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PREFACE

This preface is addressed to instructors as well as students at the junior–senior
level for the following reasons. I have been teaching courses on digital signal
processing, including its applications and digital filter design, at the undergraduate
and the graduate levels for more than 25 years. One common complaint I have
heard from undergraduate students in recent years is that there are not enough
numerical problems worked out in the chapters of the book prescribed for the
course. But some of the very well known textbooks on digital signal processing
have more problems than do a few of the books published in earlier years.
However, these books are written for students in the senior and graduate levels,
and hence the junior-level students find that there is too much of mathematical
theory in these books. They also have concerns about the advanced level of
problems found at the end of chapters. I have not found a textbook on digital
signal processing that meets these complaints and concerns from junior-level
students. So here is a book that I have written to meet the junior students’ needs
and written with a student-oriented approach, based on many years of teaching
courses at the junior level.

Network Analysis is an undergraduate textbook authored by my Ph.D. thesis
advisor Professor M. E. Van Valkenburg (published by Prentice-Hall in 1964),
which became a world-famous classic, not because it contained an abundance of
all topics in network analysis discussed with the rigor and beauty of mathematical
theory, but because it helped the students understand the basic ideas in their sim-
plest form when they took the first course on network analysis. I have been highly
influenced by that book, while writing this textbook for the first course on digital
signal processing that the students take. But I also have had to remember that the
generation of undergraduate students is different; the curriculum and the topic of
digital signal processing is also different. This textbook does not contain many of
the topics that are found in the senior–graduate-level textbooks mentioned above.
One of its main features is that it uses a very large number of numerical problems
as well as problems using functions from MATLAB® (MATLAB is a registered
trademark of The MathWorks, Inc.) and Signal Processing Toolbox, worked out
in every chapter, in order to highlight the fundamental concepts. These prob-
lems are solved as examples after the theory is discussed or are worked out first
and the theory is then presented. Either way, the thrust of the approach is that
the students should understand the basic ideas, using the worked, out problems
as an instrument to achieve that goal. In some cases, the presentation is more
informal than in other cases. The students will find statements beginning with
“Note that. . .,” “Remember. . .,” or “It is pointed out,” and so on; they are meant

xi



xii PREFACE

to emphasize the important concepts and the results stated in those sentences.
Many of the important results are mentioned more than once or summarized in
order to emphasize their significance.

The other attractive feature of this book is that all the problems given at the
end of the chapters are problems that can be solved by using only the material
discussed in the chapters, so that students would feel confident that they have an
understanding of the material covered in the course when they succeed in solving
the problems. Because of such considerations mentioned above, the author claims
that the book is written with a student-oriented approach. Yet, the students should
know that the ability to understand the solution to the problems is important but
understanding the theory behind them is far more important.

The following paragraphs are addressed to the instructors teaching a junior-
level course on digital signal processing. The first seven chapters cover well-
defined topics: (1) an introduction, (2) time-domain analysis and z-transform,
(3) frequency-domain analysis, (4) infinite impulse response filters, (5) finite
impulse response filters, (6) realization of structures, and (7) quantization filter
analysis. Chapter 8 discusses hardware design, and Chapter 9 covers MATLAB.
The book treats the mainstream topics in digital signal processing with a well-
defined focus on the fundamental concepts.

Most of the senior–graduate-level textbooks treat the theory of finite wordlength
in great detail, but the students get no help in analyzing the effect of finite word-
length on the frequency response of a filter or designing a filter that meets a set
of frequency response specifications with a given wordlength and quantization
format. In Chapter 7, we discuss the use of a MATLAB tool known as the “FDA
Tool” to thoroughly investigate the effect of finite wordlength and different formats
of quantization. This is another attractive feature of the textbook, and the material
included in this chapter is not found in any other textbook published so far.

When the students have taken a course on digital signal processing, and join an
industry that designs digital signal processing (DSP) systems using commercially
available DSP chips, they have very little guidance on what they need to learn.
It is with that concern that additional material in Chapter 8 has been added,
leading them to the material that they have to learn in order to succeed in their
professional development. It is very brief but important material presented to
guide them in the right direction. The textbooks that are written on DSP hardly
provide any guidance on this matter, although there are quite a few books on
the hardware implementation of digital systems using commercially available
DSP chips. Only a few schools offer laboratory-oriented courses on the design
and testing of digital systems using such chips. Even the minimal amount of
information in Chapter 8 is not found in any other textbook that contains “digital
signal processing” in its title. However, Chapter 8 is not an exhaustive treatment
of hardware implementation but only as an introduction to what the students have
to learn when they begin a career in the industry.

Chapter 1 is devoted to discrete-time signals. It describes some applications
of digital signal processing and defines and, suggests several ways of describing
discrete-time signals. Examples of a few discrete-time signals and some basic
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operations applied with them is followed by their properties. In particular,
the properties of complex exponential and sinusoidal discrete-time signals are
described. A brief history of analog and digital filter design is given. Then the
advantages of digital signal processing over continuous-time (analog) signal pro-
cessing is discussed in this chapter.

Chapter 2 is devoted to discrete-time systems. Several ways of modeling them
and four methods for obtaining the response of discrete-time systems when
excited by discrete-time signals are discussed in detail. The four methods are
(1) recursive algorithm, (2) convolution sum, (3) classical method, and (4) z-
transform method to find the total response in the time domain. The use of
z-transform theory to find the zero state response, zero input response, natural
and forced responses, and transient and steady-state responses is discussed in
great detail and illustrated with many numerical examples as well as the appli-
cation of MATLAB functions. Properties of discrete-time systems, unit pulse
response and transfer functions, stability theory, and the Jury–Marden test are
treated in this chapter. The amount of material on the time-domain analysis of
discrete-time systems is a lot more than that included in many other textbooks.

Chapter 3 concentrates on frequency-domain analysis. Derivation of sam-
pling theorem is followed by the derivation of the discrete-time Fourier trans-
form (DTFT) along with its importance in filter design. Several properties of
DTFT and examples of deriving the DTFT of typical discrete-time signals are
included with many numerical examples worked out to explain them. A large
number of problems solved by MATLAB functions are also added. This chapter
devoted to frequency-domain analysis is very different from those found in other
textbooks in many respects.

The design of infinite impulse response (IIR) filters is the main topic of
Chapter 4. The theory of approximation of analog filter functions, design of
analog filters that approximate specified frequency response, the use of impulse-
invariant transformation, and bilinear transformation are discussed in this chapter.
Plenty of numerical examples are worked out, and the use of MATLAB functions
to design many more filters are included, to provide a hands-on experience to
the students.

Chapter 5 is concerned with the theory and design of finite impulse response
(FIR) filters. Properties of FIR filters with linear phase, and design of such filters
by the Fourier series method modified by window functions, is a major part of
this chapter. The design of equiripple FIR filters using the Remez exchange algo-
rithm is also discussed in this chapter. Many numerical examples and MATLAB
functions are used in this chapter to illustrate the design procedures.

After learning several methods for designing IIR and FIR filters from Chapters
4 and 5, the students need to obtain as many realization structures as possible,
to enable them to investigate the effects of finite wordlength on the frequency
response of these structures and to select the best structure. In Chapter 6, we
describe methods for deriving several structures for realizing FIR filters and IIR
filters. The structures for FIR filters describe the direct, cascade, and polyphase
forms and the lattice structure along with their transpose forms. The structures for



xiv PREFACE

IIR filters include direct-form and cascade and parallel structures, lattice–ladder
structures with autoregressive (AR), moving-average (MA), and allpass struc-
tures as special cases, and lattice-coupled allpass structures. Again, this chapter
contains a large number of examples worked out numerically and using the func-
tions from MATLAB and Signal Processing Toolbox; the material is more than
what is found in many other textbooks.

The effect of finite wordlength on the frequency response of filters realized
by the many structures discussed in Chapter 6 is treated in Chapter 7, and the
treatment is significantly different from that found in all other textbooks. There
is no theoretical analysis of finite wordlength effect in this chapter, because it
is beyond the scope of a junior-level course. I have chosen to illustrate the use
of a MATLAB tool called the “FDA Tool” for investigating these effects on the
different structures, different transfer functions, and different formats for quan-
tizing the values of filter coefficients. The additional choices such as truncation,
rounding, saturation, and scaling to find the optimum filter structure, besides the
alternative choices for the many structures, transfer functions, and so on, makes
this a more powerful tool than the theoretical results. Students would find expe-
rience in using this tool far more useful than the theory in practical hardware
implementation.

Chapters 1–7 cover the core topics of digital signal processing. Chapter 8,
on hardware implementation of digital filters, briefly describes the simulation
of digital filters on Simulink®, and the generation of C code from Simulink
using Real-Time Workshop® (Simulink and Real-Time Workshop are registered
trademarks of The MathWorks, Inc.), generating assembly language code from the
C code, linking the separate sections of the assembly language code to generate an
executable object code under the Code Composer Studio from Texas Instruments
is outlined. Information on DSP Development Starter kits and simulator and
emulator boards is also included. Chapter 9, on MATLAB and Signal Processing
Toolbox, concludes the book.

The author suggests that the first three chapters, which discuss the basics of
digital signal processing, can be taught at the junior level in one quarter. The pre-
requisite for taking this course is a junior-level course on linear, continuous-time
signals and systems that covers Laplace transform, Fourier transform, and Fourier
series in particular. Chapters 4–7, which discuss the design and implementation
of digital filters, can be taught in the next quarter or in the senior year as an
elective course depending on the curriculum of the department. Instructors must
use discretion in choosing the worked-out problems for discussion in the class,
noting that the real purpose of these problems is to help the students understand
the theory. There are a few topics that are either too advanced for a junior-level
course or take too much of class time. Examples of such topics are the derivation
of the objective function that is minimized by the Remez exchange algorithm, the
formulas for deriving the lattice–ladder realization, and the derivation of the fast
Fourier transform algorithm. It is my experience that students are interested only
in the use of MATLAB functions that implement these algorithms, and hence I
have deleted a theoretical exposition of the last two topics and also a description
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of the optimization technique in the Remez exchange algorithm. However, I have
included many examples using the MATLAB functions to explain the subject
matter.

Solutions to the problems given at the end of chapters can be obtained by the in-
structors from the Website http://www.wiley.com/WileyCDA/WileyTitle/

productCd-0471464821.html. They have to access the solutions by clicking
“Download the software solutions manual link” displayed on the Webpage. The
author plans to add more problems and their solutions, posting them on the Website
frequently after the book is published.

As mentioned at the beginning of this preface, the book is written from my
own experience in teaching a junior-level course on digital signal processing.
I wish to thank Dr. M. D. Srinath, Southern Methodist University, Dallas, for
making a thorough review and constructive suggestions to improve the material
of this book. I also wish to thank my colleague Dr. A. K. Shaw, Wright State
University, Dayton. And I am most grateful to my wife Suman, who has spent
hundreds of lonely hours while I was writing this book. Without her patience
and support, I would not have even started on this project, let alone complete it.
So I dedicate this book to her and also to our family.

B. A. Shenoi

May 2005





CHAPTER 1

Introduction

1.1 INTRODUCTION

We are living in an age of information technology. Most of this technology is
based on the theory of digital signal processing (DSP) and implementation of
the theory by devices embedded in what are known as digital signal processors
(DSPs). Of course, the theory of digital signal processing and its applications
is supported by other disciplines such as computer science and engineering, and
advances in technologies such as the design and manufacturing of very large
scale integration (VLSI) chips. The number of devices, systems, and applications
of digital signal processing currently affecting our lives is very large and there
is no end to the list of new devices, systems, and applications expected to be
introduced into the market in the coming years. Hence it is difficult to forecast
the future of digital signal processing and the impact of information technology.
Some of the current applications are described below.

1.2 APPLICATIONS OF DSP

Digital signal processing is used in several areas, including the following:

1. Telecommunications . Wireless or mobile phones are rapidly replacing
wired (landline) telephones, both of which are connected to a large-scale telecom-
munications network. They are used for voice communication as well as data
communications. So also are the computers connected to a different network
that is used for data and information processing. Computers are used to gen-
erate, transmit, and receive an enormous amount of information through the
Internet and will be used more extensively over the same network, in the com-
ing years for voice communications also. This technology is known as voice
over Internet protocol (VoIP) or Internet telephony. At present we can transmit
and receive a limited amount of text, graphics, pictures, and video images from

Introduction to Digital Signal Processing and Filter Design, by B. A. Shenoi
Copyright © 2006 John Wiley & Sons, Inc.
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2 INTRODUCTION

mobile phones, besides voice, music, and other audio signals—all of which are
classified as multimedia—because of limited hardware in the mobile phones and
not the software that has already been developed. However, the computers can
be used to carry out the same functions more efficiently with greater memory and
large bandwidth. We see a seamless integration of wireless telephones and com-
puters already developing in the market at present. The new technologies being
used in the abovementioned applications are known by such terms as CDMA,
TDMA,1 spread spectrum, echo cancellation, channel coding, adaptive equaliza-
tion, ADPCM coding, and data encryption and decryption, some of which are
used in the software to be introduced in the third-generation (G3) mobile phones.

2. Speech Processing . The quality of speech transmission in real time over
telecommunications networks from wired (landline) telephones or wireless (cel-
lular) telephones is very high. Speech recognition, speech synthesis, speaker
verification, speech enhancement, text-to-speech translation, and speech-to-text
dictation are some of the other applications of speech processing.

3. Consumer Electronics . We have already mentioned cellular or mobile
phones. Then we have HDTV, digital cameras, digital phones, answering
machines, fax and modems, music synthesizers, recording and mixing of music
signals to produce CD and DVDs. Surround-sound entertainment systems includ-
ing CD and DVD players, laser printers, copying machines, and scanners are
found in many homes. But the TV set, PC, telephones, CD-DVD players, and
scanners are present in our homes as separate systems. However, the TV set can
be used to read email and access the Internet just like the PC; the PC can be
used to tune and view TV channels, and record and play music as well as data
on CD-DVD in addition to their use to make telephone calls on VoIP. This trend
toward the development of fewer systems with multiple applications is expected
to accelerate in the near future.

4. Biomedical Systems . The variety of machines used in hospitals and biomed-
ical applications is staggering. Included are X-ray machines, MRI, PET scanning,
bone scanning, CT scanning, ultrasound imaging, fetal monitoring, patient moni-
toring, and ECG and EEC mapping. Another example of advanced digital signal
processing is found in hearing aids and cardiac pacemakers.

5. Image Processing . Image enhancement, image restoration, image under-
standing, computer vision, radar and sonar processing, geophysical and seismic
data processing, remote sensing, and weather monitoring are some of the applica-
tions of image processing. Reconstruction of two-dimensional (2D) images from
several pictures taken at different angles and three-dimensional (3D) images from
several contiguous slices has been used in many applications.

6. Military Electronics . The applications of digital signal processing in mili-
tary and defense electronics systems use very advanced techniques. Some of the
applications are GPS and navigation, radar and sonar image processing, detection

1Code- and time-division multiple access. In the following sections we will mention several technical
terms and well-known acronyms without any explanation or definition. A few of them will be
described in detail in the remaining part of this book.
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and tracking of targets, missile guidance, secure communications, jamming and
countermeasures, remote control of surveillance aircraft, and electronic warfare.

7. Aerospace and Automotive Electronics . Applications include control of air-
craft and automotive engines, monitoring and control of flying performance of
aircraft, navigation and communications, vibration analysis and antiskid control
of cars, control of brakes in aircrafts, control of suspension, and riding comfort
of cars.

8. Industrial Applications . Numerical control, robotics, control of engines and
motors, manufacturing automation, security access, and videoconferencing are a
few of the industrial applications.

Obviously there is some overlap among these applications in different devices
and systems. It is also true that a few basic operations are common in all the
applications and systems, and these basic operations will be discussed in the
following chapters. The list of applications given above is not exhaustive. A few
applications are described in further detail in [1]. Needless to say, the number of
new applications and improvements to the existing applications will continue to
grow at a very rapid rate in the near future.

1.3 DISCRETE-TIME SIGNALS

A signal defines the variation of some physical quantity as a function of one
or more independent variables, and this variation contains information that is of
interest to us. For example, a continuous-time signal that is periodic contains the
values of its fundamental frequency and the harmonics contained in it, as well
as the amplitudes and phase angles of the individual harmonics. The purpose of
signal processing is to modify the given signal such that the quality of information
is improved in some well-defined meaning. For example, in mixing consoles for
recording music, the frequency responses of different filters are adjusted so that
the overall quality of the audio signal (music) offers as high fidelity as possible.
Note that the contents of a telephone directory or the encyclopedia downloaded
from an Internet site contains a lot of useful information but the contents do
not constitute a signal according to the definition above. It is the functional
relationship between the function and the independent variable that allows us to
derive methods for modeling the signals and find the output of the systems when
they are excited by the input signals. This also leads us to develop methods for
designing these systems such that the information contained in the input signals
is improved.

We define a continuous-time signal as a function of an independent variable
that is continuous. A one-dimensional continuous-time signal f (t) is expressed
as a function of time that varies continuously from −∞ to ∞. But it may be
a function of other variables such as temperature, pressure, or elevation; yet we
will denote them as continuous-time signals, in which time is continuous but the
signal may have discontinuities at some values of time. The signal may be a
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(a) (b)

x1(t)

0 t

x2(t)

0 t

Figure 1.1 Two samples of continuous-time signals.

real- or complex-valued function of time. We can also define a continuous-time
signal as a mapping of the set of all values of time to a set of corresponding
values of the functions that are subject to certain properties. Since the function is
well defined for all values of time in −∞ to ∞, it is differentiable at all values
of the independent variable t (except perhaps at a finite number of values). Two
examples of continuous-time functions are shown in Figure 1.1.

A discrete-time signal is a function that is defined only at discrete instants of
time and undefined at all other values of time. Although a discrete-time function
may be defined at arbitrary values of time in the interval −∞ to ∞, we will
consider only a function defined at equal intervals of time and defined at t = nT ,
where T is a fixed interval in seconds known as the sampling period and n

is an integer variable defined over −∞ to ∞. If we choose to sample f (t) at
equal intervals of T seconds, we generate f (nT ) = f (t)|t=nT as a sequence of
numbers. Since T is fixed, f (nT ) is a function of only the integer variable n and
hence can be considered as a function of n or expressed as f (n). The continuous-
time function f (t) and the discrete-time function f (n) are plotted in Figure 1.2.

In this book, we will denote a discrete-time (DT) function as a DT sequence,
DT signal, or a DT series. So a DT function is a mapping of a set of all integers
to a set of values of the functions that may be real-valued or complex-valued.
Values of both f (t) and f (n) are assumed to be continuous, taking any value
in a continuous range; hence can have a value even with an infinite number of
digits, for example, f (3) = 0.4

√
2 in Figure 1.2.

A zero-order hold (ZOH) circuit is used to sample a continuous signal f (t)

with a sampling period T and hold the sampled values for one period before the
next sampling takes place. The DT signal so generated by the ZOH is shown in
Figure 1.3, in which the value of the sample value during each period of sam-
pling is a constant; the sample can assume any continuous value. The signals of
this type are known as sampled-data signals, and they are used extensively in
sampled-data control systems and switched-capacitor filters. However, the dura-
tion of time over which the samples are held constant may be a very small
fraction of the sampling period in these systems. When the value of a sample
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Figure 1.2 The continuous-time function f (t) and the discrete-time function f (n).
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Figure 1.3 Sampled data signal.
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is held constant during a period T (or a fraction of T ) by the ZOH circuit as
its output, that signal can be converted to a value by a quantizer circuit, with
finite levels of value as determined by the binary form of representation. Such a
process is called binary coding or quantization . A This process is discussed in
full detail in Chapter 7. The precision with which the values are represented is
determined by the number of bits (binary digits) used to represent each value.
If, for example, we select 3 bits, to express their values using a method known
as “signed magnitude fixed-point binary number representation” and one more
bit to denote positive or negative values, we have the finite number of values,
represented in binary form and in their equivalent decimal form. Note that a
4-bit binary form can represent values between − 7

8 and 7
8 at 15 distinct levels

as shown in Table 1.1. So a value of f (n) at the output of the ZOH, which lies
between these distinct levels, is rounded or truncated by the quantizer according
to some rules and the output of the quantizer when coded to its equivalent binary
representation, is called the digital signal. Although there is a difference between
the discrete-time signal and digital signal, in the next few chapters we assume
that the signals are discrete-time signals and in Chapter 7, we consider the effect
of quantizing the signals to their binary form, on the frequency response of the

TABLE 1.1 4 Bit Binary Numbers
and their Decimal Equivalents

Binary Form Decimal Value

0�111 7
8 = 0.875

0�110 6
8 = 0.750

0�101 5
8 = 0.625

0�100 4
8 = 0.500

0�011 3
8 = 0.375

0�010 2
8 = 0.250

0�001 1
8 = 0.125

0�000 0.0 = 0.000

1�000 −0.0 = −0.000

1�001 − 1
8 = −0.125

1�010 − 2
8 = −0.250

1�011 − 3
8 = −0.375

1�100 − 4
8 = −0.500

1�101 − 5
8 = −0.625

1�110 − 6
8 = −0.750

1�111 − 7
8 = −0.875
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filters. However, we use the terms digital filter and discrete-time system inter-
changeably in this book. Continuous-time signals and systems are also called
analog signals and analog systems, respectively. A system that contains both the
ZOH circuit and the quantizer is called an analog-to digital converter (ADC),
which will be discussed in more detail in Chapter 7.

Consider an analog signal as shown by the solid line in Figure 1.2. When it
is sampled, let us assume that the discrete-time sequence has values as listed
in the second column of Table 1.2. They are expressed in only six significant
decimal digits and their values, when truncated to four digits, are shown in the
third column. When these values are quantized by the quantizer with four binary
digits (bits), the decimal values are truncated to the values at the finite discrete
levels. In decimal number notation, the values are listed in the fourth column,
and in binary number notation, they are listed in the fifth column of Table 1.2.
The binary values of f (n) listed in the third column of Table 1.2 are plotted in
Figure 1.4.

A continuous-time signal f (t) or a discrete-time signal f (n) expresses the
variation of a physical quantity as a function of one variable. A black-and-white
photograph can be considered as a two-dimensional signal f (m, r), when the
intensity of the dots making up the picture is measured along the horizontal axis
(x axis; abscissa) and the vertical axis (y axis; ordinate) of the picture plane
and are expressed as a function of two integer variables m and r , respectively.
We can consider the signal f (m, r) as the discretized form of a two-dimensional
signal f (x, y), where x and y are the continuous spatial variables for the hor-
izontal and vertical coordinates of the picture and T1 and T2 are the sampling

TABLE 1.2 Numbers in Decimal and Binary Forms

Values of f (n)

Decimal Truncated to Quantized Binary
n Values of f (n) Four Digits Values of f (n) Number Form

−4 −0.054307 −0.0543 0.000 1�000
−3 −0.253287 −0.2532 −0.250 1�010
−2 −0.236654 −0.2366 −0.125 1�001
−1 −0.125101 −0.1251 −0.125 1�001

0 0.522312 0.5223 0.000 0�000
1 0.246210 0.2462 0.125 0�001
2 0.387508 0.3875 0.375 0�011
3 0.554090 0.5540 0.500 0�100
4 0.521112 0.5211 0.500 0�100
5 0.275432 0.2754 0.250 0�010
6 0.194501 0.1945 0.125 0�001
7 0.168887 0.1687 0.125 0�001
8 0.217588 0.2175 0.125 0�001
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Figure 1.4 Binary values in Table 1.2, after truncation of f (n) to 4 bits.

periods (measured in meters) along the x and y axes, respectively. In other words,
f (x, y)|x=mT1,y=rT2

= f (m, r).
A black-and-white video signal f (x, y, t) is a 3D function of two spatial

coordinates x and y and one temporal coordinate t . When it is discretized, we
have a 3D discrete signal f (m, p, n). When a color video signal is to be modeled,
it is expressed by a vector of three 3D signals, each representing one of the
three primary colors—red, green, and blue—or their equivalent forms of two
luminance and one chrominance. So this is an example of multivariable function
or a multichannel signal:

F(m, r, n) =
⎡⎣ fr(m, p, n)

fg(m, p, n)

fb(m, p, n)

⎤⎦ (1.1)

1.3.1 Modeling and Properties of Discrete-Time Signals

There are several ways of describing the functional relationship between the
integer variable n and the value of the discrete-time signal f (n): (1) to plot the
values of f (n) versus n as shown in Figure 1.2, (2) to tabulate their values as
shown in Table 1.2, and (3) to define the sequence by expressing the sample
values as elements of a set, when the sequence has a finite number of samples.

For example, in a sequence x1(n) as shown below, the arrow indicates the
value of the sample when n = 0:

x1(n) =
{

2 3 1.5 0.5
↑

−1 4

}
(1.2)
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We denote the DT sequence by x(n) and also the value of a sample of the
sequence at a particular value of n by x(n). If a sequence has zero values for
n < 0, then it is called a causal sequence. It is misleading to state that the
causal function is a sequence defined for n ≥ 0, because, strictly speaking, a DT
sequence has to be defined for all values of n. Hence it is understood that a causal
sequence has zero-valued samples for −∞ < n < 0. Similarly, when a function
is defined for N1 ≤ n ≤ N2, it is understood that the function has zero values for
−∞ < n < N1 and N2 < n < ∞. So the sequence x1(n) in Equation (1.2) has
zero values for 2 < n < ∞ and for −∞ < n < −3. The discrete-time sequence
x2(n) given below is a causal sequence. In this form for representing x2(n), it is
implied that x2(n) = 0 for −∞ < n < 0 and also for 4 < n < ∞:

x2(n) =
{

1
↑

−2 0.4 0.3 0.4 0 0 0

}
(1.3)

The length of a finite sequence is often defined by other authors as the number
of samples, which becomes a little ambiguous in the case of a sequence like x2(n)

given above. The function x2(n) is the same as x3(n) given below:

x3(n) =
{

1
↑

−2 0.4 0.3 0.4 0 0 0 0 0 0

}
(1.4)

But does it have more samples? So the length of the sequence x3(n) would be
different from the length of x2(n) according to the definition above. When a
sequence such as x4(n) given below is considered, the definition again gives an
ambiguous answer:

x4(n) =
{

0
↑

0 0.4 0.3 0.4

}
(1.5)

The definition for the length of a DT sequence would be refined when we
define the degree (or order) of a polynomial in z−1 to express the z transform of
a DT sequence, in the next chapter.

To model the discrete-time signals mathematically, instead of listing their
values as shown above or plotting as shown in Figure 1.2, we introduce some
basic DT functions as follows.

1.3.2 Unit Pulse Function

The unit pulse function δ(n) is defined by

δ(n) =
{

1 n = 0
0 n �= 0

(1.6)

and it is plotted in Figure 1.5a. It is often called the unit sample function and also
the unit impulse function. But note that the function δ(n) has a finite numerical
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−1 1 2 30

δ(n − 3)

n
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δ(n + 3)
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(c)

Figure 1.5 Unit pulse functions δ(n), δ(n − 3), and δ(n + 3).

value of one at n = 0 and zero at all other values of integer n, whereas the unit
impulse function δ(t) is defined entirely in a different way.

When the unit pulse function is delayed by k samples, it is described by

δ(n − k) =
{

1 n = k

0 n �= k
(1.7)

and it is plotted in Figure 1.5b for k = 3. When δ(n) is advanced by k = 3, we
get δ(n + k), and it is plotted in Figure 1.5c.

1.3.3 Constant Sequence

This sequence x(n) has a constant value for all n and is therefore defined by
x(n) = K;−∞ < n < ∞.

1.3.4 Unit Step Function

The unit step function u(n) is defined by

u(n) =
{

1 n ≥ 0
0 n < 0

(1.8)

and it is plotted in Figure 1.6a.
When the unit step function is delayed by k samples, where k is a positive

integer, we have

u(n − k) =
{

1 n ≥ k

0 n < k
(1.9)
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Figure 1.6 Unit step functions.

The sequence u(n + k) is obtained when u(n) is advanced by k samples. It is
defined by

u(n + k) =
{

1 n ≥ −k

0 n < −k
(1.10)

We also define the function u(−n), obtained from the time reversal of u(n), as a
sequence that is zero for n > 0. The sequences u(−n + k) and u(−n − k), where
k is a positive integer, are obtained when u(−n) is delayed by k samples and
advanced by k samples, respectively. In other words, u(−n + k) is obtained by
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delaying u(−n) when k is positive and obtained by advancing u(−n) when k is a
negative integer. Note that the effect on u(−n − k) is opposite that on u(n − k),
when k is assumed to take positive and negative values. These functions are
shown in Figure 1.6, where k = 2. In a strict sense, all of these functions are
defined implicitly for −∞ < n < ∞.

1.3.5 Real Exponential Function

The real exponential function is defined by

x(n) = an; −∞ < n < ∞ (1.11)

where a is real constant. If a is a complex constant, it becomes the complex
exponential sequence. The real exponential sequence or the complex exponential
sequence may also be defined by a more general relationship of the form

x(n) =
{

an k ≤ n < ∞
bn −∞ < n < k

(1.12)

A special discrete-time sequence that we often use is the function defined for
n ≥ 0:

x(n) = anu(n) (1.13)

An example of x1(n) = (0.8)nu(n) is plotted in Figure 1.7a. The function x2(n) =
x1(n − 3) = (0.8)(n−3)u(n − 3) is obtained when x1(n) is delayed by three sam-
ples. It is plotted in Figure 1.7b. But the function x3(n) = (0.8)nu(n − 3) is
obtained by chopping off the first three samples of x1(n) = (0.8)nu(n), and as
shown in Figure 1.7c, it is different from x2(n).

1.3.6 Complex Exponential Function

The complex exponential sequence is a function that is complex-valued as a
function of n. The most general form of such a function is given by

x(n) = Aαn, −∞ < n < ∞ (1.14)

where both A and α are complex numbers. If we let A = |A| ejφ and α =
e(σ0+jω0), where σ0, ω0, and φ are real numbers, the sequence can be expanded
to the form

x(n) = |A| ejφe(σ0+jω0)n

= |A| eσ0nej (ω0n+φ)

= |A| eσ0n cos(ω0n + φ) + j |A| eσ0n sin(ω0n + φ) (1.15)

= xre(n) + jxim(n)
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Figure 1.7 Plots of x1(n), x2(n), and x3(n).
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When σ0 = 0, the real and imaginary parts of this complex exponential
sequence are |A| cos(ω0n + φ) and |A| sin(ω0n + φ), respectively, and are real
sinusoidal sequences with an amplitude equal to |A|. When σ0 > 0, the two
sequences increase as n → ∞ and decrease when σ0 < 0 as n → ∞. When
ω0 = φ = 0, the sequence reduces to the real exponential sequence |A| eσ0n.

1.3.7 Properties of cos(ω0n)

When A = 1, and σ0 = φ = 0, we get x(n) = ejω0n = cos(ω0n) + j sin(ω0n).
This function has some interesting properties, when compared with the
continuous-time function ejω′

0t and they are described below.
First we point out that ω0 in x(n) = ejω0n is a frequency normalized by fs =

1/T , where fs is the sampling frequency in hertz and T is the sampling period
in seconds, specifically, ω0 = 2πf ′

0/fs = ω′
0T , where ω′

0= 2πf ′
0 is the actual real

frequency in radians per second and f ′
0 is the actual frequency in hertz. Therefore

the unit of the normalized frequency ω0 is radians. It is common practice in
the literature on discrete-time systems to choose ω as the normalized frequency
variable, and we follow that notation in the following chapters; here we denote
ω0 as a constant in radians. We will discuss this normalized frequency again in
a later chapter.

Property 1.1 In the complex exponential function x(n) = ejω0n, two frequen-
cies separated by an integer multiple of 2π are indistinguishable from each
other. In other words, it is easily seen that ejω0n = ej (ω0n+2πr). The real part and
the imaginary part of the function x(n) = ejω0n, which are sinusoidal functions,
also exhibit this property. As an example, we have plotted x1(n) = cos(0.3πn)

and x2(n) = cos(0.3π + 4π)n in Figure 1.8. In contrast, we know that two
continuous-time functions x1(t) = ejω1t and x2(t) = ejω2tor their real and imag-
inary parts are different if ω1 and ω2 are different. They are different even if they
are separated by integer multiples of 2π . From the property ejω0n = ej (ω0n+2πr)

above, we arrive at another important result, namely, that the output of a discrete-
time system has the same value when these two functions are excited by the
complex exponential functions ejω0n or e j (ω0n+2πr). We will show in Chapter 3
that this is true for all frequencies separated by integer multiples of 2π , and
therefore the frequency response of a DT system is periodic in ω.

Property 1.2 Another important property of the sequence ejω0n is that it is
periodic in n. A discrete-time function x(n) is defined to be periodic if there
exists an integer N such that x(n + rN) = x(n), where r is any arbitrary integer
and N is the period of the periodic sequence. To find the value for N such that
ejω0n is periodic, we equate ejω0n to ejω0(n+rN). Therefore ejω0n = ejω0nejω0rN ,
which condition is satisfied when ejω0rN = 1, that is, when ω0N = 2πK , where
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Figure 1.8 Plots of cos(0.3πn) and cos(0.3π + 4π)n.

K is any arbitrary integer. This condition is satisfied by the following equation:

ω0

2π
= K

N
(1.16)

In words, this means that the ratio of the given normalized frequency ω0 and 2π

must be a rational number. The period of the sequence N is given by

N = 2πK

ω0
(1.17)

When this condition is satisfied by the smallest integer K , the corresponding
value of N gives the fundamental period of the periodic sequence, and integer
multiples of this frequency are the harmonic frequencies.

Example 1.1

Consider a sequence x(n) = cos(0.3πn). In this case ω0 = 0.3π and ω0/2π =
0.3π/2π = 3

20 . Therefore the sequence is periodic and its period N is 20 samples.
This periodicity is noticed in Figure 1.8a and also in Figure 1.8b.

Consider another sequence x(n) = cos(0.5n), in which case ω0 = 0.5. There-
fore ω0/2π = 0.5/2π = 1/4π , which is not a rational number. Hence this is not
a periodic sequence.

When the given sequence is the sum of several complex exponential functions,
each of which is periodic with different periods, it is still periodic. We consider
an example to illustrate the method to find the fundamental period in this case.
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Figure 1.9 Plot of x3(n).

Suppose x3(n) = cos(0.2πn) + cos(0.5πn) + cos(0.6πn). Its fundamental
period N must satisfy the condition

N = 2πK1

0.2π
= 2πK2

0.5π
= 2πK3

0.6π
(1.18)

= 10K1 = 4K2 = 10K3

3
(1.19)

where K1,K2, and K3 and N are integers. The value of N that satisfies this
condition is 20 when K1 = 2, K2 = 5, and K3 = 6. So N = 20 is the fundamental
period of x3(n). The sequence x3(n) plotted in Figure 1.9 for 0 ≤ n ≤ 40 shows
that it is periodic with a period of 20 samples.

Property 1.3 We have already observed that the frequencies at ω0 and at ω0 +
2π are the same, and hence the frequency of oscillation are the same. But con-
sider the frequency of oscillation as ω0 changes between 0 and 2π . It is found
that the frequency of oscillation of the sinusoidal sequence cos(ω0n) increases
as ω0 increases from 0 to π and the frequency of oscillation decreases as ω0

increases from π to 2π . Therefore the highest frequency of oscillation of a
discrete-time sequence cos(ω0n) occurs when ω0 = ±π . When the normalized
frequency ω0 = 2πf ′

0/fs attains the value of π , the value of f ′
0 = fs/2. So the

highest frequency of oscillation occurs when it is equal to half the sampling
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Figure 1.10 Plot of cos(ω0n) for different values of ω0 between 0 and 2π .

frequency. In Figure 1.10 we have plotted the DT sequences as ω0 attains a few
values between 0 and 2π , to illustrate this property. We will elaborate on this
property in later chapters of the book.

Since frequencies separated by 2π are the same, as ω0 increases from 2π to
3π , the frequency of oscillation increases in the same manner as the frequency
of oscillation when it increases from 0 to π . As an example, we see that the
frequency of v0(n) = cos(0.1πn) is the same as that of v1(n) = cos(2.1πn). It
is interesting to note that v2(n) = cos(1.9πn) also has the same frequency of
oscillation as v1(n) because

v2(n) = cos(1.9πn) = cos(2π − 0.1πn) (1.20)

= cos(2πn) cos(0.1πn) + sin(2πn) sin(0.1πn) (1.21)

= cos(0.1πn)

= v0(n)
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v1(n) = cos(2.1πn) = cos(2πn + 0.1πn) (1.22)

= cos(2πn) cos(0.1πn) − sin(2πn) sin(0.1πn) (1.23)

= cos(0.1n)

= v0(n)

We have plotted the sequences v1(n) and v2(n) in Figure 1.11, to verify this
property.

Remember that in Chapter 3, we will use the term “folding” to describe new
implications of this property. We will also show in Chapter 3 that a large class
of discrete-time signals can be expressed as the weighted sum of exponential
sequences of the form ejω0n, and such a model leads us to derive some powerful
analytical techniques of digital signal processing.

We have described several ways of characterizing the DT sequences in this
chapter. Using the unit sample function and the unit step function, we can express
the DT sequences in other ways as shown below.

For example, δ(n) = u(n) − u(n − 1) and u(n) =∑m=n
m=−∞ δ(m). A mathe-

matical way of modeling a sequence

x(n) =
{

2 3 1.5 0.5
↑

−1 4

}
(1.24)
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Figure 1.11 Plots of cos(2.1πn) and cos(1.9πn).
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is the weighted sum of shifted unit sample functions, as given by

x(n) = 2δ(n + 3) + 3δ(n + 2) + 1.5δ(n + 1) + 0.5δ(n) − δ(n − 1) + 4δ(n − 2)

(1.25)
If the sequence is given in an analytic form x(n) = anu(n), it can also be
expressed as the weighted sum of impulse functions:

x(n) =
∞∑

m=0

x(m)δ(n − m) =
∞∑

m=0

amδ(n − m) (1.26)

In the next chapter, we will introduce a transform known as the z transform,
which will be used to model the DT sequences in additional forms. We will
show that this model given by (1.26) is very useful in deriving the z transform
and in analyzing the performance of discrete-time systems.

1.4 HISTORY OF FILTER DESIGN

Filtering is the most common form of signal processing used in all the appli-
cations mentioned in Section 1.2, to remove the frequencies in certain parts
and to improve the magnitude, phase, or group delay in some other part(s) of
the spectrum of a signal. The vast literature on filters consists of two parts:
(1) the theory of approximation to derive the transfer function of the filter such
that the magnitude, phase, or group delay approximates the given frequency
response specifications and (2) procedures to design the filters using the hardware
components. Originally filters were designed using inductors, capacitors, and
transformers and were terminated by resistors representing the load and the inter-
nal resistance of the source. These were called the LC (inductance × capacitance)
filters that admirably met the filtering requirements in the telephone networks for
many decades of the nineteenth and twentieth centuries. When the vacuum tubes
and bipolar junction transistors were developed, the design procedure had to
be changed in order to integrate the models for these active devices into the
filter circuits, but the mathematical theory of filter approximation was being
advanced independently of these devices. In the second half of the twentieth
century, operational amplifiers using bipolar transistors were introduced and fil-
ters were designed without inductors to realize the transfer functions. The design
procedure was much simpler, and device technology also was improved to fabri-
cate resistors in the form of thick-film and later thin-film depositions on ceramic
substrates instead of using printed circuit boards. These filters did not use induc-
tors and transformers and were known as active-RC (resistance × capacitance)
filters. In the second half of the century, switched-capacitor filters were devel-
oped, and they are the most common type of filters being used at present for
audio applications. These filters contained only capacitors and operational ampli-
fiers using complementary metal oxide semiconductor (CMOS) transistors. They
used no resistors and inductors, and the whole circuit was fabricated by the
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very large scale integration (VLSI) technology. The analog signals were con-
verted to sampled data signals by these filters and the signal processing was
treated as analog signal processing. But later, the signals were transitioned as
discrete-time signals, and the theory of discrete-time systems is currently used to
analyze and design these filters. Examples of an LC filter, an active-RC filter,
and a switched-capacitor filter that realize a third-order lowpass filter function
are shown in Figures 1.12–1.14.

The evolution of digital signal processing has a different history. At the begin-
ning, the development of discrete-time system theory was motivated by a search
for numerical techniques to perform integration and interpolation and to solve
differential equations. When computers became available, the solution of phys-
ical systems modeled by differential equations was implemented by the digital
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Figure 1.12 A lowpass analog LC filter.
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Figure 1.13 An active-RC lowpass analog filter.
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Figure 1.14 A switched-capacitor lowpass (analog) filter.

computers. As the digital computers became more powerful in their computa-
tional power, they were heavily used by the oil industry for geologic signal
processing and by the telecommunications industry for speech processing. The
theory of digital filters matured, and with the advent of more powerful computers
built on integrated circuit technology, the theory and applications of digital signal
processing has explosively advanced in the last few decades. The two revolution-
ary results that have formed the foundations of digital signal processing are the
Shannon’s sampling theorem and the Cooley–Tukey algorithm for fast Fourier
transform technique. Both of them will be discussed in great detail in the follow-
ing chapters. The Shannon’s sampling theorem proved that if a continuous-time
signal is bandlimited (i.e., if its Fourier transform is zero for frequencies above
a maximum frequency fm) and it is sampled at a rate that is more than twice
the maximum frequency fm in the signal, then no information contained in the
analog signal is lost in the sense that the continuous-time signal can be exactly
reconstructed from the samples of the discrete-time signal. In practical applica-
tions, most of the analog signals are first fed to an analog lowpass filter—known
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as the preconditioning filter or antialiasing filter —such that the output of the
lowpass filter attenuates the frequencies considerably beyond a well-chosen fre-
quency so that it can be considered a bandlimited signal. It is this signal that
is sampled and converted to a discrete-time signal and coded to a digital signal
by the analog-to-digital converter (ADC) that was briefly discussed earlier in
this chapter. We consider the discrete-time signal as the input to the digital filter
designed in such a way that it improves the information contained in the original
analog signal or its equivalent discrete-time signal generated by sampling it. A
typical example of a digital lowpass filter is shown in Figure 1.15.

The output of the digital filter is next fed to a digital-to-analog converter
(DAC) as shown in Figure 1.17 that also uses a lowpass analog filter that smooths
the sampled-data signal from the DAC and is known as the “smoothing filter.”
Thus we obtain an analog signal yd(t) at the output of the smoothing filter as
shown. It is obvious that compared to the analog filter shown in Figure 1.16, the
circuit shown in Figure 1.17 requires considerably more hardware or involves a
lot more signal processing in order to filter out the undesirable frequencies from
the analog signal x(t) and deliver an output signal yd(t). It is appropriate to
compare these two circuit configurations and determine whether it is possible to
get the output yd(t) that is the same or nearly the same as the output y(t) shown
in Figure 1.16; if so, what are the advantages of digital signal processing instead
of analog signal processing, even though digital signal processing requires more
circuits compared to analog signal processing?
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Figure 1.15 A lowpass third-order digital filter.
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Figure 1.16 Example of an analog signal processing system.


