
Excel@
for Scientists
and Engineers

Numerical Methods

E. Joseph Bill0

B I C E N T E N N I A L

B I C E N T E N N I A L

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

This Page Intentionally Left Blank

Excel@
for Scientists
and Engineers

Numerical Methods

THE W I L E Y BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

G a c h generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and filfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

L 4 4 ! ! - . f . @- Ek-&Ti%
WILLIAM J. PESCE PETER BOOTH W l L E V

PRESIDENT AND CHIEF EXECUTIVE PmCER CHAIRMAN OF THE BOARD

Excel@
for Scientists
and Engineers

Numerical Methods

E. Joseph Bill0

B I C E N T E N N I A L

B I C E N T E N N I A L

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

Copyright 0 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201)
748-601 1, fax (201) 748-6008, or online at http://www.wiley.comgo/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J . Pacific0

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-47 1-38734-3

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

Summary of Contents
..

Detailed Table of Contents .. v11
Preface .. xv
Acknowledgments ... xix
About the Author ... xix

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 11

Chapter 12
Chapter 13
Chapter 14
Chapter 15

Introducing Visual Basic for Applications 1
Fundamentals of Programming with VBA 15
Worksheet Functions for Working with Matrices 57
Number Series ... 69
Interpolation .. 77
Differentiation ... 99
Integration ... 127
Roots of Equations .. 147

Numerical Integration of Ordinary Differential Equations
Part I: Initial Conditions .. 217
Numerical Integration of Ordinary Differential Equations
Part 11: Boundary Conditions ... 245
Partial Differential Equations .. 263

Nonlinear Regression Using the Solver 313
Random Numbers and the Monte Carlo Method 341

Systems of Simultaneous Equations .. 189

Linear Regression and Curve Fitting ... 287

APPENDICES

Appendix 2 Shortcut Keys for VBA ... 387
.. 389

Appendix 4 Some Equations for Curve Fitting ... 409
Appendix 5 Engineering and Other Functions .. 423
Appendix 6 ASCII Codes .. 427
Appendix 7 Bibliography .. 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431

Appendix 1 Selected VBA Keywords ... 365

Appendix 3 Custom Functions Help File

INDEX ... 443

V

This Page Intentionally Left Blank

Contents
Preface: .. xv
Acknowledgments ... xix
About the Author ... xix

The Visual Basic Editor ... 1
Visual Basic Procedures ... 4

There Are Two Kinds of Macros ... 4
The Structure of a Sub Procedure .. 4
The Structure of a Function Procedure .. 5
Using the Recorder to Create a Sub Procedure .. 5
The Personal Macro Workbook ... 7
Running a Sub Procedure .. 8
Assigning a Shortcut Key to a Sub Procedure ... 8

Entering VBA Code ... 9
Creating a Simple Custom Function .. 10
Using a Function Macro .. 10
A Shortcut to Enter a Function .. 12

Some FAQs .. 13

Chapter 2 Fundamentals of Programming with VBA 15
Components of Visual Basic Statements .. 15

Operators .. 16
Variables .. 16
Objects, Properties, and Methods .. 17
Objects ... 17
Properties ... 17
Using Properties ... 19
Functions .. 20
Using Worksheet Functions with VBA ... 22
Some Useful Methods .. 22
Other Keywords ... 23

Program Control ... 23
Branching ... 23
Logical Operators .. 24
Select Case ... 24
Looping .. 24
For ... Next Loop .. 25
Do While ... Loop ... 25

Chapter 1 Introducing Visual Basic for Applications 1

vii

...
Vlll EXCEL: NUMERICAL METHODS

For Each ... Next Loop ... 25
Nested Loops ... 26
Exiting from a Loop or from a Procedure .. 26

VBA Data Types .. 27
The Variant Data Type .. 28

Subroutines ... 28

VBA Code for Command Macros .. 29
Objects and Collections of Objects .. 29
"Objects" That Are Really Properties .. 30
You Can Define Your Own Objects .. 30
Methods ... 31
Some Useful Methods .. 31
Two Ways to Specify Arguments of Methods ... 32
Arguments with or without Parentheses .. 33

A Reference to the Active Cell or a Selected Range 33
A Reference to a Cell Other than the Active Cell .. 34

Scoping a Subroutine ... 29

Making a Reference to a Cell or a Range ... 33

References Using the Union or Intersect Method .. 35
Examples of Expressions to Refer to a Cell or Range 35
Getting Values from a Worksheet ... 36
Sending Values to a Worksheet ... 37

Interacting with the User .. 37
MsgBox .. 37
MsgBox Return Values .. 39
lnputBox ... 39

Visual Basic Arrays .. 41
Dimensioning an Array .. 41
Use the Name of the Array Variable to Specify the Whole Array 42
Multidimensional Arrays ... 42
Declaring the Variable Type of an Array .. 42
Returning the Size of an Array .. 42

Preserving Values in Dynamic Arrays ... 43

Passing Values from Worksheet to VBA Module 44

Create an Array Automatically ... 45

Create an Array Automatically ... 45
An Array of Object Variables .. 45

Dynamic Arrays ... 43

Working with Arrays in Sub Procedures:

A Range Specified in a Sub Procedure Can Be Used as an Array 44
Some Worksheet Functions Used Within VBA

Some Worksheet Functions Used Within VBA

CONTENTS ix

Working with Arrays in Sub Procedures:

A One-Dimensional Array Assigned to a Worksheet Range
Passing Values from a VBA Module to a Worksheet 45

Can Cause Problems ... 46
Custom Functions ... 47

Specifying the Data Type Returned by a Function Procedure 47
Specifying the Data Type of an Argument .. 47

Returning an Error Value from a Function Procedure 48
A Custom Function that Takes an Optional Argument 48

Arrays in Function Procedures ... 48
A Range Passed to a Function Procedure Can Be Used as an Array 48
Passing an Indefinite Number of Arguments:

Using the ParamArray Keyword .. 49
Returning an Array of Values as a Result .. 49

Creating Add-In Function Macros ... 50
How to Create an Add-In Macro ... 51

Testing and Debugging .. 51
Tracing Execution .. 52
Stepping Through Code ... 52
Adding a Breakpoint .. 52

Examining the Values of Variables During Execution 54

Chapter 3 Worksheet Functions for Working with Matrices 57
Arrays, Matrices and Determinants .. 57

Some Types of Matrices .. 57

Excel's Built-in Matrix Functions .. 60
Some Additional Matrix Functions .. 63
Problems ... 66

Chapter 4 Number Series 69
Evaluating Series Formulas .. 70

Using Array Constants to Create Series Formulas .. 70
Using the ROW Worksheet Function to Create Series Formulas 71

Examining the Values of Variables While in Break Mode 53

An Introduction to Matrix Mathematics ... 58

The INDIRECT Worksheet Function .. 71
Using the INDIRECT Worksheet Function

with the ROW Worksheet Function to Create Series Formulas 72

The Taylor Series: An Example ... 73
Problems ... 75

The Taylor Series ... 72

X EXCEL: NUMERICAL METHODS

Chapter 5 Interpolation 77

Using Excel's Lookup Functions to Obtain Values from a Table 77

Using the LOOKUP Function to Obtain Values from a Table 79
Creating a Custom Lookup Formula to Obtain Values from a Table 80

Interpolation ... 83
Linear Interpolation in a Table by Means of Worksheet Formulas 83

Linear Interpolation in a Table by Means of a Custom Function 86

Cubic Interpolation in a Table by Using the TREND Worksheet Function ... 89

Obtaining Values from a Table .. 77

Using VLOOKUP to Obtain Values from a Table .. 78

Using Excel's Lookup Functions
to Obtain Values from a Two-way Table .. 81

Linear Interpolation in a Table by Using the TREND Worksheet Function .. 85

Cubic Interpolation .. 87

Linear Interpolation in a Two-way Table

Cubic Interpolation in a Two-way Table

Cubic Interpolation in a Two-way Table

by Means of Worksheet Formulas .. 90

by Means of Worksheet Formulas .. 91

Problems ... 96

Chapter 6 Differentiation 99

Calculating First and Second Derivatives .. 100

by Means of a Custom Function ... 93

First and Second Derivatives of Data in a Table .. 99

Using LINEST as a Fitting Function .. 105
Derivatives of a Worksheet Formula .. 109

Derivatives of a Worksheet Formula Calculated by Using
a VBA Function Procedure .. 109

First Derivative of a Worksheet Formula Calculated by Using
the Finite-Difference Method ... 110

The Newton Quotient ... 110
Derivative of a Worksheet Formula Calculated by Using

the Finite-Difference Method ... 111
First Derivative of a Worksheet Formula Calculated by Using

a VBA Sub Procedure Using the Finite-Difference Method 112
First Derivative of a Worksheet Formula Calculated by Using

a VBA Function Procedure Using the Finite-Difference Method 115
Improving the VBA Function Procedure ... 118
Second Derivative of a Worksheet Formula .. 120
Concerning the Choice of Ax for the Finite-Difference Method 123

Problems ... 124

CONTENTS xi

Chapter 7 Integration 127
Area under a Curve .. 127

Calculating the Area under a Curve Defined by a Table of Data Points 129

by Means of a VBA Function Procedure .. 130
Calculating the Area under a Curve Defined by a Table of Data Points

Calculating the Area under a Curve Defined by a Formula 131
Area between Two Curves ... 132

Integrating a Function .. 133
Integrating a Function Defined by a Worksheet Formula

Gaussian Quadrature .. 137
by Means of a VBA Function Procedure .. 133

Integration with an Upper or Lower Limit of Infinity 140
Distance Traveled Along a Curved Path .. 141
Problems ... 143

Chapter 8 Roots of Equations 147
A Graphical Method .. 147

The Interval Method with Linear Interpolation
The Interval-Halving or Bisection Method .. 149

The Regula Fulsi Method with Correction for Slow Convergence 153
The Newton-Raphson Method ... 154

The Secant Method .. 160
The Newton-Raphson Method Using Circular Reference and Iteration 161
A Newton-Raphson Custom Function ... 163

Using Goal Seek ... to Find the Point of Intersection of Two Curves 174

(the Regula Fulsi Method) .. 151

Using Goal Seek .. 156

Bairstow's Method to Find All Roots of a Regular Polynomial 166
Finding Values Other than Zeroes of a Function .. 174

Using the Newton-Raphson Method
to Find the Point of Intersection of Two Lines ... 176

Using the Newton-Raphson Method to Find Multiple Intersections
of a Straight Line and a Curve .. 178

A Goal Seek Custom Function .. 180
Problems ... 185

Chapter 9 Systems of Simultaneous Equations 189
Cramer's Rule ... 190
Solving Simultaneous Equations by Matrix Inversion 191
Solving Simultaneous Equations by Gaussian Elimination 191
The Gauss-Jordan Method ... 196

Solving Linear Systems by Iteration .. 200
The Jacobi Method Implemented on a Worksheet 200

xii EXCEL: NUMERICAL METHODS

The Gauss-Seidel Method Implemented on a Worksheet 203
The Gauss-Seidel Method Implemented on a Worksheet

Using Circular References .. 204
A Custom Function Procedure for the Gauss-Seidel Method 205

Solving Nonlinear Systems by Iteration ... 207
Newton's Iteration Method .. 207

... Problems 213

Chapter 10 Numerical Integration of Ordinary Differential Equations
Part I: Initial Conditions 217

Solving a Single First-Order Differential Equation .. 218
Euler's Method ... 218
The Fourth-Order Runge-Kutta Method ... 220
Fourth-Order Runge-Kutta Method Implemented on a Worksheet 220
Runge-Kutta Method Applied to a Differential Equation

Fourth-Order Runge-Kutta Custom Function
Involving Both x and y ... 223

for a Single Differential Equation with the Derivative Expression
Coded in the Procedure .. 224

for a Single Differential Equation with the Derivative Expression
Fourth-Order Runge-Kutta Custom Function

Passed as an Argument ... 225
Systems of First-Order Differential Equations ... 228

for Systems of Differential Equations .. 229
Predictor-Corrector Methods., .. 235

A Simple Predictor-Corrector Method ... 235

Higher-Order Differential Equations ... 238

Fourth-Order Runge-Kutta Custom Function

A Simple Predictor-Corrector Method
Utilizing an Intentional Circular Reference .. 236

Problems ... 241

Part II: Boundary Conditions 245
Chapter 11 Numerical Integration of Ordinary Differential Equations

The Shooting Method ... 245
An Example: Deflection ofa Simply Supported Beam 246
Solving a Second-Order Ordinary Differential Equation

Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and Euler's Method ... 249

by the Shooting Method and the RK Method ... 251
Finite-Difference Methods ... 254

by the Finite-Difference Method .. 254
Solving a Second-Order Ordinary Differential Equation

... CONTENTS X l l l

Another Example ... 258
A Limitation on the Finite-Difference Method .. 261

Problems ... 262

263
Elliptic. Parabolic and Hyperbolic Partial Differential Equations 263
Elliptic Partial Differential Equations .. 264

Replacing Derivatives with Finite Differences ... 265
An Example: Temperature Distribution in a Heated Metal Plate 267

Parabolic Partial Differential Equations ... 269
Solving Parabolic Partial Differential Equations: The Explicit Method 270
An Example: Heat Conduction in a Brass Rod .. 272

The Crank-Nicholson or Implicit Method .. 274
An Example: Vapor Diffusion in a Tube ... 275
Vapor Diffusion in a Tube Revisited ... 277
Vapor Diffusion in a Tube (Again) .. 279
A Crank-Nicholson Custom Function ... 280
Vapor Diffusion in a Tube Solved by Using a Custom Function 282

Hyperbolic Partial Differential Equations .. 282

Replacing Derivatives with Finite Differences ... 282
An Example: Vibration of a String .. 283

Problems ... 286

Chapter 13 Linear Regression and Curve Fitting 287
Linear Regression ... 287

Least-Squares Fit to a Straight Line .. 288
Least-Squares Fit to a Straight Line Using the Worksheet Functions

SLOPE, INTERCEPT and RSQ .. 289

Least-Squares Fit to a Straight Line Using LINEST .. 292
Multiple Linear Regression Using LINEST .. 293
Handling Noncontiguous Ranges of known-x's in LINEST 297
A LINEST Shortcut .. 297
LINEST's Regression Statistics .. 297
Linear Regression Using Trendline ... 298
Limitations of Trendline .. 301
Importing Trendline Coefficients into a Spreadsheet

by Using Worksheet Formulas ... 302
Using the Regression Tool in Analysis Tools .. 303
Limitations of the Regression Tool ... 305

Chapter 12 Partial Differential Equations

Solving Elliptic Partial Differential Equations:

Solving Parabolic Partial Differential Equations:

Solving Hyperbolic Partial Differential Equations:

Multiple Linear Regression .. 291

xiv EXCEL: NUMERICAL METHODS

Importing the Trendline Equation from a Chart into a Worksheet 305
Problems ... 309

Chapter 14 Nonlinear Regression Using the Solver 313
Nonlinear Least-Squares Curve Fitting .. 314

Introducing the Solver ... 316
How the Solver Works ... 316
Loading the Solver Add-In .. 317
Why Use the Solver for Nonlinear Regression? .. 317
Nonlinear Regression Using the Solver: An Example 318
Some Notes on Using the Solver ... 323

Some Notes on the Solver Options Dialog Box ... 324
When to Use Manual Scaling .. 326

Statistics of Nonlinear Regression ... 327
The Solver Statistics Macro ... 328

Problems ... 332

Chapter 15 Random Numbers and the Monte Cario Method 341
Random Numbers in Excel ... 341

How Excel Generates Random Numbers .. 341

Adding "Noise" to a Signal Generated by a Formula 344

Some Notes on the Solver Parameters Dialog Box 323

Be Cautious When Using Linearized Forms of Nonlinear Equations 329

Using Random Numbers in Excel ... 342

Selecting Items Randomly from a List .. 345
Random Sampling by Using Analysis Tools ... 347
Simulating a Normal Random Distribution of a Variable 349

Monte Carlo Simulation ... 350
Monte Carlo Integration ... 354

The Area of an Irregular Polygon .. 354
Problems ... 362

APPENDICES 363
Appendix 1 Selected VBA Keywords ... 365
Appendix 2 Shortcut Keys for VBA ... 387
Appendix 3 Custom Functions Help File .. 389
Appendix 4 Some Equations for Curve Fitting ... 409

Engineering and Other Functions .. 423
Appendix 6 ASCII Codes .. 427
Appendix 7 Bibliography .. 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431

Appendix 5

INDEX .. 443

Preface

The solutions to mathematical problems in science and engineering can be
obtained by using either analytical or numerical methods. Analytical (or direct)
methods involve the use of closed-form equations to obtain an exact solution, in a
nonrepetitive fashion; obtaining the roots of a quadratic equation by application
of the quadratic formula is an example of an analytical solution. Numerical (or
indirect) methods involve the use of an algorithm to obtain an approximate
solution; results of a high level of accuracy can usually be obtained by applying
the algorithm in a series of successive approximations.

As the complexity of a scientific problem increases, it may no longer be
possible to obtain an exact mathematical expression as a solution to the problem.
Such problems can usually be solved by numerical methods.

The Objective of This Book
Numerical methods require extensive calculation, which is easily

accomplished using today's desktop computers. A number of books have been
written in which numerical methods are implemented using a specific
programming language, such as FORTRAN or C++. Most scientists and
engineers received some training in computer programming in their college days,
but they (or their computer) may no longer have the capability to write or run
programs in, for example, FORTRAN. This book shows how to implement
numerical methods using Microsoft Excel@, the most widely used spreadsheet
software package. Excel@ provides at least three ways for the scientist or
engineer to apply numerical methods to problems:

by implementing the methods on a worksheet, using worksheet formulas

by using the built-in tools that are provided within Excel

by writing programs, sometimes loosely referred to as macros, in Excel's
Visual Basic for Applications (VBA) programming language.

All of these approaches are illustrated in this book.

This is a book about numerical methods. I have emphasized the methods and
have kept the mathematical theory behind the methods to a minimum. In many
cases, formulas are introduced with little or no description of the underlying
theory. (I assume that the reader will be familiar with linear interpolation, simple
calculus, regression, etc.) Other topics, such as cubic interpolation, methods for
solving differential equations, and so on, are covered in more detail, and a few

xv

xvi EXCEL: NUMERICAL METHODS

topics, such as Bairstow's method for obtaining the roots of a regular polynomial,
are discussed in detail.

In this book I have provided a wide range of Excel solutions to problems. In
many cases I provide a series of examples that progress from a very simple
implementation of the problem (useful for understanding the logic and
construction of the spreadsheet or VBA code) to a more sophisticated one that is
more general. Some of the VBA macros are simple "starting points" and I
encourage the reader to modify them; others are (or at least I intended them to
be) "finished products" that I hope users can employ on a regular basis.

Nearly 100% of the material in this book applies equally to the PC or
Macintosh versions of Excel. In a few cases I have pointed out the different
keystrokes requires for the Macintosh version.

A Note About Visual Basic Programming
Visual Basic for Applications, or VBA, is a "dialect" of Microsoft's Visual

Basic programming language. VBA has keywords that allow the programmer to
work with Excel's workbooks, worksheets, cells, charts, etc.

I expect that although many readers of this book will be proficient VBA
programmers, others may not be familiar with VBA but would like to learn to
program in VBA. The first two chapters of this book provide an introduction to
VBA programming - not enough to become proficient, but enough to understand
and perhaps modify the VBA code in this book. For readers who have no
familiarity with VBA, and who do not wish to learn it, do not despair. Much of
the book (perhaps 50%) does not involve VBA. In addition, you can still use the
VBA custom functions that have been provided.

Appendix 1 provides a list of VBA keywords that are used in this book. The
appendix provides a description of the keyword, its syntax, one or more examples
of its use, and reference to related keywords. The information is similar to what
can be found in Excel's On-Line Help, but readers may find it helpful at those
times when they are reading the book without simultaneous access to a PC.

A Note About Typographic Conventions
The typographic conventions used in this book are the following:

Menu Commands. Excel's menu commands appear in bold, as in the
following examples: 'lchoose Add Trendline ... from the Chart menu.. .,'I or
"Insert-Function.. .'I

PREFACE xvii

Excel's Worksheet Functions and Their Arguments. Worksheet
functions are in Arial font; the arguments are italicized. Following Microsoft's
convention, required arguments are in bold font, while optional arguments are in
nonbold, as in the following:

VLOOKUP(/ookup-value, fab/e-array, column-index-num, range-lookup)
The syntax of custom functions follows the same convention.

Excel Formulas.
example,

Excel formulas usually appear in a separate line, for

=I +1/FACT(1)+1/FACT(2)+1/FACT(3)+1IFACT(4)+1/FACT(5)

Named ranges used in formulas or in the text are not italicized, to distinguish
them from Excel's argument names, for example,

=VLOOKU P(Temp,Table, MATCH(Percent, P-Row, 1)+I, 1)

VBA Procedures. Visual Basic code is in Arial font. Complete VBA
procedures are displayed in a box, as in the following. For ease in understanding
the code, VBA keywords are in bold.

Private Function Derivl (x)
'User codes the expression for the derivative here.
Derivl = 9 * x 2 + 10 * x - 5
End Function

Problems and Solutions
There are over 100 end-of-chapter problems. Spreadsheet solutions for the

Answers and problems are on the CD-ROM that accompanies this book.
explanatory notes for most of the problems are provided in Appendix 8.

The Contents of the CD
The CD-ROM that accompanies this book contains a number of folders or

The Examples folder contains a folder for each
chapter, e.g., 'Ch. 05 (Interpolation) Examples.' The examples folder for
each chapter contains all of the examples discussed in that chapter:
spreadsheets, charts and VBA code. The location of the Excel file pertinent
to each example is specified in the chapter text, usually in the caption of a
figure, e.g.,

other documents:

an "Examples" folder.

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation,' workbook 'Interpolation I,' sheet 'Viscosity')

xviii EXCEL: NUMERICAL METHODS

a "Problems" folder. The Problems folder contains a folder for each chapter,
e.g., 'Ch. 06 (Differentiation) problems.' The problems folder for each
chapter contains solutions to (almost) all of the end-of-chapter problems in
that chapter. VBA code required for the solution of any of the problems is
provided in each workbook that requires it; the VBA code will be identical to
the code found in the 'Examples' folder.

an Excel workbook, "Numerical Methods Toolbox," that contains all of the
important custom functions in this book.

a copy of "Numerical Methods Toolbox'' saved as an Add-In workbook (an
.xla file). If you open this Add-In, the custom functions will be available for
use in any Excel workbook.

Two Excel workbooks containing the utilities Solver Statistics and Trendline
to Cell.

Comments Are Welcomed
I welcome comments and suggestions from readers. I can be contacted at

numerical-methods.biIlo@verizon.net.

E. Joseph Billo

PREFACE xix

Acknowledgments
Dr. Richard N. Fell, Department of Physics, Brandeis University, Waltham,

MA; Prof. Michele Mandrioli, Department of Chemistry and Biochemistry,
University of Massachusetts-Dartmouth, North Dartmouth, MA; and Prof.
Christopher King, Department of Chemistry, Troy University, Troy, AL, who
read the complete manuscript and provided valuable comments and corrections.

Prof. Lev Zompa, University of Massachusetts-Boston, and Dr. Peter Gans,
Protonic Software, for UV-vis spectral data.

Edwin Straver and Nicole Steidel, Frontline Systems Inc., for information
about the inner workings of the Solver.

The Dow Chemical Company for permission to use tables of physical
properties of heat transfer fluids.

About the Author
E. Joseph Billo retired in 2006 as Associate Professor of Chemistry at Boston

College, Chestnut Hill, Massachusetts. He is the author of Excel for Chemists: A
Comprehensive Guide, 2nd edition, Wiley-VCH, New York, 2001. He has
presented the 2-day short courses "Advanced Excel for Scientists and Engineers"
and "Excel Visual Basic Macros for Scientists and Engineers" to over 2000
scientists at corporate clients in the United States, Canada and Europe.

This Page Intentionally Left Blank

Chapter 1

Introducing
Visual Basic for Applications

In addition to Excel's extensive list of worksheet functions and array of
calculation tools for scientific and engineering calculations, Excel contains a
programming language that allows users to create procedures, sometimes
referred to as macros, that can perform even more advanced calculations or that
can automate repetitive calculations.

Excel's first programming language, Excel 4 Macro Language (XLM) was
introduced with version 4 of Excel. It was a rather cumbersome language, but it
did provide most of the capabilities of a programming language, such as looping,
branching and so on. This first programming language was quickly superseded
by Excel's current programming language, Visual Basic for Applications,
introduced with version 5 of Excel. Visual Basic for Applications, or VBA, is a
"dialect" of Microsoft's Visual Basic programming language, a dialect that has
keywords to allow the programmer to work with Excel's workbooks, worksheets,
cells, charts, etc. At the same time, Microsoft introduced a version of Visual
Basic for Word; it was called WordBasic and had keywords for characters,
paragraphs, line breaks, etc. But even at the beginning, Microsoft's stated
intention was to have one version of Visual Basic that could work with all its
applications: Excel, Word, Access and PowerPoint. Each version of Microsoft
Office has moved closer to this goal.

The Visual Basic Editor
To create VBA code, or to examine existing code, you will need to use the

Visual Basic Editor. To access the Visual Basic Editor, choose Macro from the
Tools menu and then Visual Basic Editor from the submenu.

The Visual Basic Editor screen usually contains three important windows:
the Project Explorer window, the Properties window and the Code window, as
shown in Figure 1-1. (What you see may not look exactly like this.)

The Code window displays the active module sheet; each module sheet can
contain one or several VBA procedures. If the workbook you are using does not

1

2 EXCEL: NUMERICAL METHODS

Figure 1-1. The Visual Basic Editor window.

contain any module sheets, the Code window will be empty. To insert a module
sheet, choose Module from the Insert menu. A folder icon labeled Modules
will be inserted; if you click on this icon, the module sheet Module1 will
bedisplayed. Excel gives these module sheets the default names Modulel,
Module2 and so on.

Use the Project window to select a particular code module from all the
available modules in open workbooks. These are displayed in the Project
window (Figure 1-2), which is usually located on the left side of the screen. If
the Project window is not visible, choose Project Explorer from the View
menu, or click on the Project Explorer toolbutton $& to display it. The Project

Explorer toolbutton is the fifth button from the right in the VBA toolbar.
In the Project Explorer window you will see a hierarchy tree with a node for

each open workbook. In the example illustrated in Figure 1-2, a new workbook,
Bookl, has been opened. The node for Bookl has a node (a folder icon) labeled
Microsoft Excel Objects; click on the folder icon to display the nodes it contains-
an icon for each sheet in the workbook and an additional one labeled
Thisworkbook. If you double-click on any one of these nodes you will display the
code sheet for it. These code sheets are for special types of procedures called
automatic procedures or event-handler procedures, which are not covered in this

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 3

Figure 1-2. The VBE Project Explorer window.

book. Do not use any of these sheets to create the VBA procedures described in
this book. The hierarchy tree in Figure 1-2 also shows a Modules folder,
containing one module sheet, Module1 .

The Properties window will be discussed later. Right now, you can press the
Close button to get rid of it if you wish.

Figure 1-3. The Properties window.

4 EXCEL: NUMERICAL METHODS

Visual Basic Procedures
VBA macros are usually referred to as procedures. They are written or

A single module sheet can contain many recorded on a module sheet.
procedures.

There Are Two Kinds of Macros
There are two different kinds of procedures: Sub procedures, called

command macros in the older XLM macro language, and Function procedures,
called function macros in the XLM macro language and often referred to as
custom functions or user-defined functions.

Although these procedures can use many of the same set of VBA commands,
they are distinctly different. Sub procedures can automate any Excel action. For
example, a Sub procedure might be used to create a report by opening a new
worksheet, copying selected ranges of cells from other worksheets and pasting
them into the new worksheet, formatting the data in the new worksheet,
providing headings, and printing the new worksheet. Sub procedures are usually
"run" by selecting Macro from the Tools menu. They can also be run by means
of an assigned shortcut key, by being called from another procedure, or in
several other ways.

Function procedures augment Excel's library of built-in functions by adding
user-defined functions. A custom or user-defined function is used in a
worksheet in the same way as a built-in function like, for example, Excel's SQRT
function. It is entered in a formula in a worksheet cell, performs a calculation,
and returns a result to the cell in which it is located. For example, a custom
function named FtoC could be used to convert Fahrenheit temperatures to
Celsius.

Custom functions can't incorporate any of VBA's "action" commands. No
experienced user of Excel would try to use the SQRT function in a worksheet
cell to calculate the square root of a number and also open a new workbook and
insert the result there; custom functions are no different.

However, both kinds of macro can incorporate decision-making, branching,
looping, subroutines and many other aspects of programming languages.

The Structure of a Sub Procedure
The structure of a Sub procedure is shown in Figure 1-4. The procedure

begins with the keyword Sub and ends with End Sub. It has a ProcedureName, a
unique identifier that you assign to it. The name should indicate the purpose of
the function. The name can be long, since after you type it once you will
probably not have to type it again. A Sub procedure has the possibility of using
one or more arguments, Argumentl, etc, but for now we will not create Sub

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 5

procedures with arguments. Empty parentheses are still required even if a Sub
procedure uses no arguments.

Sub ProcedureName(Argument1, ...)

End Sub
VBA statements

Figure 1- 4. Structure of a Sub procedure.

The Structure of a Function Procedure
The structure of a Function procedure is shown in Figure 1-5. The

procedure begins with the keyword Function and ends with End Function. It
has a FunctionName, a unique identifier that you assign to it. The name should be
long enough to indicate the purpose of the function, but not too long, since you
will probably be typing it in your worksheet formulas. A Function procedure
usually takes one or more arguments; the names of the arguments should also be
descriptive. Empty parentheses are required even if a Function procedure takes
no arguments.

Function FunctionName(Argument1, ...)
VBA statements
FunctionName = result

End Function

Figure 1-5. Structure of a user-defined function.

The function's return statement directs the procedure to return the result to
the caller (usually the cell in which the function was entered). The return
statement consists of an assignment statement in which the name of the function
is equated to a value, for example,

FunctionName = result

Using the Recorder to Create a Sub Procedure
Excel provides the Recorder, a useful tool for creating command macros.

When you choose Macro from the Tools menu and Record New Macro.. . from
the submenu, all subsequent menu and keyboard actions will be recorded until
you press the Stop Macro button or choose Stop Recording from the Macro
submenu. The Recorder is convenient for creating simple macros that involve
only the use of menu or keyboard commands, but you can't use it to incorporate
logic, branching or looping.

You don't have to know
anything about Visual Basic to record a command macro in Visual Basic. This
provides a good way to gain some familiarity with Visual Basic.

The Recorder creates Visual Basic commands.

6 EXCEL: NUMERICAL METHODS

To illustrate the use of the Recorder, let's record the action of applying
scientific number formatting to a number in a cell. First, select a cell in a
worksheet and enter a number. Now choose Macro from the Tools menu, then
Record New Macro ... from the submenu. The Record Macro dialog box
(Figure 1-6) will be displayed.

The Record Macro dialog box displays the default name that Excel has
assigned to this macro: Macrol, Macro2, etc. Change the name in the Macro
Name box to ScientificFormat (no spaces are allowed in a name). The "Store
Macro In" box should display This Workbook (the default location); if not,
choose This Workbook. Enter "e" in the box for the shortcut key, then press OK.

Figure 1-6. The Record Macro dialog box.

The Stop Recording toolbar will appear (Figure 1-7), indicating that a macro is
being recorded. If the Stop Recording toolbar doesn't appear, you can always
stop recording by using the Tools menu (in the Macro submenu the Record New
Macro.. . command will be replaced by Stop Recording).

Figure 1-7. The Stop Recording toolbar.

Now choose Cells ... from the Format menu, choose the Number tab and
choose Scientific number format, then press OK. Finally, press the Stop
Recording button.

To examine the macro code that you have just recorded, choose Macro from
the Tools menu and Visual Basic Editor from the submenu. Click on the node
for the module in the active workbook. This will display the code module sheet
containing the Visual Basic code. The macro should look like the example
shown in Figure 1-8.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 7

Sub ScientificForrnat()

' ScientificForrnat Macro
' Macro recorded 6/22/2004 by Boston College

' Keyboard Shortcut: Ctrl+e

End Sub

,

Selection.Num berFormat = "O.OOE+OO"

Figure 1-8. Macro for scientific number-formatting, recorded in VBA.

This macro consists of a single line of VBA code. You'll learn about Visual
Basic code in the chapters that follow.

To run the macro, enter a number in a cell, select the cell, then choose
Macro from the Tools menu, choose Macros ... from the submenu, select the
ScientificForrnat macro from the Macro Name list box, and press Run. Or you can
simply press the shortcut key combination that you designated when you
recorded the macro (CONTROL+e in the example above). The number should be
displayed in the cell in scientific format.

The Personal Macro Workbook
The Record Macro dialog box allows you to choose where the recorded

macro will be stored. There are three possibilities in the "Store Macro In" list
box: This Workbook, New Workbook and Personal Macro Workbook. The
Personal Macro Workbook (PERS0NAL.XL.S in Excel for Windows, or Personal
Macro Workbook in Excel for the Macintosh) is a workbook that is automatically
opened when you start Excel. Since only macros in open workbooks are
available for use, the Personal Macro Workbook is the ideal location for macros
that you want to have available all the time.

Normally the Personal Macro Workbook is hidden (choose Unhide.. . from
the Window menu to view it). If you don't yet have a Personal Macro
Workbook, you can create one by recording a macro as described earlier,
choosing Personal Macro Workbook from the "Store Macro In" list box.

As you begin to create more advanced Sub procedures, you'll find that the
Recorder is a useful tool to create fragments of macro code for incorporation into
your procedure. Instead of poring through a VBA reference, or searching
through the On-Line VBA Help, looking for the correct command syntax, simply
turn on the Recorder, perform the action, and look at the code produced. You
may find that the Recorder doesn't always produce exactly what you want, or
perhaps the most elegant code, but it is almost always useful.

Note that, since the Recorder only records actions, and Function procedures
can't perform actions, the Recorder won't be useful for creating Function
procedures.

8 EXCEL: NUMERICAL METHODS

Running a Sub Procedure
In the preceding example, the macro was run by using a shortcut key. There

are a number of other ways to run a macro. One way is to use the Macro dialog
box. Again, enter a number in a cell, select the cell, then choose Macro from the
Tools menu and Macros.. from the submenu. The Macro dialog box will be
displayed (Figure 1-9). This dialog box lists all macros in open workbooks
(right now we only have one macro available). To run the macro, select it from
the list, then press the Run button.

Assigning a Shortcut Key to a Sub Procedure
If you didn't assign a shortcut key to the macro when you recorded it, but

would like to do so "affer the fact," choose Macro from the Tools menu and
Macros ... from the submenu. Highlight the name of the macro in the Macro
Name list box, and press the Options ... button. You can now enter a letter for
the shortcut key: CONTROL+<key> or SHIFT+CONTROL+<key> in Excel for

Figure 1-9. The Macro dialog box.

Windows, OPTION+COMMAND+<key> or SHIFT+OPTION+COMMAND+<key>
in Excel for the Macintosh.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 9

Entering VBA Code
Of course, most of the VBA code you create will not be recorded, but

instead entered at the keyboard. As you type your VBA code, the Visual Basic
Editor checks each line for syntax errors. A line that contains one or more errors
will be displayed in red, the default color for errors. Variables usually appear in
black. Other colors are also used; comments (see later) are usually green and
some VBA keywords (Function, Range, etc.) usually appear in blue. (These
default colors can be changed if you wish.)

I f you type a long line of code, it will not automatically wrap to the next line
but will simply disappear off the screen. You need to insert a line-continuation
character (the underscore character, but you must type a space followed by the
underscore character followed by ENTER) to cause a line break in a line of VBA
code, as in the following example:

Worksheets("Sheet1 ").Range("A2:67").Copy -
(Worksheets("Sheet2").Range("C2"))

The line-continuation character can't be used within a string, i.e., within
quotes.

I recommend that you type the module-level declaration Option Explicit at the
top of each module sheet, before any procedures. Option Explicit forces you to
declare all variables using Dim statements; undeclared variables produce an error
at compile time.

When you type VBA code in a module, it's good programming practice to
use TAB to indent related lines for easier reading, as shown in the following
procedure.

Sub Initialize0
F o r J = l TON

Next J
End Sub

P(J) = 0

Figure 1-10. A simple VBA Sub procedure.

In order to produce a more compact display of a procedure, several lines of
code can be combined in one line by separating them with colons. For example,
the procedure in Figure 1-10 can be replaced by the more compact one in Figure
1 - 1 1 or even by the one in Figure 1 - 12.

Sub Initialize0
For J = 1 To N: P(J) = 0: Next J
End Sub

Figure 1-11. A Sub procedure with several statements combined.

10 EXCEL: NUMERICAL METHODS

lSub Initialize(): For J = 1 To N: P(J) = 0: Next J: End Sub J
Figure 1-12. A Sub procedure in one line.

Creating a Simple Custom Function
As a simple first example of a Function procedure, we'll create a custom

function to convert temperatures in degrees Fahrenheit to degrees Celsius.
Function procedures can't be recorded; you must type them on a module

sheet. You can have several macros on the same module sheet, so if you
recorded the ScientificForrnat macro earlier in this chapter, you can type this
custom function procedure on the same module sheet. If you do not have a
module sheet available, insert one by choosing Module from the Insert menu.

Type the macro as shown in Figure 1-13. DegF is the argument passed by the
function from the worksheet to the module (the Fahrenheit temperature); the
single line of VBA code evaluates the Celsius temperature and returns the result
to the caller (in this case, the worksheet cell in which the function is entered).

Function FtoC(DegF)
FtoC = (DegF - 32) * 5 / 9

I End Function
Figure 1-13. Fahrenheit to Celsius custom function.

A note about naming functions and arguments: function names should be
short, since you will be typing them in Excel formulas (that's why Excel's square-
root worksheet function is SQRT) but long enough to convey information about
what the function does. In contrast, command macro names can be long, since
command macros are run by choosing the name of the macro from the list of
macros in the Macro Run dialog box, for example.

Argument names can be long, since you don't type them. Longer names can
convey more information, and thus provide a bit of self-documentation. (If you
look at the arguments used in Excel's worksheet functions, you'll see that single
letters are usually not used as argument names.)

Using a Function Macro
A custom function is used in a worksheet formula in exactly the same way as

any of Excells built-in functions. The workbook containing the custom function
must be open.

Figure 1-14 shows how the FtoC custom function is used. Cell A2 contains
212, the argument that the custom function will use. Cell 82 contains the
formula with the custom function. You can enter the function in cell B2 by

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 11

typing it (Figure 1-14). When you press enter, the result calculated by the
function appears in the cell (Figure 1 - 15).

Figure 1-14. Entering the custom function.

Figure 1-15. The function result.

You can also enter a function by using the Insert Function dialog box. Select
the worksheet cell or the point in a worksheet formula where you want to enter
the function, in this example cell B2. Choose Function.. . from the Insert menu
or press the Insert Function toolbutton to display the Insert Function dialog
box. Scroll through the Function Category list and select the User Defined
category. The FtoC function will appear in the Insert Function list box (Figure
1-16).

Figure 1-16. The Paste Function dialog box.

When you press OK, the Function Arguments dialog box (Figure 1-17) will be
displayed. Enter the argument, or click on the cell containing the argument to
enter the reference (cell A2 in Figure 1-14), then press the OK button.

12 EXCEL: NUMERICAL METHODS

Figure 1-17. The Function Arguments dialog box.

A Shortcut to Enter a Function
You can enter a function without using Insert Function, but still receive the

benefit provided by the Function Arguments screen. This is useful if the
function takes several (perhaps unfamiliar) arguments. Simply type "="

followed by the function name, with or without the opening parenthesis, and then
press CONTROL+A to bypass the Insert Function dialog box and go directly to
the Function Arguments dialog box.

If you press CONTROL+SHIFT+A, you bypass both the Insert Function dialog
box and the Function Arguments. The function will be displayed with its
placeholder argument(s). The first argument is highlighted so that you can enter
a value or reference (Figure 1-1 8).

Figure 1-18. Entering a custom function by using CONTROL+SHIFT+A.

Unfortunately, if you're entering the custom function in a different
workbook than the one that contains the custom function, the function name
must be entered as an external reference (e.g., Bookl.XLS!FtoC). This can make
typing the function rather cumbersome, and it means that you'll probably enter
the function by using Excel's Insert Function. But, see "Creating Add-In
Function Macros" in Chapter 2.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 13

Some FAQs
Here are answers to some Frequently Asked Questions about macros.

I Recorded a Command Macro. Where Did It Go? If you have
trouble locating the code module containing your macro, here's what to do "when
all else fails": choose Macro from the Tools menu and Macros ... from the
submenu. Highlight the name of the macro in the Macro Name list box, and
press the Edit button. This will display the code module sheet containing the
Visual Basic code.

I Can't Find My Function Macro. Where Did It Go? If you're
looking in the list of macros in the Macro Name list box, you won't find it
there. Only command macros (macros that can be Run) are listed. Function
macros are found in a different place: in the list of user-defined functions in the
Insert Function dialog box. (Choose Function ... from the Insert menu and
scroll through the Function Category list and select the User Defined category.)

How Do I Rename a Macro? To rename a Sub or Function procedure,
access the Visual Basic Editor and click on the module containing the procedure.
The name of the macro is in the first line of code, immediately following the Sub
or Function keyword. Simply edit the name. Again, no spaces are allowed in the
name.

How Do I Rename a Module Sheet? You use the Properties window to
change the name of a module. The module sheet whose name you want to
change must be the active sheet. If the Properties window is not visible, choose
Properties Window from the View menu, or click on the Properties Window

to display it. The Properties Window toolbutton is the fourth

button from the right in the VBA toolbar.

Figure 1-19. Changing the name of a module by using the Properties window.

14 EXCEL: NUMERICAL METHODS

When you display the Properties window, you will see the single property of
a module sheet, namely its name, displayed in the window. Simply double-click
on the name (here, Modulel), edit the name, and press Enter. No spaces are
allowed in the name.
How Do I Add a Shortcut Key? If you decide to add a shortcut key to a
command macro "after the fact," choose Tools+Macro+Macros.. . . In the
Macro Name list box, click on the name of the macro to which you want to add a
shortcut key, then press the Options button. In the Shortcut Key box, enter a
letter, either lower- or uppercase. To run the macro, use CTRL+<letter> for a
lowercase shortcut key, or CTRL+SHIFT+<letter> for uppercase.

Warning: The shortcut key will override a built-in shortcut key that uses the
same letter. For example, if you use CTRL+s for the ScientificFormat macro,
you won't be able to use CTRL+s for "Save." This will be in effect as long as the
workbook that contains the macro is open.

How Do I Save a Macro? A macro is part of a workbook, just like a
worksheet or a chart. To save the macro, you simply Save the workbook.

Are There Some Shortcut Keys for VBA? Yes, there are several. Here's
a useful one: you can toggle between the Excel spreadsheet and the VBA Editor
by pressing ALT+Fl 1 . A list of shortcut keys for VBA programming is found in
Appendix 2.

Chapter 2

Fundamentals of
Programming with VBA

This chapter provides an overview of Excel's VBA programming language.
Because of the specialized nature of the programming in this book, the material
is organized in a way that is different from other books on the subject. This
book deals almost exclusively with creating custom or user-defined functions,
and a significant fraction of VBA's keywords cannot be used in custom
functions. (For example, custom functions can't open or close workbooks, print
documents, sort lists on worksheets, etc. -these are actions that are performed
by command macros.) Therefore, that portion of the VBA language that can be
used in custom functions is introduced in the first part of this chapter, and
programming concepts that are applicable in command macros appear in the
latter part of the chapter.

If you are familiar with programming in other versions of BASIC or in
FORTRAN, many of the programming techniques described in this chapter will
be familiar.

Components of Visual Basic Statements
VBA macro code consists of statements. Statements are constructed by

using VBA commands, operators, variables, functions, objects, properties,
methods, or other VBA keywords. (VBA Help refers to keywords such as Loop
or Exit as statements, but here they'll be referred to as commands, and we'll use
"statement" in a general way to refer to a line of VBA code.)

Much of the VBA code that you will create will consist of assignment
statements. An assignment statement assigns the result of an expression to a
variable or object; the form of an assignment statement is

variable = expression

for example,

increment = 0.00000001*XValue

or

15

16 EXCEL: NUMERICAL METHODS

K = K + 1

which, in the second example, says "Store, in the memory location to which the
user has assigned the label 'K, the value corresponding to the expression K + 1 .I'

Operators
VBA operators include the arithmetic operators (+, -, *, /, "), the text

concatenation operator (a), the comparison operators (=, c, >, c=, >=, c>) and
the logical operators (And, Or, Not)

Variables
Variables are the names you create to indicate the storage locations of values

You can't use any of the VBA reserved words, such as Formula,
Function, Range or Value.
The first character must be a letter.
A name cannot contain a space or a period.

The characters %, $, #, !, & cannot be embedded in a name. If one of
these characters is the last character of a variable name, the character
serves as a type-declaration character (see later).
You can use upper- and lowercase letters. If you declare a variable type
by using the Dim statement (see "VBA Data Types'' later in this chapter),
the capitalization of the variable name will be "fixed" - no matter how
you type it in the procedure, the variable name will revert to the
capitalization as originally declared. In contrast, if you have not declared
a variable by using Dim, changing the case of a variable name in any line
of code (e.g., from formulastring to Formulastring) will cause all instances
of the old form of the variable to change to the new form.

You should make variable names as descriptive as possible, but avoid overly
long names which are tedious to type. You can use the underscore character to
indicate a space between words (e.g., formula-string). You can't use a period to
indicate a space, since VBA reserves the period character for use with objects.
The most popular form for variable names uses upper- and lowercase letters
(e.g., FormulaString).

Long variable names like Formulastring provide valuable self-
documentation; months later, if you examine your code in order to make
changes, you'll probably be more able to understand it if you used (for example)
Formulastring as a variable name instead of F. But typing long variable names is
time-consuming and prone to errors. I like to use short names like F when I'm
developing the code. Once I'm done, I use the Visual Basic Editor's Replace ...
menu command to convert all those F's to Formulastring.

or references. There are a few rules for naming variables or arguments:

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 17

To avoid inadvertently using a VBA keyword as a variable name (there are
hundreds of VBA keywords, so this is easy to do), I suggest that you type the
variable name in all lowercase letters. If the variable name becomes capitalized,
this indicates that it is a reserved word. For example, you may decide to use FV
as a variable name. If you type the variable name "fv" in a VBA statement, then
press Enter, you will see the variable become "FV," a sign to you that FV is a
reserved word in VBA (the FV function calculates the future value of an annuity
based on periodic, fixed payments and a fixed interest rate.)

In fact, it's also a good idea to type words that you know are reserved words
in VBA in lowercase also. If you type "activecell," the word will become
"ActiveCell" when you press the Enter key. If it doesn't, you have typed it
incorrectly.

Objects, Properties and Methods
VBA is an object-oriented programming language. Objects in Microsoft

Excel are the familiar components of Excel, such as a worksheet, a chart, a
toolbar, or a range. Objects have properties and methods associated with them.
Objects are the nouns of the VBA language, properties are the adjectives that
modify the nouns and methods are the verbs (the action words). Objects are
used almost exclusively in Sub procedures, while properties and some methods
can be used in Function procedures. A discussion of objects and methods can
be found in the section "VBA Code for Command Macros" later in this chapter.

Objects
Some examples of VBA objects are the Workbook object, the Worksheet

object, the Chart object and the Range object. It's very unlikely that a custom
function would include any of these keywords. But if a custom function takes as
an argument a cell or range of cells, the argument is a Range object and has all
of the properties of a Range object.

Properties
Objects have properties that can be set or read. Some properties of the

Range object are the ColumnWidth property, the NumberFormat property, the
Font property and the Value property. A property is connected to the object it
modifies by a period, for example

CelFmt = Range("E5").NumberFormat

returns the number format of cell E5 and assigns it to the variable CelFmt, and

Range("ES').NumberForrnat = "0.000"

sets the number formatting of cell E5.

18 EXCEL: NUMERICAL METHODS

Some properties, such as Column or Count, are read-only. The Column
property of a Range object is the column number of the leftmost cell in the
specified range; it should be clear that this property can be read, but not changed.
The Count property of a Range object is the number of cells in the range; again,
it can be read, but not changed.

Properties can also modify properties. The following example

Range("Al").Font.Bold = True

makes the contents of cell A1 bold.

object.
pertaining to the Range object contains 93 entries:

There is a large and confusing number of properties, a different list for each
For example, as of this writing (Excel 2003), the list of properties

Addlndent
Address
AddressLocal
AllowEdit
Application
Areas
Borders
Cells
Characters
Column
Columns
ColumnWidth
Comment
Count
Creator
CurrentArray
CurrentRegion
Dependents
DirectDependents
Directprecedents
End
Entirecolumn
EntireRow
Errors

Font
FormatConditions
Formula
FormulaArray
FormulaHidden
FormulaLabel
FormulaLocal
FormulaRlCl
FormulaRlCl Local
HasArray
HasFormula
Height
Hidden
HorizontalAlignment
Hyperlinks
ID
I ndentLevel
Interior
Item
Left
ListHeaderRows
Listobject
LocationlnTable
Locked

MergeArea Row
Mergecells RowHeight
Name Rows
Next ShowDetail
NumberFormat ShrinkToFit
NumberFormatLocal SmartTags
Offset SoundNote
Orientation Style
OutlineLevel Summary
PageBreak Text
Parent TOP
Phonetic UseStandardHeight
Phonetics UseStandardWidth
Pivotcell Validation
PivotField Value
Pivotltem Value2
PivotTable VerticalAlignment
Precedents Width
PrefixC haracter Worksheet
Previous WrapText
QueryTable XPath
Range
Reading Order
Resize

This large number of properties, just for the Range object, is what makes
VBA so difficult for the beginner. You must find out what properties are
associated with a particular object, and what you can do with them. For our
purposes (creating custom functions), only a limited number of these properties
of the Range object can be used. Some of the properties of the Range object
that can be used in a custom function are listed in Table 2-1. Note that, when
used in a custom function, these properties can only be read, not set.

