \Psi(x, y, z)=0 \tag{1.5}
\end{equation*}
$$

where $k_{0}$ is a constant.
4. Another important example is the time-independent Schrödinger equation:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \Psi(x, y, z)+V(x, y, z) \Psi(x, y, z)=E \Psi(x, y, z) \tag{1.6}
\end{equation*}
$$

where $F(x, y, z)$ in Eq. (1.2) is zero and $k(x, y, z)$ is given as

$$
\begin{equation*}
k(x, y, z)=\sqrt{\left(2 m / \hbar^{2}\right)[E-V(x, y, z)]} . \tag{1.7}
\end{equation*}
$$

A common property of all these equations is that they are linear and second-order partial differential equations. Separation of variables, Green's functions and integral transforms are among the frequently used analytic techniques for obtaining solutions. When analytic methods fail, one can resort to numerical techniques like Runge-Kutta. Appearance of similar differential equations in different areas of science allows one to adopt techniques developed in one area into another. Of course, the variables and interpretation of the solutions will be very different. Also, one has to be aware of the fact that boundary conditions used in one area may not be appropriate for another. For example, in electrostatics, charged particles can only move perpendicular to the conducting surfaces, whereas in laminar (irrotational) flow, fluid elements follow the contours of the surfaces; thus even though the Laplace equation is to be solved in both cases, solutions obtained in electrostatics may not always have meaningful counterparts in laminar flow.

### 1.2 Legendre Equation

We now solve Eq. (1.2) in spherical polar coordinates using the method of separation of variables. We consider cases where $k(x, y, z)$ is only a function of the radial coordinate and also set $F(x, y, z)$ to zero. The time-independent Schrödinger equation (1.6) for the central force problems, $V(x, y, z)=V(r)$, is an important example for such cases. We first separate the radial, $r$, and the angular $(\theta, \phi)$ variables and write the solution as $\Psi(r, \theta, \phi)=R(r) Y(\theta, \phi)$. This basically assumes that the radial dependence of the solution is independent of
the angular coordinates and vice versa. Substituting this in Eq. (1.2), we get

$$
\begin{align*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r} R(r) Y(\theta, \phi)\right] & +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta} R(r) Y(\theta, \phi)\right] \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} R(r) Y(\theta, \phi)+k^{2}(r) R(r) Y(\theta, \phi)=0 . \tag{1.8}
\end{align*}
$$

After multiplying by $r^{2} / R(r) Y(\theta, \phi)$ and collecting the $\left.\theta, \phi\right)$ dependence on the right-hand side, we obtain

$$
\begin{align*}
\frac{1}{R(r)} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r} R(r)\right]+k^{2}(r) r^{2}= & -\frac{1}{\sin \theta} \frac{1}{Y(\theta, \phi)} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta} Y(\theta, \phi)\right] \\
& -\frac{1}{\sin ^{2} \theta Y(\theta, \phi)} \frac{\partial^{2} Y(\theta, \phi)}{\partial \phi^{2}} . \tag{1.9}
\end{align*}
$$

Since $r$ and $(\theta, \phi)$ are independent variables, this equation can be satisfied for all $r$ and $(\theta, \phi)$ only when both sides of the equation are equal to the same constant. We show this constant with $\lambda$, which is also called the separation constant. Now Eq. (1.9) reduces to the following two equations:

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d R(r)}{d r}\right)+r^{2} k^{2}(r) R(r)-\lambda R(r)=0 \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial Y(\theta, \phi)}{\partial \theta}\right]+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y(\theta, \phi)}{\partial \phi^{2}}+\lambda Y(\theta, \phi)=0 \tag{1.11}
\end{equation*}
$$

where Eq. (1.10) for $R(r)$ is an ordinary differential equation. We also separate the $\theta$ and the $\phi$ variables in $Y(\theta, \phi)$ as $Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)$ and call the new separation constant $m^{2}$, and write

$$
\begin{equation*}
\frac{\sin \theta}{\Theta(\theta)} \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta}{d \theta}\right]+\lambda \sin ^{2} \theta=-\frac{1}{\Phi(\phi)} \frac{d^{2} \Phi(\phi)}{d \phi^{2}}=m^{2} \tag{1.12}
\end{equation*}
$$

The differential equations to be solved for $\Theta(\theta)$ and $\Phi(\phi)$ are now found, respectively, as

$$
\begin{equation*}
\sin ^{2} \theta \frac{d^{2} \Theta(\theta)}{d \theta^{2}}+\cos \theta \sin \theta \frac{d \Theta(\theta)}{d \theta}+\left[\lambda \sin ^{2} \theta-m^{2}\right] \Theta(\theta)=0 \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \Phi(\phi)}{d \phi^{2}}+m^{2} \Phi(\phi)=0 \tag{1.14}
\end{equation*}
$$

In summary, using the method of separation of variables, we have reduced the partial differential equation [Eq. (1.8)] to three ordinary differential equations
[Eqs. (1.10), (1.13), and (1.14)]. During this process, two constant parameters, $\lambda$ and $m$, called the separation constants have entered into our equations, which so far have no restrictions on them.

### 1.2.1 Method of Separation of Variables

In the above discussion, the fact that we are able to separate the solution is closely related to the use of the spherical polar coordinates, which reflect the symmetry of the central force problem, where the potential, $V(r)$, depends only on the radial coordinate. In Cartesian coordinates, the potential would be written as $V(x, y, z)$ and the solution would not be separable as $\Psi(x, y, z) \neq X(x) Y(y) Z(z)$. Whether a given partial differential equation is separable or not is closely linked to the symmetries of the physical system. Even though a proper discussion of this point is beyond the scope of this book, we refer the reader to [9] and suffice by saying that if a partial differential equation is not separable in a given coordinate system, it is possible to check the existence of a coordinate system in which it would be separable. If such a coordinate system exists, then it is possible to construct it from the generators of the symmetries.

Among the three ordinary differential equations [Eqs. (1.10), (1.13), and (1.14)], Eq. (1.14) can be solved immediately with the general solution

$$
\begin{equation*}
\Phi(\phi)=A e^{i m \phi}+B e^{-i m \phi}, \tag{1.15}
\end{equation*}
$$

where the separation constant, $m$, is still unrestricted. Imposing the periodic boundary condition $\Phi(\phi+2 \pi)=\Phi(\phi)$, we restrict $m$ to integer values: $0, \pm 1, \pm 2, \ldots$. Note that in anticipation of applications to quantum mechanics, we have taken the two linearly independent solutions as $e^{ \pm i m \phi}$. For the other problems, $\sin m \phi$ and $\cos m \phi$ could be used.

For the differential equation to be solved for $\Theta(\theta)$ [Eq. (1.13)], we define a new independent variable, $x=\cos \theta, \Theta(\theta)=Z(x), \theta \in[0, \pi], x \in[-1,1]$, and write

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} Z(x)}{d x^{2}}-2 x \frac{d Z(x)}{d x}+\left[\lambda-\frac{m^{2}}{\left(1-x^{2}\right)}\right] Z(x)=0 . \tag{1.16}
\end{equation*}
$$

For $m=0$, this equation is called the Legendre equation. For $m \neq 0$, it is known as the associated Legendre equation.

### 1.2.2 Series Solution of the Legendre Equation

Starting with the $m=0$ case, we write the Legendre equation as

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} Z(x)}{d x^{2}}-2 x \frac{d Z(x)}{d x}+\lambda Z(x)=0, \quad x \in[-1,1] . \tag{1.17}
\end{equation*}
$$

This has two regular singular points at $x=-1$ and 1 . Since these points are at the end points of our interval, we use the Frobenius method [8] and try a
series solution about the regular point $x=0$ as $Z(x)=\sum_{k=0}^{\infty} a_{k} x^{k+\alpha}$, where $\alpha$ is a constant. Substituting this into Eq. (1.17), we get

$$
\begin{align*}
& \sum_{k=0}^{\infty} a_{k}(k+\alpha)(k+\alpha-1) x^{k+\alpha-2} \\
& \quad-\sum_{k=0}^{\infty} x^{k+\alpha}[(k+\alpha)(k+\alpha-1)+2(k+\alpha)-\lambda] a_{k}=0 \tag{1.18}
\end{align*}
$$

We now write the first two terms of the first series explicitly:

$$
\begin{equation*}
a_{0} \alpha(\alpha-1) x^{\alpha-2}+a_{1}(\alpha+1) \alpha x^{\alpha-1}+\sum_{k^{\prime}=2}^{\infty} a_{k^{\prime}}\left(k^{\prime}+\alpha\right)\left(k^{\prime}+\alpha-1\right) x^{k^{\prime}+\alpha-2} \tag{1.19}
\end{equation*}
$$

and make the variable change $k^{\prime}=k+2$, to write Eq. (1.18) as

$$
\begin{align*}
& a_{0} \alpha(\alpha-1) x^{\alpha-2}+a_{1}(\alpha+1) \alpha x^{\alpha-1} \\
& \quad+\sum_{k=0}^{\infty} x^{k+\alpha}\left\{a_{k+2}(k+2+\alpha)(k+1+\alpha)-a_{k}[(k+\alpha)(k+\alpha+1)-\lambda]\right\}=0 \tag{1.20}
\end{align*}
$$

From the uniqueness of power series, this equation cannot be satisfied for all $x$ unless the coefficients of all the powers of $x$ vanish simultaneously. This gives the following relations among the coefficients:

$$
\begin{equation*}
a_{0} \alpha(\alpha-1)=0, \quad a_{0} \neq 0 \tag{1.21}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}(\alpha+1) \alpha=0 \tag{1.22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a_{k+2}}{a_{k}}=\frac{[(k+\alpha)(k+\alpha+1)-\lambda]}{(k+1+\alpha)(k+\alpha+2)}, \quad k=0,1,2, \ldots \tag{1.23}
\end{equation*}
$$

Equation (1.21), which is obtained by setting the coefficient of the lowest power of $x$ to zero, is called the indicial equation. Assuming $a_{0} \neq 0$, the two roots of the indicial equation give the values $\alpha=0$ and $\alpha=1$, while the remaining Eqs. (1.22) and (1.23) give the recursion relation among the coefficients.

Starting with the root $\alpha=1$, we write

$$
\begin{equation*}
a_{k+2}=a_{k} \frac{(k+1)(k+2)-\lambda}{(k+2)(k+3)}, \quad k=0,1,2, \ldots, \tag{1.24}
\end{equation*}
$$

and obtain the remaining coefficients as

$$
\begin{equation*}
a_{2}=a_{0} \frac{(2-\lambda)}{6} \tag{1.25}
\end{equation*}
$$

$$
\begin{align*}
& a_{3}=a_{1} \frac{(6-\lambda)}{12}  \tag{1.26}\\
& a_{4}=a_{2} \frac{(12-\lambda)}{20}  \tag{1.27}\\
& \vdots \tag{1.28}
\end{align*}
$$

Since Eq. (1.22) with $\alpha=1$ implies $a_{1}=0$, all the odd coefficients vanish, $a_{3}=$ $a_{5}=\cdots=0$, thus yielding the following series solution for $\alpha=1$ :

$$
\begin{equation*}
Z_{1}(x)=a_{0}\left[x+\frac{(2-\lambda)}{6} x^{3}+\frac{(2-\lambda)(12-\lambda)}{120} x^{5}+\cdots\right] . \tag{1.29}
\end{equation*}
$$

For the other root, $\alpha=0$, Eqs. (1.21) and (1.22) imply $a_{0} \neq 0$ and $a_{1} \neq 0$, thus the recursion relation:

$$
\begin{equation*}
a_{k+2}=a_{k} \frac{k(k+1)-\lambda}{(k+1)(k+2)}, \quad k=0,1,2, \ldots, \tag{1.30}
\end{equation*}
$$

determines the nonzero coefficients as

$$
\begin{align*}
& a_{2}=a_{0}\left(-\frac{\lambda}{2}\right) \\
& a_{3}=a_{1}\left(\frac{2-\lambda}{6}\right), \\
& a_{4}=a_{2}\left(\frac{6-\lambda}{12}\right)  \tag{1.31}\\
& a_{5}=a_{3}\left(\frac{12-\lambda}{20}\right),
\end{align*}
$$

Now the series solution for $\alpha=0$ is obtained as

$$
\begin{align*}
Z_{2}(x)= & a_{0}\left[1-\frac{\lambda}{2} x^{2}-\frac{\lambda}{2} \frac{(6-\lambda)}{12} x^{4}+\cdots\right] \\
& +a_{1}\left[x+\frac{(2-\lambda)}{6} x^{3}+\frac{(2-\lambda)(12-\lambda)}{120} x^{5}+\cdots\right] \tag{1.32}
\end{align*}
$$

The Legendre equation is a second-order linear ordinary differential equation, which in general has two linearly independent solutions. Since $a_{0}$ and $a_{1}$ are arbitrary, we note that the solution for $\alpha=0$ also contains the solution for $\alpha=1$; hence the general solution can be written as

$$
\begin{align*}
Z(x)= & C_{0}\left[1-\left(\frac{\lambda}{2}\right) x^{2}-\left(\frac{\lambda}{2}\right)\left(\frac{6-\lambda}{12}\right) x^{4}+\cdots\right] \\
& +C_{1}\left[x+\frac{(2-\lambda)}{6} x^{3}+\frac{(2-\lambda)(12-\lambda)}{120} x^{5}+\cdots\right] \tag{1.33}
\end{align*}
$$

where $C_{0}$ and $C_{1}$ are two integration constants to be determined from the boundary conditions. These series are called the Legendre series.

### 1.2.3 Frobenius Method - Review

A second-order linear homogeneous ordinary differential equation with two linearly independent solutions may be put in the form

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y(x)=0 \tag{1.34}
\end{equation*}
$$

If $x_{0}$ is no worse than a regular singular point, that is, when

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) P(x) \rightarrow \text { finite } \tag{1.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} Q(x) \rightarrow \text { finite }, \tag{1.36}
\end{equation*}
$$

we can seek a series solution of the form

$$
\begin{equation*}
y(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k+\alpha}, \quad a_{0} \neq 0 . \tag{1.37}
\end{equation*}
$$

Substituting this series into the above differential equation and setting the coefficient of the lowest power of ( $x-x_{0}$ ) with $a_{0} \neq 0$ gives us a quadratic equation for $\alpha$ called the indicial equation. For almost all the physically interesting cases, the indicial equation has two real roots. This gives us the following possibilities for the two linearly independent solutions of the differential equation [8]:

1. If the two roots $\left(\alpha_{1}>\alpha_{2}\right)$ differ by a noninteger, then the two linearly independent solutions, $y_{1}(x)$ and $y_{2}(x)$, are given as

$$
\begin{equation*}
y_{1}(x)=\left|x-x_{0}\right|^{\alpha_{1}} \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}, \quad a_{0} \neq 0 \tag{1.38}
\end{equation*}
$$

$$
\begin{equation*}
y_{2}(x)=\left|x-x_{0}\right|^{\alpha_{2}} \sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}, \quad b_{0} \neq 0 \tag{1.39}
\end{equation*}
$$

2. If $\left(\alpha_{1}-\alpha_{2}\right)=N$, where $\alpha_{1}>\alpha_{2}$ and $N$ is a positive integer, then the two linearly independent solutions, $y_{1}(x)$ and $y_{2}(x)$, are given as

$$
\begin{equation*}
y_{1}(x)=\left|x-x_{0}\right|^{\alpha_{1}} \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}, \quad a_{0} \neq 0, \tag{1.40}
\end{equation*}
$$

$$
y_{2}(x)=\left|x-x_{0}\right|^{\alpha_{2}} \sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}+C y_{1}(x) \ln \left|x-x_{0}\right|, \quad b_{0} \neq 0
$$

The second solution contains a logarithmic singularity, where $C$ is a constant that may or may not be zero. Sometimes, $\alpha_{2}$ will contain both solutions; hence it is advisable to start with the smaller root with the hopes that it might provide the general solution.
3. If the indicial equation has a double root, $\alpha_{1}=\alpha_{2}$, then the Frobenius method yields only one series solution. In this case, the two linearly independent solutions can be taken as

$$
\begin{equation*}
y\left(x, \alpha_{1}\right) \quad \text { and }\left.\quad \frac{\partial y(x, \alpha)}{\partial \alpha}\right|_{\alpha=\alpha_{1}}, \tag{1.42}
\end{equation*}
$$

where the second solution diverges logarithmically as $x \rightarrow x_{0}$. In the presence of a double root, the Frobenius method is usually modified by taking the two linearly independent solutions, $y_{1}(x)$ and $y_{2}(x)$, as

$$
\begin{equation*}
y_{1}(x)=\left|x-x_{0}\right|^{\alpha_{1}} \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}, \quad a_{0} \neq 0 \tag{1.43}
\end{equation*}
$$

$$
\begin{equation*}
y_{2}(x)=\left|x-x_{0}\right|^{\alpha_{1}+1} \sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}+y_{1}(x) \ln \left|x-x_{0}\right| \tag{1.44}
\end{equation*}
$$

In all these cases, the general solution is written as $y(x)=A_{1} y_{1}(x)+A_{2} y_{2}(x)$.

### 1.3 Legendre Polynomials

Legendre series are convergent in the interval $(-1,1)$. This can be checked easily by the ratio test. To see how they behave at the end points, $x= \pm 1$, we take the $k \rightarrow \infty$ limit of the recursion relation in Eq. (1.30) to obtain $\frac{a_{k+2}}{a_{k}} \rightarrow 1$. For sufficiently large $k$ values, this means that both series behave as

$$
\begin{equation*}
Z(x)=\cdots+a_{k} x^{k}\left(1+x^{2}+x^{4}+\cdots\right) . \tag{1.45}
\end{equation*}
$$

The series inside the parentheses is nothing but the geometric series:

$$
\begin{equation*}
\left(1+x^{2}+x^{4}+\cdots\right)=\frac{1}{1-x^{2}} . \tag{1.46}
\end{equation*}
$$

Hence both of the Legendre series diverge at the end points as $1 /\left(1-x^{2}\right)$. However, the end points correspond to the north and the south poles of a sphere. Because the problem is spherically symmetric, there is nothing special about these points. Any two diametrically opposite points can be chosen to serve as the end points. Hence we conclude that the physical solution should be finite everywhere on a sphere. To avoid the divergence at the end points we terminate the Legendre series after a finite number of terms. This is accomplished by restricting the separation constant $\lambda$ to integer values:

$$
\begin{equation*}
\lambda=l(l+1), \quad l=0,1,2, \ldots . \tag{1.47}
\end{equation*}
$$

With this restriction on $\lambda$, one of the Legendre series in Eq. (1.33) terminates after a finite number of terms while the other one still diverges at the end points. Choosing the coefficient of the divergent series in the general solution as zero, we obtain the polynomial solutions of the Legendre equation as

$$
\begin{equation*}
Z(x)=P_{l}(x), \quad l=0,1,2, \ldots . \tag{1.48}
\end{equation*}
$$

These polynomials are called the Legendre polynomials, which are finite everywhere on a sphere. They are defined so that their value at $x=1$ is one. In general, they can be expressed as

$$
\begin{equation*}
P_{l}(x)=\sum_{n=0}^{[l / 2]} \frac{(-1)^{n}(2 l-2 n)!}{2^{l}(l-2 n)!(l-n)!n!} x^{l-2 n} \tag{1.49}
\end{equation*}
$$

where $[l / 2]$ means the greatest integer in the interval $\left(\frac{l}{2}, \frac{l}{2}-1\right]$. Restriction of $\lambda$ to certain integer values for finite solutions everywhere is a physical (boundary) condition and has very significant physical consequences. For example, in quantum mechanics, it means that magnitude of the angular momentum is quantized. In wave mechanics, like the standing waves on a string fixed at both ends, it means that waves on a sphere can only have certain wavelengths.

$$
\begin{gather*}
\text { Legendre Polynomials } \\
P_{0}(x)=1, \\
P_{1}(x)=x, \\
P_{2}(x)=(1 / 2)\left[3 x^{2}-1\right],  \tag{1.50}\\
P_{3}(x)=(1 / 2)\left[5 x^{3}-3 x\right], \\
P_{4}(x)=(1 / 8)\left[35 x^{4}-30 x^{2}+3\right], \\
P_{5}(x)=(1 / 8)\left[63 x^{5}-70 x^{3}+15 x\right] .
\end{gather*}
$$

### 1.3.1 Rodriguez Formula

Another definition of the Legendre polynomials is given by the Rodriguez formula:

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \tag{1.51}
\end{equation*}
$$

To show that this is equivalent to the previous definition in Eq. (1.49), we use the binomial formula [4]:

$$
\begin{equation*}
(x+y)^{m}=\sum_{n=0}^{\infty} \frac{m!}{n!(m-n)!} x^{n} y^{m-n}, \tag{1.52}
\end{equation*}
$$

to write Eq. (1.51) as

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}} \sum_{n=0}^{l} \frac{l!(-1)^{n}}{n!(l-n)!} x^{2 l-2 n} \tag{1.53}
\end{equation*}
$$

We now use the formula

$$
\begin{equation*}
\frac{d^{l} x^{m}}{d x^{l}}=\frac{m!}{(m-l)!} x^{m-l} \tag{1.54}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
P_{l}(x)=\sum_{n=0}^{\left[\frac{l}{2}\right]} \frac{(-1)^{n}}{2^{l}} \frac{(2 l-2 n)!}{n!(l-n)!(l-2 n)!} x^{l-2 n}, \tag{1.55}
\end{equation*}
$$

thus proving the equivalence of Eqs. (1.51) and (1.49).

### 1.3.2 Generating Function

Another way to define the Legendre polynomials is using a generating function, $T(x, t)$, which is given as

$$
\begin{equation*}
T(x, t)=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{l=0}^{\infty} P_{l}(x) t^{l}, \quad|t|<1 \tag{1.56}
\end{equation*}
$$

To show that $T(x, t)$ generates the Legendre polynomials, we write $T(x, t)$ as

$$
\begin{equation*}
T(x, t)=\frac{1}{[1-t(2 x-t)]^{\frac{1}{2}}} \tag{1.57}
\end{equation*}
$$

and use the binomial expansion

$$
\begin{equation*}
(1-x)^{-\frac{1}{2}}=\sum_{l=0}^{\infty} \frac{(-1 / 2)!(-1)^{l} x^{l}}{l!\left(-\frac{1}{2}-l\right)!} \tag{1.58}
\end{equation*}
$$

Deriving the useful relation:

$$
\begin{align*}
\frac{\left(-\frac{1}{2}\right)!}{\left(-\frac{1}{2}-l\right)!} & =\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots}{\left(-\frac{1}{2}-l\right)\left(-\frac{1}{2}-l-1\right) \cdots}  \tag{1.59}\\
& =\frac{(-1)^{l} \quad\left[\left(\frac{1}{2}\right)\left(\frac{1}{2}+1\right) \cdots\left(-\frac{1}{2}-l\right)\left(-\frac{1}{2}-l-1\right) \cdots\right]}{\left[\left(-\frac{1}{2}-l\right)\left(-\frac{1}{2}-l-1\right) \cdots\right]}  \tag{1.60}\\
& =(-1)^{l}\left[\left(\frac{1}{2}\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{2}+2\right) \cdots\left(\frac{1}{2}+l-1\right)\right]  \tag{1.61}\\
& =(-1)^{l} \frac{1 \cdot 3 \cdot 5 \cdots(2 l-1)}{2^{l}}=(-1)^{l} \frac{(2 l)!}{2^{2 l} l!} \tag{1.62}
\end{align*}
$$

we write Eq. (1.58) as

$$
\begin{equation*}
(1-x)^{-\frac{1}{2}}=\sum_{l=0}^{\infty} \frac{(2 l)!(-1)^{2 l}}{2^{2 l}(l!)^{2}} x^{l} \tag{1.63}
\end{equation*}
$$

which after substituting in Eq. (1.57) gives

$$
\begin{equation*}
\frac{1}{(1-t(2 x-t))^{\frac{1}{2}}}=\sum_{l=0}^{\infty} \frac{(2 l)!(-1)^{2 l} t^{l}}{2^{2 l}(l!)^{2}}(2 x-t)^{l} . \tag{1.64}
\end{equation*}
$$

Employing the binomial formula once again to expand the factor $(2 x-t)^{l}$, we rewrite the right-hand side as

$$
\begin{gather*}
\sum_{l=0}^{\infty} \frac{(2 l)!(-1)^{2 l} t^{l}}{2^{2 l}(l!)^{2}} \sum_{k=0}^{l} \frac{l!}{k!(l-k)!}(2 x)^{l-k}(-t)^{k} \\
\quad=\sum_{l=0}^{\infty} \sum_{k=0}^{l} \frac{(2 l)!(-1)^{k}(2 x)^{l-k} t^{k+l}}{2^{2 l} l!k!(l-k)!} \tag{1.65}
\end{gather*}
$$

We now rearrange the double sum by the substitutions $k \rightarrow n$ and $l \rightarrow l-n$ to write the generating function as

$$
\begin{equation*}
T(x, t)=\sum_{l=0}^{\infty}\left[\sum_{n=0}^{[l / 2]} \frac{(-1)^{n}(2 l-2 n)!}{2^{l}(l-n)!n!(l-2 n)!} x^{l-2 n}\right] t^{l} . \tag{1.66}
\end{equation*}
$$

Comparing this with the right-hand side of Eq. (1.56), which is $\sum_{l=0}^{\infty} P_{l}(x) t^{l}$, we obtain the desired result:

$$
\begin{equation*}
P_{l}(x)=\sum_{n=0}^{[l / 2]} \frac{(-1)^{n}(2 l-2 n)!}{2^{l}(l-n)!n!(l-2 n)!} x^{l-2 n} \tag{1.67}
\end{equation*}
$$

### 1.3.3 Recursion Relations

Recursion relations are very helpful in operations with Legendre polynomials. Let us differentiate the generating function [Eq. (1.56)] with respect to $t$ :

$$
\begin{align*}
\frac{\partial}{\partial t} T(x, t) & =-\frac{-2(x-t)}{2\left(1-2 x t+t^{2}\right)^{\frac{3}{2}}}  \tag{1.68}\\
& =\sum_{l=1}^{\infty} P_{l}(x) l t^{l-1} \tag{1.69}
\end{align*}
$$

We rewrite this as

$$
\begin{equation*}
(x-t) \sum_{l=0}^{\infty} P_{l}(x) t^{l}=\sum_{l=1}^{\infty} P_{l}(x) l t^{l-1}\left(1-2 x t+t^{2}\right) \tag{1.70}
\end{equation*}
$$

and expand in powers of $t$ to get

$$
\begin{equation*}
\sum_{l=0}^{\infty} t^{l}(2 l+1) x P_{l}(x)=\sum_{l^{\prime}=1}^{\infty} P_{l^{\prime}} l^{\prime} t^{l^{\prime}-1}+\sum_{l^{\prime \prime}=0}^{\infty} t^{l^{\prime \prime}+1}\left(l^{\prime \prime}+1\right) P_{l^{\prime \prime}}(x) . \tag{1.71}
\end{equation*}
$$

We now make the substitutions $l^{\prime}=l+1$ and $l^{\prime \prime}=l-1$ and collect equal powers of $t^{l}$ to write

$$
\begin{equation*}
\sum_{l=0}^{\infty}\left[(2 l+1) x P_{l}(x)-P_{l+1}(x)(l+1)-l P_{l-1}(x)\right] t^{l}=0 \tag{1.72}
\end{equation*}
$$

This equation can only be satisfied for all values of $t$ when the expression inside the square brackets is zero for all $l$, thus giving the recursion relation

$$
\begin{equation*}
(2 l+1) x P_{l}(x)=(l+1) P_{l+1}(x)+l P_{l-1}(x) \tag{1.73}
\end{equation*}
$$

Another useful recursion relation is obtained by differentiating $T(x, t)$ with respect to $x$ and following similar steps as

$$
\begin{equation*}
P_{l}(x)=P_{l+1}^{\prime}(x)+P_{l-1}^{\prime}(x)-2 x P_{l}^{\prime}(x) \tag{1.74}
\end{equation*}
$$

It is also possible to find other recursion relations.

### 1.3.4 Special Values

In various applications, one needs special values of the Legendre polynomials at the points $x= \pm 1$ and $x=0$. If we write $x= \pm 1$ in the generating function [Eq. (1.56)], we find

$$
\begin{equation*}
1 /(1 \mp t)=\sum_{l=0}^{\infty} P_{l}(1) t^{l}( \pm 1)^{l} \tag{1.75}
\end{equation*}
$$

Expanding the left-hand side using the binomial formula and comparing equal powers of $t$, we obtain

$$
\begin{equation*}
P_{l}(1)=1, \quad P_{l}(-1)=(-1)^{l} \tag{1.76}
\end{equation*}
$$

We now set $x=0$ in the generating function:

$$
\begin{equation*}
\frac{1}{\sqrt{1+t^{2}}}=\sum_{l=0}^{\infty} P_{l}(0) t^{l}=\sum_{t=0}^{\infty}(-1)^{l} \frac{(2 l)!}{2^{2 l}(l!)^{2}} t^{2 l} \tag{1.77}
\end{equation*}
$$

to obtain the special values:

$$
\begin{equation*}
P_{2 s+1}(0)=0, \quad P_{2 l}(0)=\frac{(-1)^{l}(2 l)!}{2^{2 l}(l!)^{2}} \tag{1.78}
\end{equation*}
$$

### 1.3.5 Special Integrals

1. In applications, we frequently encounter the integral $\int_{0}^{1} d x P_{l}(x)$. Using the recursion relation in Eq. (1.74), we can rewrite this integral as

$$
\begin{equation*}
\int_{0}^{1} d x P_{l}(x)=\int_{0}^{1} d x\left[P_{l+1}^{\prime}(x)+P_{l-1}^{\prime}(x)-2 x P_{l}^{\prime}(x)\right] \tag{1.79}
\end{equation*}
$$

The right-hand side can be integrated to write

$$
\begin{align*}
\int_{0}^{1} d x P_{l}(x)= & P_{l+1}(1)+P_{l-1}(1)-P_{l+1}(0)-P_{l-1}(0)-\left.2 x P_{l}(x)\right|_{0} ^{1} \\
& +2 \int_{0}^{1} d x P_{l}(x) \tag{1.80}
\end{align*}
$$

This is simplified using the special values and leads to $\int_{0}^{1} d x P_{l}(x)=$ $P_{l+1}(0)+P_{l-1}(0)$, thus yielding

$$
\int_{0}^{1} d x P_{l}(x)= \begin{cases}0, & l \geq 2 \text { and even }  \tag{1.81}\\ 1, & l=0 \\ \frac{1}{2(s+1)} P_{2 s}(0), & l=2 s+1, s=0,1, \ldots\end{cases}
$$

2. Another integral useful in dipole calculations is $\int_{-1}^{1} d x x P_{l}(x) P_{k}(x)$. Using the recursion relation in Eq. (1.73), we can rewrite this as

$$
\begin{equation*}
\int_{-1}^{1} d x x P_{l}(x) P_{k}(x)=\int_{-1}^{1} d x \frac{P_{l}(x)}{(2 k+1)}\left[(k+1) P_{k+1}(x)+k P_{k-1}(x)\right] \tag{1.82}
\end{equation*}
$$

which leads to

$$
\int_{-1}^{1} d x x P_{l}(x) P_{k}(x)=\left\{\begin{array}{cl}
0, & k \neq l \pm 1  \tag{1.83}\\
\frac{l}{(2 l-1)} \frac{2}{(2 l+1)}, & k=l-1 \\
\frac{l+1}{(2 l+3)} \frac{2}{(2 l+1)}, & k=l+1
\end{array}\right.
$$

One can also show the useful integral

$$
\begin{equation*}
\int_{-1}^{1} d x x^{l} P_{n}(x)=\frac{2^{n+1} l!\left(\frac{l+n}{2}\right)!}{(l+n+1)!\left(\frac{l-n}{2}\right)!}, \quad l-n=\mid \text { even integer } \mid . \tag{1.84}
\end{equation*}
$$

### 1.3.6 Orthogonality and Completeness

We can also write the Legendre equation [Eq. (1.17)] as

$$
\begin{equation*}
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{l}(x)}{d x}\right]+l(l+1) P_{l}(x)=0 \tag{1.85}
\end{equation*}
$$

Multiplying this with $P_{l^{\prime}}(x)$ and integrating over $x$ in the interval $[-1,1]$, we get

$$
\begin{equation*}
\int_{-1}^{1} P_{l^{\prime}}(x)\left\{\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{l}(x)}{d x}\right]+l(l+1) P_{l}(x)\right\} d x=0 \tag{1.86}
\end{equation*}
$$

Using integration by parts, this can be written as

$$
\begin{equation*}
\int_{-1}^{1}\left[\left(x^{2}-1\right) \frac{d P_{l}(x)}{d x} \frac{d P_{l^{\prime}}(x)}{d x}+l(l+1) P_{l^{\prime}}(x) P_{l}(x)\right] d x=0 \tag{1.87}
\end{equation*}
$$

Interchanging $l$ and $l^{\prime}$ and subtracting from Eq. (1.87), we get

$$
\begin{equation*}
\left[l(l+1)-l^{\prime}\left(l^{\prime}+1\right)\right] \int_{-1}^{1} P_{l^{\prime}}(x) P_{l}(x) d x=0 \tag{1.88}
\end{equation*}
$$

For $l \neq l^{\prime}$, this gives $\int_{-1}^{1} P_{l^{\prime}}(x) P_{l}(x) d x=0$ and for $l=l^{\prime}$, it becomes

$$
\begin{equation*}
\int_{-1}^{1}\left[P_{l}(x)\right]^{2} d x=N_{l} \tag{1.89}
\end{equation*}
$$

where $N_{l}$ is a finite normalization constant.

We can evaluate $N_{l}$ using the Rodriguez formula [Eq. (1.51)]. We first write

$$
\begin{equation*}
N_{l}=\int_{-1}^{1} P_{l}^{2}(x) d x=\frac{1}{2^{2 l}(l!)^{2}} \int_{-1}^{1} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} d x \tag{1.90}
\end{equation*}
$$

and after $l$-fold integration by parts, we obtain

$$
\begin{equation*}
N_{l}=\frac{(-1)^{l}}{2^{2 l}(l!)^{2}} \int_{-1}^{1}\left(x^{2}-1\right)^{l} \frac{d^{2 l}}{d x^{2 l}}\left(x^{2}-1\right)^{l} d x \tag{1.91}
\end{equation*}
$$

Using the Leibniz formula:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}} A(x) B(x)=\sum_{s=0}^{m} \frac{m!}{s!(m-s)!} \frac{d^{s} A}{d x^{s}} \frac{d^{m-s} B}{d x^{m-s}}, \tag{1.92}
\end{equation*}
$$

we evaluate the $2 l$-fold derivative of $\left(x^{2}-1\right)^{l}$ as $(2 l)$ !, thus Eq. (1.91) becomes

$$
\begin{equation*}
N_{l}=\frac{(2 l)!}{2^{2 l}(l!)^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{l} d x \tag{1.93}
\end{equation*}
$$

We now write $\left(1-x^{2}\right)^{l}$ as

$$
\begin{equation*}
\left(1-x^{2}\right)^{l}=\left(1-x^{2}\right)\left(1-x^{2}\right)^{l-1}=\left(1-x^{2}\right)^{l-1}+\frac{x}{2 l} \frac{d}{d x}\left(1-x^{2}\right)^{l} \tag{1.94}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
N_{l}=\frac{(2 l-1)}{2 l} N_{l-1}+\frac{(2 l-1)!}{2^{2 l}(l!)^{2}} \int_{-1}^{1} x d\left[\left(1-x^{2}\right)^{l}\right] \tag{1.95}
\end{equation*}
$$

which gives

$$
\begin{equation*}
N_{l}=\frac{(2 l-1)}{2 l} N_{l-1}-\frac{1}{2 l} N_{l}, \tag{1.96}
\end{equation*}
$$

or

$$
\begin{equation*}
(2 l+1) N_{l}=(2 l-1) N_{l-1} . \tag{1.97}
\end{equation*}
$$

This means that the value of $(2 l+1) N_{l}$ is a constant independent of $l$. Evaluating the integral in Eq. (1.93) for $l=0$ gives 2, which determines the normalization constant as

$$
\begin{equation*}
N_{l}=\frac{2}{(2 l+1)} \tag{1.98}
\end{equation*}
$$

Using $N_{l}$, we can now define the set of polynomials

$$
\begin{equation*}
\left\{U_{l}(x), l=0,1, \ldots\right\}, U_{l}(x)=\sqrt{\frac{2 l+1}{2}} P_{l}(x) \tag{1.99}
\end{equation*}
$$

which satisfies the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{1} U_{l^{\prime}}(x) U_{l^{\prime}}(x) d x=\delta_{l^{\prime}} \tag{1.100}
\end{equation*}
$$

At this point, we suffice by saying that this set is also complete, that is, in terms of this set any sufficiently well-behaved and at least piecewise continuous function, $\Psi(x)$, can be expressed as an infinite series in the interval $[-1,1]$ as

$$
\begin{equation*}
\Psi(x)=\sum_{l=0}^{\infty} C_{l} U_{l}(x) . \tag{1.101}
\end{equation*}
$$

We will be more specific about what is meant by sufficiently well-behaved when we discuss the Sturm-Liouville theory in Chapter 7. To evaluate the expansion constants $C_{l}$, we multiply both sides by $U_{l^{\prime}}(x)$ and integrate over [ $-1,1$ ] :

$$
\begin{equation*}
\int_{-1}^{1} U_{l^{\prime}}(x) \Psi(x) d x=\sum_{l=0}^{\infty} C_{l} \int U_{l^{\prime}}(x) U_{l}(x) d x \tag{1.102}
\end{equation*}
$$

Using the orthogonality relation [Eq. (1.100)], we can free the constants $C_{l}$ under the summation sign and obtain

$$
\begin{equation*}
C_{l}=\int_{-1}^{1} U_{l}(x) \Psi(x) d x . \tag{1.103}
\end{equation*}
$$

Orthogonality and the completeness of the Legendre polynomials are very useful in applications.

## Example 1.1 Legendre polynomials and electrostatics problems

To find the electric potential in vacuum, we solve the Laplace equation:

$$
\begin{equation*}
\vec{\nabla}^{2} \Psi(\vec{r})=0, \tag{1.104}
\end{equation*}
$$

with the appropriate boundary conditions. For problems with azimuthal symmetry, it is advantageous to use the spherical polar coordinates, where the potential does not have any $\phi$ dependence. Therefore, in the $\phi$-dependent part of the solution [Eq. (1.15)], we set $m=0$. The differential equation to be solved for the $r$-dependent part is now found by setting $k=0$ in Eq. (1.10) as

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}-\frac{l(l+1)}{r^{2}} R(r)=0 . \tag{1.105}
\end{equation*}
$$

The linearly independent solutions of this equation are easily found as $r^{l}$ and $\frac{1}{r^{1+1}}$, thus giving the general solution of Eq. (1.104) as

$$
\begin{equation*}
\Psi(r, \theta)=\sum_{l=0}^{\infty}\left[A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right] P_{l}(x), \quad x=\cos \theta \tag{1.106}
\end{equation*}
$$

