

Beginning
Programming
with Python®

2nd Edition

by John Paul Mueller

Beginning Programming with Python® For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Python is a registered trademark of Python Software Foundation Corporation. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017964018

ISBN 978-1-119-45789-3; ISBN 978-1-119-45787-9 (ebk); ISBN 978-1-119-45790-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Getting Started with Python . 5
CHAPTER 1: Talking to Your Computer . 7
CHAPTER 2:	 Getting	Your	Own	Copy of	Python . 21
CHAPTER 3:	 Interacting	with	Python . 37
CHAPTER 4: Writing Your First Application . 55
CHAPTER 5:	 Working	with	Anaconda . 83

Part 2: Talking the Talk . 101
CHAPTER 6:	 Storing	and	Modifying	Information . 103
CHAPTER 7:	 Managing	Information . 113
CHAPTER 8:	 Making	Decisions . 135
CHAPTER 9:	 Performing	Repetitive	Tasks . 151
CHAPTER 10:	Dealing	with	Errors . 165

Part 3: Performing Common Tasks . 195
CHAPTER 11:	Interacting	with	Packages . 197
CHAPTER 12:	Working	with	Strings . 225
CHAPTER 13:	Managing	Lists . 243
CHAPTER 14:	Collecting	All	Sorts	of Data . 261
CHAPTER 15:	Creating	and	Using	Classes . 281

Part 4: Performing Advanced Tasks . 303
CHAPTER 16:	Storing	Data	in	Files . 305
CHAPTER 17:	Sending	an	Email . 323

Part 5: The Part of Tens . 341
CHAPTER 18:	Ten	Amazing	Programming	Resources . 343
CHAPTER 19:	Ten	Ways	to	Make	a	Living	with	Python . 353
CHAPTER 20:	Ten	Tools	That	Enhance	Your	Python	Experience 361
CHAPTER 21:	Ten	(Plus)	Libraries	You	Need	to	Know	About . 371

Index . 379

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish	Assumptions .2
Icons	Used	in	This	Book .3
Beyond	the	Book .3
Where	to	Go	from	Here .4

PART 1: GETTING STARTED WITH PYTHON 5

CHAPTER 1: Talking to Your Computer . 7
Understanding	Why	You	Want	to	Talk	to Your	Computer 8
Knowing	that	an	Application	is	a	Form	of Communication 9

Thinking	about	procedures	you	use	daily . 9
Writing	procedures	down .10
Seeing	applications	as	being	like	any	other	procedure 11
Understanding	that	computers	take	things	literally 11

Defining	What	an	Application	Is .11
Understanding	that	computers	use	a	special	language 12
Helping	humans	speak	to	the	computer .12

Understanding	Why	Python	Is	So	Cool .14
Unearthing	the	reasons	for	using	Python .14
Deciding	how	you	can	personally	benefit	from	Python 15
Discovering	which	organizations	use	Python 16
Finding	useful	Python	applications .17
Comparing	Python	to	other	languages .18

CHAPTER 2:	 Getting	Your	Own	Copy of	Python . 21
Downloading	the	Version	You	Need .21
Installing	Python .24

Working	with	Windows .25
Working	with	the	Mac .27
Working	with	Linux .28

Accessing	Python	on	Your	Machine .31
Using	Windows .32
Using	the	Mac .34
Using	Linux .35

Testing Your Installation .35

vi Beginning Programming with Python For Dummies

CHAPTER 3: Interacting with Python . 37
Opening	the	Command	Line .38

Starting	Python .38
Using	the	command	line	to	your	advantage 39
Using	Python	environment	variables	to	your	advantage 41

Typing	a	Command .43
Telling	the	computer	what	to	do .43
Telling	the	computer	you’re	done .44
Seeing	the	result .44

Using	Help .46
Getting	into	help	mode .46
Asking	for	help .47
Leaving	help	mode .49
Obtaining	help	directly .50

Closing	the	Command	Line .51

CHAPTER 4: Writing Your First Application . 55
Understanding	Why	IDEs	Are	Important .56

Creating	better	code .56
Debugging	functionality .56
Defining	why	notebooks	are	useful .57

Obtaining	Your	Copy	of	Anaconda .58
Obtaining	Analytics	Anaconda .58
Installing	Anaconda	on	Linux .59
Installing	Anaconda	on	MacOS .60
Installing	Anaconda	on	Windows .61

Downloading	the	Datasets	and	Example	Code .64
Using	Jupyter	Notebook .64
Defining	the	code	repository .65

Creating	the	Application .71
Understanding	cells . .71
Adding	documentation	cells .74
Other	cell	content .75

Understanding	the	Use	of	Indentation .75
Adding	Comments .77

Understanding	comments .78
Using	comments	to	leave	yourself	reminders 79
Using	comments	to	keep	code	from	executing 80

Closing	Jupyter	Notebook . .80

Table of Contents vii

CHAPTER 5: Working with Anaconda . 83
Downloading	Your	Code .84
Working	with	Checkpoints .85

Defining	the	uses	of	checkpoints .85
Saving	a	checkpoint .86
Restoring	a	checkpoint .86

Manipulating	Cells .86
Adding	various	cell	types .87
Splitting	and	merging	cells .87
Moving	cells	around .88
Running	cells .88
Toggling outputs .90

Changing	Jupyter	Notebook’s	Appearance .90
Finding	commands	using	the	Command	Palette 91
Working	with	line	numbers .92
Using	the	Cell	Toolbar	features .93

Interacting	with	the	Kernel .94
Obtaining	Help .95
Using	the	Magic	Functions .97
Viewing	the	Running	Processes .99

PART 2: TALKING THE TALK . 101

CHAPTER 6: Storing and Modifying Information 103
Storing	Information .104

Seeing	variables	as	storage	boxes .104
Using	the	right	box	to	store	the	data .104

Defining	the	Essential	Python	Data	Types .105
Putting	information	into	variables .105
Understanding	the	numeric	types .106
Understanding	Boolean	values .110
Understanding	strings .110

Working	with	Dates	and	Times .111

CHAPTER 7: Managing Information . 113
Controlling	How	Python	Views	Data .114

Making	comparisons .114
Understanding	how	computers	make	comparisons 115

Working	with	Operators .115
Defining	the	operators .116
Understanding	operator	precedence .122

viii Beginning Programming with Python For Dummies

Creating	and	Using	Functions .123
Viewing	functions	as	code	packages . .124
Understanding	code	reusability .124
Defining	a	function .125
Accessing	functions .126
Sending	information	to	functions .127
Returning	information	from	functions .131
Comparing	function	output .132

Getting	User	Input .132

CHAPTER 8: Making Decisions . 135
Making	Simple	Decisions	by	Using	the if Statement 136

Understanding	the	if	statement .136
Using	the	if	statement	in	an	application .137

Choosing	Alternatives	by	Using	the	if. . .else	Statement 141
Understanding	the	if. . .else	statement .141
Using	the	if. . .else	statement	in	an	application 142
Using	the	if. . .elif	statement	in	an	application 143

Using	Nested	Decision	Statements .146
Using	multiple	if	or	if. . .else	statements .146
Combining	other	types	of	decisions .148

CHAPTER 9: Performing Repetitive Tasks . 151
Processing	Data	Using	the	for	Statement .152

Understanding	the	for	statement .152
Creating	a	basic	for	loop .153
Controlling	execution	with	the	break	statement 153
Controlling	execution	with	the	continue	statement 156
Controlling	execution	with	the	pass	clause 157
Controlling	execution	with	the	else	statement 158

Processing	Data	by	Using	the	while	Statement 159
Understanding	the	while	statement .160
Using	the	while	statement	in	an	application 161

Nesting	Loop	Statements .162

CHAPTER 10: Dealing with Errors . 165
Knowing	Why	Python	Doesn’t	Understand	You 166
Considering	the	Sources	of	Errors .167

Classifying	when	errors	occur .168
Distinguishing	error	types .169

Catching	Exceptions .171
Basic	exception	handling .171
Handling	more	specific	to	less	specific	exceptions 183
Nested	exception	handling .185

Table of Contents ix

Raising	Exceptions .189
Raising	exceptions	during	exceptional	conditions 189
Passing	error	information	to	the	caller .190

Creating	and	Using	Custom	Exceptions .191
Using	the	finally	Clause .192

PART 3: PERFORMING COMMON TASKS . 195

CHAPTER 11: Interacting with Packages . 197
Creating	Code	Groupings .198

Understanding	the	package	types .200
Considering	the	package	cache .201

Importing	Packages .202
Using	the	import	statement .203
Using	the	from. . .import	statement .205

Finding	Packages	on	Disk .207
Downloading	Packages	from	Other	Sources .209

Opening	the	Anaconda	Prompt .210
Working	with	conda	packages .210
Installing	packages	by	using	pip .215

Viewing	the	Package	Content .216
Viewing	Package	Documentation .219

Opening	the	Pydoc	application .219
Using	the	quick-access	links .220
Typing	a	search	term .221
Viewing	the	results .222

CHAPTER 12: Working with Strings . 225
Understanding	That	Strings	Are	Different .226

Defining	a	character	by	using	numbers .226
Using	characters	to	create	strings .227

Creating	Stings	with	Special	Characters .229
Selecting	Individual	Characters .231
Slicing	and	Dicing	Strings .233
Locating	a	Value	in	a	String .236
Formatting Strings .238

CHAPTER 13: Managing Lists . 243
Organizing	Information	in	an	Application .244

Defining	organization	using	lists .244
Understanding	how	computers	view	lists .245

Creating	Lists .246
Accessing	Lists .248
Looping	through	Lists .249

x Beginning Programming with Python For Dummies

Modifying	Lists .250
Searching	Lists .254
Sorting	Lists .255
Printing	Lists .257
Working	with	the	Counter	Object .259

CHAPTER 14:	Collecting	All	Sorts	of Data . 261
Understanding	Collections .262
Working	with	Tuples .263
Working	with	Dictionaries .266

Creating	and	using	a	dictionary .267
Replacing	the	switch	statement	with	a		dictionary 270

Creating	Stacks	Using	Lists .273
Working	with	queues .275
Working	with	deques .278

CHAPTER 15: Creating and Using Classes . 281
Understanding	the	Class	as	a	Packaging Method282
Considering	the	Parts	of	a	Class .284

Creating	the	class	definition .284
Considering	the	built-in	class	attributes .285
Working	with	methods .286
Working	with	constructors .288
Working	with	variables .290
Using	methods	with	variable	argument	lists 293
Overloading	operators .294

Creating a Class .296
Defining	the	MyClass	class .296
Saving	a	class	to	disk .297

Using	the	Class	in	an	Application .298
Extending	Classes	to	Make	New	Classes .299

Building	the	child	class .299
Testing	the	class	in	an	application .301

PART 4: PERFORMING ADVANCED TASKS 303

CHAPTER 16: Storing Data in Files . 305
Understanding	How	Permanent	Storage Works306
Creating	Content	for	Permanent	Storage .308
Creating a File .311
Reading	File	Content .314
Updating	File	Content .317
Deleting	a	File .321

Table of Contents xi

CHAPTER 17: Sending an Email . 323
Understanding What Happens When You Send Email 324

Viewing email as you do a letter .325
Defining the parts of the envelope .326
Defining the parts of the letter .331

Creating the Email Message .335
Working with a text message .335
Working with an HTML message .337

Seeing the Email Output .338

PART 5: THE PART OF TENS . 341

CHAPTER 18: Ten Amazing Programming Resources 343
Working with the Python Documentation Online 344
Using the LearnPython.org Tutorial .345
Performing Web Programming by Using Python 346
Getting Additional Libraries .346
Creating Applications Faster by Using an IDE .348
Checking Your Syntax with Greater Ease .348
Using XML to Your Advantage .349
Getting Past the Common Python Newbie Errors 350
Understanding Unicode .351
Making Your Python Application Fast .352

CHAPTER 19: Ten Ways to Make a Living with Python 353
Working in QA .354
Becoming the IT Staff for a Smaller Organization 355
Performing Specialty Scripting for Applications 355
Administering a Network .356
Teaching Programming Skills . .357
Helping People Decide on Location .357
Performing Data Mining .358
Interacting with Embedded Systems .358
Carrying Out Scientific Tasks .359
Performing Real-Time Analysis of Data .359

CHAPTER 20: Ten Tools That Enhance Your
Python Experience . 361
Tracking Bugs with Roundup Issue Tracker .362
Creating a Virtual Environment by Using VirtualEnv 363
Installing Your Application by Using PyInstaller 364
Building Developer Documentation by Using pdoc 365
Developing Application Code by Using Komodo Edit 366

xii Beginning Programming with Python For Dummies

Debugging Your Application by Using pydbgr .367
Entering an Interactive Environment by Using IPython 368
Testing Python Applications by Using PyUnit .368
Tidying Your Code by Using Isort .369
Providing Version Control by Using Mercurial 370

CHAPTER 21: Ten (Plus) Libraries You Need to Know About 371
Developing a Secure Environment by Using PyCrypto 372
Interacting with Databases by Using SQLAlchemy 372
Seeing the World by Using Google Maps .373
Adding a Graphical User Interface by Using TkInter 373
Providing a Nice Tabular Data Presentation by
Using PrettyTable .374
Enhancing Your Application with Sound by Using PyAudio 374
Manipulating Images by Using PyQtGraph .375
Locating Your Information by Using IRLib .376
Creating an Interoperable Java Environment by Using JPype 377
Accessing Local Network Resources by Using Twisted Matrix 378
Accessing Internet Resources by Using Libraries 378

INDEX . 379

Introduction 1

Introduction

Python is an example of a language that does everything right within the
domain of things that it’s designed to do. This isn’t just me saying it, either:
Programmers have voted by using Python enough that it’s now the

fifth-ranked language in the world (see https://www.tiobe.com/tiobe-index/
for details). The amazing thing about Python is that you really can write an
 application on one platform and use it on every other platform that you need to
support. In contrast to other programming languages that promised to provide
platform independence, Python really does make that independence possible. In
this case, the promise is as good as the result you get.

Python emphasizes code readability and a concise syntax that lets you write
 applications using fewer lines of code than other programming languages require.
You can also use a coding style that meets your needs, given that Python supports
the functional, imperative, object-oriented, and procedural coding styles (see
 Chapter 3 for details). In addition, because of the way Python works, you find it
used in all sorts of fields that are filled with nonprogrammers. Beginning
Programming with Python for Dummies, 2nd Edition is designed to help everyone,
including nonprogrammers, get up and running with Python quickly.

Some people view Python as a scripted language, but it really is so much more.
(Chapter 18 gives you just an inkling of the occupations that rely on Python to
make things work.) However, Python it does lend itself to educational and other
uses for which other programming languages can fall short. In fact, this book uses
Jupypter Notebook for examples, which relies on the highly readable literate pro-
gramming paradigm advanced by Stanford computer scientist Donald Knuth (see
Chapter 4 for details). Your examples end up looking like highly readable reports
that almost anyone can understand with ease.

About This Book
Beginning Programming with Python For Dummies, 2nd Edition is all about getting up
and running with Python quickly. You want to learn the language fast so that you
can become productive in using it to perform your real job, which could be any-
thing. Unlike most books on the topic, this one starts you right at the beginning
by showing you what makes Python different from other languages and how it can
help you perform useful work in a job other than programming. As a result, you

https://www.tiobe.com/tiobe-index/

2 Beginning Programming with Python For Dummies

gain an understanding of what you need to do from the start, using hands-on
examples and spending a good deal of time performing actually useful tasks. You
even get help with installing Python on your particular system.

When you have a good installation on whatever platform you’re using, you start
with the basics and work your way up. By the time you finish working through the
examples in this book, you’ll be writing simple programs and performing tasks
such as sending an email using Python. No, you won’t be an expert, but you will
be able to use Python to meet specific needs in the job environment. To make
absorbing the concepts even easier, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to replace
that value with something that works for you. For example, if you see “Type Your
Name and press Enter,” you need to replace Your Name with your actual name.

 » Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, note that
you can click the web address to visit that website, like this: www.dummies.com.

 » When you need to type command sequences, you see them separated by a
special arrow, like this: File ➪  New File. In this case, you go to the File menu
first and then select the New File entry on that menu. The result is that you
see a new file created.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after
all, I haven’t even met you yet! Although most assumptions are indeed foolish,
I made these assumptions to provide a starting point for the book.

Familiarity with the platform you want to use is important because the book
doesn’t provide any guidance in this regard. (Chapter 2 does provide Python instal-
lation instructions for various platforms, and Chapter 4 tells you how to install
Anaconda, which includes Jupyter Notebook — the Integrated Development
 Environment, or IDE, used for this book.) To provide you with maximum
 information about Python, this book doesn’t discuss any platform-specific issues.
You really do need to know how to install applications, use applications, and
 generally work with your chosen platform before you begin working with this book.

This book also assumes that you can locate information on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your

http://www.dummies.com/

Introduction 3

learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of interest
(or not, as the case may be). This section briefly describes each icon in this book.

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try in order to get the maximum benefit from Python.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything marked with a Warning icon. Otherwise, you could find that
your program only serves to confuse users, who will then refuse to work with it.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to write Python programs successfully.

Beyond the Book
This book isn’t the end of your Python programming experience — it’s really just
the beginning. I provide online content to make this book more flexible and better
able to meet your needs. That way, as I receive email from you, I can do things like
address questions and tell you how updates to either Python or its associated
libraries affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python that not
every other developer knows. You can find the cheat sheet for this book by
going to www.dummies.com and searching Beginning Programming For
Dummies, 2nd Edition Cheat Sheet. It contains really neat information like the
top ten mistakes developers make when working with Python and some of
the Python syntax that gives most developers problems.

http://www.dummies.com

4 Beginning Programming with Python For Dummies

 » Updates: Sometimes changes happen. For example, I might not have seen
an upcoming change when I looked into my crystal ball during the writing of
this book. In the past, that simply meant the book would become outdated
and less useful, but you can now find updates to the book at by going to
www.dummies.com and searching this book’s title.

In addition to these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book? Most
readers would prefer to spend their time actually working through coding
examples, rather than typing. Fortunately for you, the source code is available for
download, so all you need to do is read the book to learn Python coding tech-
niques. Each of the book examples even tells you precisely which example project
to use. You can find these files at going to www.dummies.com and searching this
book’s title. On the page that appears, scroll down to the graphic of the book’s
cover and click it; then click More About This Book. Click the Downloads tab on
the page that appears.

Where to Go from Here
It’s time to start your Programming with Python adventure! If you’re a complete
programming novice, you should start with Chapter 1 and progress through the
book at a pace that allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python as quickly as
possible, you could skip to Chapter 2 with the understanding that you may find
some topics a bit confusing later. Skipping to Chapter 3 is possible if you already
have Python installed, but be sure to at least skim Chapter 2 so that you know
what assumptions were made when writing this book.

Readers who have some exposure to Python can save time by moving directly to
Chapter 4. It’s essential to install Anaconda to gain access to Jupyter Notebook,
which is the IDE used for this book. Otherwise, you won’t be able to use the down-
loadable source easily. Anaconda is free, so there is no cost involved.

Assuming that you already have Jupyter Notebook installed and know how to use
it, you can move directly to Chapter 6. You can always go back to earlier chapters
as necessary when you have questions. However, it’s important that you under-
stand how each example works before moving to the next one. Every example has
important lessons for you, and you could miss vital content if you start skipping
too much information.

http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com

1Getting Started
with Python

IN THIS PART . . .

Communicate with your computer.

Install Python on your Linux, Mac, or Windows system.

Interact with the Python-supplied tools.

Install and use Anaconda to write your first application.

Use Anaconda to perform useful work.

CHAPTER 1 Talking to Your Computer 7

Chapter 1
Talking to Your
Computer

Having a conversation with your computer might sound like the script of a
science fiction movie. After all, the members of the Enterprise on Star Trek
regularly talked with their computer. In fact, the computer often talked

back. However, with the rise of Apple’s Siri (http://www.apple.com/ios/siri/),
Amazon’s Echo (https://www.amazon.com/dp/B00X4WHP5E/), and other interactive
software, perhaps you really don’t find a conversation so unbelievable.

Asking the computer for information is one thing, but providing it with instruc-
tions is quite another. This chapter considers why you want to instruct your com-
puter about anything and what benefit you gain from it. You also discover the need
for a special language when performing this kind of communication and why you
want to use Python to accomplish it. However, the main thing to get out of this
chapter is that programming is simply a kind of communication that is akin to
other forms of communication you already have with your computer.

IN THIS CHAPTER

 » Talking to your computer

 » Creating programs to talk to your
computer

 » Understanding programs and their
creation

 » Considering why you want to use
Python

http://www.apple.com/ios/siri/
https://www.amazon.com/dp/B00X4WHP5E/

8 PART 1 Getting Started with Python

Understanding Why You Want to Talk
to Your Computer

Talking to a machine may seem quite odd at first, but it’s necessary because a
computer can’t read your mind — yet. Even if the computer did read your mind,
it would still be communicating with you. Nothing can occur without an exchange
of information between the machine and you. Activities such as

 » Reading your email

 » Writing about your vacation

 » Finding the greatest gift in the world

are all examples of communication that occurs between a computer and you. That
the computer further communicates with other machines or people to address
requests that you make simply extends the basic idea that communication is nec-
essary to produce any result.

In most cases, the communication takes place in a manner that is nearly invisible
to you unless you really think about it. For example, when you visit a chat room
online, you might think that you’re communicating with another person. However,
you’re communicating with your computer, your computer is communicating with
the other person’s computer through the chat room (whatever it consists of), and
the other person’s computer is communicating with that person. Figure 1-1 gives
you an idea of what is actually taking place.

Notice the cloud in the center of Figure 1-1. The cloud could contain anything, but
you know that it at least contains other computers running other applications.
These computers make it possible for your friend and you to chat. Now, think
about how easy the whole process seems when you’re using the chat application.
Even though all these things are going on in the background, it seems as if you’re
simply chatting with your friend, and the process itself is invisible.

FIGURE 1-1:
Communication

with your
computer may be

invisible unless
you really think

about it.

CHAPTER 1 Talking to Your Computer 9

Knowing that an Application is a Form
of Communication

Computer communication occurs through the use of applications. You use one
application to answer your email, another to purchase goods, and still another to
create a presentation. An application (sometimes called an app) provides the means
to express human ideas to the computer in a manner the computer can under-
stand and defines the tools needed to shape the data used for the communication
in specific ways. Data used to express the content of a presentation is different from
data used to purchase a present for your mother. The way you view, use, and under-
stand the data is different for each task, so you must use different applications to
interact with the data in a manner that both the computer and you can understand.

You can obtain applications to meet just about any general need you can conceive
of today. In fact, you probably have access to applications for which you haven’t
even thought about a purpose yet. Programmers have been busy creating millions
of applications of all types for many years now, so it may be hard to understand
what you can accomplish by creating some new method for talking with your
computer through an application. The answer comes down to thinking about the
data and how you want to interact with it. Some data simply isn’t common enough
to have attracted the attention of a programmer, or you may need the data in a
format that no application currently supports, so you don’t have any way to tell
the computer about it unless you create a custom application to do it.

The following sections describe applications from the perspective of working with
unique data in a manner that is special in some way. For example, you might have
access to a video library database but no method to access it in a way that makes
sense to you. The data is unique and your access needs are special, so you may
want to create an application that addresses both the data and your needs.

Thinking about procedures you use daily
A procedure is simply a set of steps you follow to perform a task. For example,
when making toast, you might use a procedure like this:

1. Get the bread and butter from the refrigerator.

2. Open the bread bag and take out two pieces of toast.

3. Remove the cover from the toaster.

4. Place each piece of bread in its own slot.

5. Push the toaster lever down to start toasting the bread.

10 PART 1 Getting Started with Python

6. Wait for the toasting process to complete.

7. Remove toast from the toaster.

8. Place toast on a plate.

9. Butter the toast.

Your procedure might vary from the one presented here, but it’s unlikely that
you’d butter the toast before placing it in the toaster. Of course, you do actually
have to remove the bread from the wrapper before you toast it (placing the bread,
wrapper and all, into the toaster would likely produce undesirable results). Most
people never actually think about the procedure for making toast. However, you
use a procedure like this one even though you don’t think about it.

Computers can’t perform tasks without a procedure. You must tell the computer
which steps to perform, the order in which to perform them, and any exceptions
to the rule that could cause failure. All this information (and more) appears within
an application. In short, an application is simply a written procedure that you use
to tell the computer what to do, when to do it, and how to do it. Because you’ve
been using procedures all your life, all you really need to do is apply the knowl-
edge you already possess to what a computer needs to know about specific tasks.

Writing procedures down
When I was in grade school, our teacher asked us to write a paper about making
toast. After we turned in our papers, she brought in a toaster and some loaves of
bread. Each paper was read and demonstrated. None of our procedures worked as
expected, but they all produced humorous results. In my case, I forgot to tell the
teacher to remove the bread from the wrapper, so she dutifully tried to stuff the
piece of bread, wrapper and all, into the toaster. The lesson stuck with me. Writing
about procedures can be quite hard because we know precisely want we want to
do, but often we leave steps out — we assume that the other person also knows
precisely what we want to do.

Many experiences in life revolve around procedures. Think about the checklist
used by pilots before a plane takes off. Without a good procedure, the plane could
crash. Learning to write a great procedure takes time, but it’s doable. You may
have to try several times before you get a procedure that works completely, but
eventually you can create one. Writing procedures down isn’t really sufficient,
though — you also need to test the procedure by using someone who isn’t familiar
with the task involved. When working with computers, the computer is your per-
fect test subject.

CHAPTER 1 Talking to Your Computer 11

Seeing applications as being
like any other procedure
A computer acts like the grade school teacher in my example in the previous sec-
tion. When you write an application, you’re writing a procedure that defines a
series of steps that the computer should perform to accomplish whatever task you
have in mind. If you leave out a step, the results won’t be what you expected. The
computer won’t know what you mean or that you intended for it to perform cer-
tain tasks automatically. The only thing the computer knows is that you have
provided it with a specific procedure and it needs to perform that procedure.

Understanding that computers
take things literally
People eventually get used to the procedures you create. They automatically compen-
sate for deficiencies in your procedure or make notes about things that you left out.
In other words, people compensate for problems with the procedures that you write.

When you begin writing computer programs, you’ll get frustrated because com-
puters perform tasks precisely and read your instructions literally. For example, if
you tell the computer that a certain value should equal 5, the computer will look
for a value of exactly 5. A human might see 4.9 and know that the value is good
enough, but a computer doesn’t see things that way. It sees a value of 4.9 and
decides that it doesn’t equal 5 exactly. In short, computers are inflexible, unintui-
tive, and unimaginative. When you write a procedure for a computer, the com-
puter will do precisely as you ask absolutely every time and never modify your
procedure or decide that you really meant for it to do something else.

Defining What an Application Is
As previously mentioned, applications provide the means to define express human
ideas in a manner that a computer can understand. To accomplish this goal, the
application relies on one or more procedures that tell the computer how to per-
form the tasks related to the manipulation of data and its presentation. What you
see onscreen is the text from your word processor, but to see that information, the
computer requires procedures for retrieving the data from disk, putting it into a
form you can understand, and then presenting it to you. The following sections
define the specifics of an application in more detail.

12 PART 1 Getting Started with Python

Understanding that computers
use a special language
Human language is complex and difficult to understand. Even applications such as
Siri and Alexa have serious limits in understanding what you’re saying. Over the
years, computers have gained the capability to input human speech as data and to
understand certain spoken words as commands, but computers still don’t quite
understand human speech to any significant degree. The difficulty of human
speech is exemplified in the way lawyers work. When you read legalese, it appears
as a gibberish of sorts. However, the goal is to state ideas and concepts in a way
that isn’t open to interpretation. Lawyers seldom succeed in meeting their objec-
tive precisely because human speech is imprecise.

Given what you know from previous sections of this chapter, computers could
never rely on human speech to understand the procedures you write. Computers
always take things literally, so you’d end up with completely unpredictable results
if you were to use human language to write applications. That’s why humans use
special languages, called programming languages, to communicate with computers.
These special languages make it possible to write procedures that are both specific
and completely understandable by both humans and computers.

Computers don’t actually speak any language. They use binary codes to flip
switches internally and to perform math calculations. Computers don’t even
understand letters — they understand only numbers. A special application turns
the computer-specific language you use to write a procedure into binary codes. For
the purposes of this book, you really don’t need to worry too much about the low-
level specifics of how computers work at the binary level. However, it’s interesting
to know that computers speak math and numbers, not really a language at all.

Helping humans speak to the computer
It’s important to keep the purpose of an application in mind as you write it. An
application is there to help humans speak to the computer in a certain way. Every
application works with some type of data that is input, stored, manipulated, and
output so that the humans using the application obtain a desired result. Whether
the application is a game or a spreadsheet, the basic idea is the same. Computers
work with data provided by humans to obtain a desired result.

When you create an application, you’re providing a new method for humans to
speak to the computer. The new approach you create will make it possible for other
humans to view data in new ways. The communication between human and com-
puter should be easy enough that the application actually disappears from view.
Think about the kinds of applications you’ve used in the past. The best applica-
tions are the ones that let you focus on whatever data you’re interacting with.

CHAPTER 1 Talking to Your Computer 13

For example, a game application is considered immersive only if you can focus on
the planet you’re trying to save or the ship you’re trying to fly, rather than the
application that lets you do these things.

One of the best ways to start thinking about how you want to create an application
is to look at the way other people create applications. Writing down what you like
and dislike about other applications is a useful way to start discovering how you
want your applications to look and work. Here are some questions you can ask
yourself as you work with the applications:

 » What do I find distracting about the application?

 » Which features were easy to use?

 » Which features were hard to use?

 » How did the application make it easy to interact with my data?

 » How would I make the data easier to work with?

 » What do I hope to achieve with my application that this application doesn’t
provide?

Professional developers ask many other questions as part of creating an applica-
tion, but these are good starter questions because they begin to help you think
about applications as a means to help humans speak with computers. If you’ve
ever found yourself frustrated by an application you used, you already know how
other people will feel if you don’t ask the appropriate questions when you create
your application. Communication is the most important element of any applica-
tion you create.

You can also start to think about the ways in which you work. Start writing pro-
cedures for the things you do. It’s a good idea to take the process one step at a
time and write everything you can think of about that step. When you get fin-
ished, ask someone else to try your procedure to see how it actually works. You
might be surprised to learn that even with a lot of effort, you can easily forget to
include steps.

The world’s worst application usually begins with a programmer who doesn’t
know what the application is supposed to do, why it’s special, what need it
addresses, or whom it is for. When you decide to create an application, make sure
that you know why you’re creating it and what you hope to achieve. Just having a
plan in place really helps make programming fun. You can work on your new
application and see your goals accomplished one at a time until you have a com-
pleted application to use and show off to your friends (all of whom will think
you’re really cool for creating it).

14 PART 1 Getting Started with Python

Understanding Why Python is So Cool
Many programming languages are available today. In fact, a student can spend an
entire semester in college studying computer languages and still not hear about
them all. (I did just that during my college days.) You’d think that programmers
would be happy with all these programming languages and just choose one to talk
to the computer, but they keep inventing more.

Programmers keep creating new languages for good reason. Each language has
something special to offer — something it does exceptionally well. In addition, as
computer technology evolves, so do the programming languages in order to keep
up. Because creating an application is all about efficient communication, many pro-
grammers know multiple programming languages so that they can choose just the
right language for a particular task. One language might work better to obtain data
from a database, and another might create user interface elements especially well.

As with every other programming language, Python does some things exception-
ally well, and you need to know what they are before you begin using it. You might
be amazed by the really cool things you can do with Python. Knowing a program-
ming language’s strengths and weaknesses helps you use it better as well as avoid
frustration by not using the language for things it doesn’t do well. The following
sections help you make these sorts of decisions about Python.

Unearthing the reasons for using Python
Most programming languages are created with specific goals in mind. These goals
help define the language characteristics and determine what you can do with the
language. There really isn’t any way to create a programming language that
does everything because people have competing goals and needs when creating
 applications. When it comes to Python, the main objective was to create a
 programming language that would make programmers efficient and productive.
With that in mind, here are the reasons that you want to use Python when creating
an application:

 » Less application development time: Python code is usually 2–10 times
shorter than comparable code written in languages like C/C++ and Java, which
means that you spend less time writing your application and more time using it.

 » Ease of reading: A programming language is like any other language — you
need to be able to read it to understand what it does. Python code tends to be
easier to read than the code written in other languages, which means you
spend less time interpreting it and more time making essential changes.

CHAPTER 1 Talking to Your Computer 15

 » Reduced learning time: The creators of Python wanted to make a program-
ming language with fewer odd rules that make the language hard to learn.
After all, programmers want to create applications, not learn obscure and
difficult languages.

Although Python is a popular language, it’s not always the most popular language
out there (depending on the site you use for comparison). In fact, it currently ranks
fifth on sites such as TIOBE (http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html), an organization that tracks usage statistics (among
other things). However, if you look at sites such as IEEE Spectrum (https://
spectrum.ieee.org/computing/software/the-2017-top-programming-
languages), you see that Python is actually the number-one language from that
site’s perspective. Tech Rapidly has it as the number-three language (see http://
techrapidly.com/top-10-best-programming-languages-learn-2018/).

If you’re looking for a language solely for the purpose of obtaining a job, Python
is a great choice, but Java, C/C++, or C# might be better choices, depending on the
kind of job you want to get. Visual Basic is also a great choice, even if it isn’t cur-
rently quite as popular as Python. Make sure to choose a language you like and one
that will address your application-development needs, but also choose on the
basis of what you intend to accomplish. Python was the language of the year in
both 2007 and 2010 and has ranked as high as the fourth most popular language
in February 2011. So it truly is a good choice if you’re looking for a job, but not
necessarily the best choice. However, you may be surprised to learn that many
colleges now use Python to teach coding, and it has become the most popular lan-
guage in that venue. Check out my blog post at http://blog.johnmuellerbooks.
com/2014/07/14/python-as-a-learning-tool for details.

Deciding how you can personally benefit
from Python
Ultimately, you can use any programming language to write any sort of applica-
tion you want. If you use the wrong programming language for the job, the pro-
cess will be slow, error prone, bug ridden, and you’ll absolutely hate it — but you
can get the job done. Of course, most of us would rather avoid horribly painful
experiences, so you need to know what sorts of applications people typically use
Python to create. Here’s a list of the most common uses for Python (although
people do use it for other purposes):

 » Creating rough application examples: Developers often need to create a
prototype, a rough example of an application, before getting the resources to
create the actual application. Python emphasizes productivity, so you can use
it to create prototypes of an application quickly.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool

16 PART 1 Getting Started with Python

 » Scripting browser-based applications: Even though JavaScript is probably
the most popular language used for browser-based application scripting,
Python is a close second. Python offers functionality that JavaScript doesn’t
provide (see the comparison at https://blog.glyphobet.net/essay/2557
for details) and its high efficiency makes it possible to create browser-based
applications faster (a real plus in today’s fast-paced world).

 » Designing mathematic, scientific, and engineering applications: Interestingly
enough, Python provides access to some really cool libraries that make it easier
to create math, scientific, and engineering applications. The two most popular
libraries are NumPy (http://www.numpy.org/) and SciPy (http://www.scipy.
org/). These libraries greatly reduce the time you spend writing specialized code
to perform common math, scientific, and engineering tasks.

 » Working with XML: The eXtensible Markup Language (XML) is the basis of
most data storage needs on the Internet and many desktop applications
today. Unlike most languages, where XML is just sort of bolted on, Python
makes it a first-class citizen. If you need to work with a Web service, the main
method for exchanging information on the Internet (or any other XML-
intensive application), Python is a great choice.

 » Interacting with databases: Business relies heavily on databases. Python
isn’t quite a query language, like the Structured Query Language (SQL) or
Language INtegrated Query (LINQ), but it does do a great job of interacting
with databases. It makes creating connections and manipulating data
relatively painless.

 » Developing user interfaces: Python isn’t like some languages like C# where
you have a built-in designer and can drag and drop items from a toolbox onto
the user interface. However, it does have an extensive array of graphical user
interface (GUI) frameworks — extensions that make graphics a lot easier to
create (see https://wiki.python.org/moin/GuiProgramming for details).
Some of these frameworks do come with designers that make the user
interface creation process easier. The point is that Python isn’t devoted to just
one method of creating a user interface — you can use the method that best
suits your needs.

Discovering which organizations
use Python
Python really is quite good at the tasks that it was designed to perform. In fact,
that’s why a lot of large organizations use Python to perform at least some
application-creation (development) tasks. You want a programming language
that has good support from these large organizations because these organizations
tend to spend money to make the language better. Table 1-1 lists the large orga-
nizations that use Python the most.

https://blog.glyphobet.net/essay/2557
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
https://wiki.python.org/moin/GuiProgramming

CHAPTER 1 Talking to Your Computer 17

These are just a few of the many organizations that use Python extensively. You
can find a more complete list of organizations at http://www.python.org/about/
success/. The number of success stories has become so large that even this list
probably isn’t complete and the people supporting it have had to create categories
to better organize it.

Finding useful Python applications
You might have an application written in Python sitting on your machine right
now and not even know it. Python is used in a vast array of applications on the
market today. The applications range from utilities that run at the console to
full-fledged CAD/CAM suites. Some applications run on mobile devices, while
others run on the large services employed by enterprises. In short, there is no
limit to what you can do with Python, but it really does help to see what others
have done. You can find a number of places online that list applications written
in Python, but the best place to look is https://wiki.python.org/moin/
Applications.

TABLE 1-1	 Large Organizations That Use Python
Vendor URL Application Type

Alice Educational Software –
Carnegie Mellon University

(https://www.alice.org/) Educational applications

Fermilab (https://www.fnal.gov/) Scientific applications

Go.com (http://go.com/) Browser-based applications

Google (https://www.google.com/) Search engine

Industrial Light & Magic (http://www.ilm.com/) Just about every
programming need

Lawrence Livermore
National Library

(https://www.llnl.gov/) Scientific applications

National Space and Aeronautics
Administration (NASA)

(http://www.nasa.gov/) Scientific applications

New York Stock Exchange (https://nyse.nyx.com/) Browser-based applications

Redhat (http://www.redhat.com/) Linux installation tools

Yahoo! (https://www.yahoo.com/) Parts of Yahoo! mail

YouTube (http://www.youtube.com/) Graphics engine

Zope – Digital Creations (http://www.zope.org/en/latest/) Publishing application

http://www.python.org/about/success/
http://www.python.org/about/success/
https://wiki.python.org/moin/Applications
https://wiki.python.org/moin/Applications
https://www.alice.org/
https://www.fnal.gov/
http://go.com/
https://www.google.com/
http://www.ilm.com/
https://www.llnl.gov/
http://www.nasa.gov/
https://nyse.nyx.com/
http://www.redhat.com/
https://www.yahoo.com/
http://www.youtube.com/
http://www.zope.org/en/latest/

18 PART 1 Getting Started with Python

As a Python programmer, you’ll also want to know that Python development tools
are available to make your life easier. A development tool provides some level of
automation in writing the procedures needed to tell the computer what to do.
Having more development tools means that you have to perform less work in
order to obtain a working application. Developers love to share their lists of favor-
ite tools, but you can find a great list of tools broken into categories at http://
www.python.org/about/apps/.

Of course, this chapter describes a number of tools as well, such as NumPy and
SciPy (two scientific libraries). The remainder of the book lists a few other tools;
make sure that you copy down your favorite tools for later.

Comparing Python to other languages
Comparing one language to another is somewhat dangerous because the selection
of a language is just as much a matter of taste and personal preference as it is any
sort of quantifiable scientific fact. So before I’m attacked by the rabid protectors
of the languages that follow, it’s important to realize that I also use a number of
languages and find at least some level of overlap among them all. There is no best
language in the world, simply the language that works best for a particular appli-
cation. With this idea in mind, the following sections provide an overview com-
parison of Python to other languages. (You can find comparisons to other
languages at https://wiki.python.org/moin/LanguageComparisons.)

C#
A lot of people claim that Microsoft simply copied Java to create C#. That said, C#
does have some advantages (and disadvantages) when compared to Java. The
main (undisputed) intent behind C# is to create a better kind of C/C++ language —
one that is easier to learn and use. However, we’re here to talk about C# and
Python. When compared to C#, Python has these advantages:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Supported fully as open source

 » Better multiplatform support

 » Easily allows use of multiple development environments

 » Easier to extend using Java and C/C++

 » Enhanced scientific and engineering support

http://www.python.org/about/apps/
http://www.python.org/about/apps/
https://wiki.python.org/moin/LanguageComparisons

CHAPTER 1 Talking to Your Computer 19

Java
For years, programmers looked for a language that they could use to write an
application just once and have it run anywhere. Java is designed to work well on
any platform. It relies on some tricks that you’ll discover later in the book to
accomplish this magic. For now, all you really need to know is that Java was so
successful at running well everywhere that other languages have sought to emu-
late it (with varying levels of success). Even so, Python has some important
advantages over Java, as shown in the following list:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Enhanced variables (storage boxes in computer memory) that can hold
different kinds of data based on the application’s needs while running
(dynamic typing)

 » Faster development times

Perl
Perl was originally an acronym for Practical Extraction and Report Language.
Today, people simply call it Perl and let it go at that. However, Perl still shows its
roots in that it excels at obtaining data from a database and presenting it in report
format. Of course, Perl has been extended to do a lot more than that — you can use
it to write all sorts of applications. (I’ve even used it for a Web service application.)
In a comparison with Python, you’ll find that Python has these advantages over
Perl:

 » Simpler to learn

 » Easier to read

 » Enhanced protection for data

 » Better Java integration

 » Fewer platform-specific biases

R
Data scientists often have a tough time choosing between R and Python because
both languages are adept at statistical analysis and the sorts of graphing that data
scientists need to understand data patterns. Both languages are also open source

20 PART 1 Getting Started with Python

and support a large range of platforms. However, R is a bit more specialized than
Python and tends to cater to the academic market. Consequently, Python has these
advantages over R in that Python:

 » Emphasizes productivity and code readability

 » Is designed for use by enterprises

 » Offers easier debugging

 » Uses consistent coding techniques

 » Has greater flexibility

 » Is easier to learn

CHAPTER 2 Getting Your Own Copy of Python 21

Chapter 2
Getting Your Own
Copy of Python

Creating applications requires that you have another application, unless you
really want to get low level and write applications in machine code — a
decidedly difficult experience that even true programmers avoid if at all

possible. If you want to write an application using the Python programming lan-
guage, you need the applications required to do so. These applications help you
work with Python by creating Python code, providing help information as you
need it, and letting you run the code you write. This chapter helps you obtain a
copy of the Python application, install it on your hard drive, locate the installed
applications so that you can use them, and test your installation so that you can
see how it works.

Downloading the Version You Need
Every platform (combination of computer hardware and operating system
 software) has special rules that it follows when running applications. The Python
application hides these details from you. You type code that runs on any platform
that Python supports, and the Python applications translate that code into some-
thing the platform can understand. However, in order for the translation to take

IN THIS CHAPTER

 » Obtaining a copy of Python for
your system

 » Performing the Python installation

 » Finding and using Python on your
system

 » Ensuring your installation works
as planned

22 PART 1 Getting Started with Python

place, you must have a version of Python that works on your particular platform.
Python supports these platforms (and possibly others):

 » Advanced IBM Unix (AIX)

 » Android

 » BeOS

 » Berkeley Software Distribution (BSD)/FreeBSD

 » Hewlett-Packard Unix (HP-UX)

 » IBM i (formerly Application System 400 or AS/400, iSeries, and System i)

 » iPhone Operating System (iOS)

 » Linux

 » Mac OS X (comes pre-installed with the OS)

 » Microsoft Disk Operating System (MS-DOS)

 » MorphOS

 » Operating System 2 (OS/2)

 » Operating System 390 (OS/390) and z/OS

 » PalmOS

 » PlayStation

 » Psion

 » QNX

 » RISC OS (originally Acorn)

 » Series 60

 » Solaris

 » Virtual Memory System (VMS)

 » Windows 32-bit (XP and later)

 » Windows 64-bit

 » Windows CE/Pocket PC

Wow, that’s a lot of different platforms! This book is tested with the Windows,
Mac OS X, and Linux platforms. However, the examples could very well work with
these other platforms, too, because the examples don’t rely on any platform-
specific code. Let me know if it works on your non-Windows, Mac, or Linux

CHAPTER 2 Getting Your Own Copy of Python 23

platform at John@JohnMuellerBooks.com. The current version of Python at the
time of this writing is 3.6.2. I’ll talk about any Python updates on my blog at
http://blog.johnmuellerbooks.com. You can find the answers to your Python
book-specific questions there, too.

To get the right version for your platform, you need to go to https://www.python.
org/downloads/release/python-362/. The download section is initially hidden
from view, so you need to scroll halfway down the page. You see a page similar to
the one shown in Figure 2-1. The main part of the page contains links for
Windows, Mac OS X, and Linux downloads. These links provide you with the
default setup that is used in this book. The platform-specific links on the left side
of the page show you alternative Python configurations that you can use when the
need arises. For example, you may want to use a more advanced editor than the
one provided with the default Python package, and these alternative configura-
tions can provide one for you.

If you want to work with another platform, go to https://www.python.org/
download/other/ instead. You see a list of Python installations for other platforms,
as shown in Figure 2-2. Many of these installations are maintained by volunteers
rather than by the people who create the versions of Python for Windows, Mac OS
X, and Linux. Make sure you contact these individuals when you have installation
questions because they know how best to help you get a good installation on your
platform.

FIGURE 2-1:
The Python

download page
contains links for

all sorts of
versions.

mailto:John@JohnMuellerBooks.com
http://blog.johnmuellerbooks.com/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/download/other/
https://www.python.org/download/other/

24 PART 1 Getting Started with Python

Installing Python
After you download your copy of Python, it’s time to install it on your system. The
downloaded file contains everything needed to get you started:

 » Python interpreter

 » Help files (documentation)

 » Command-line access

 » Integrated DeveLopment Environment (IDLE) application

 » Preferred Installer Program (pip)

 » Uninstaller (only on platforms that require it)

This book assumes that you’re using one of the default Python setups found at
https://www.python.org/downloads/release/python-362/. If you use a ver-
sion other than 3.6.2, some of the examples won’t work as anticipated. The fol-
lowing sections describe how to install Python on the three platforms directly
supported by this book: Windows, Mac OS X, and Linux.

FIGURE 2-2:
Volunteers have

made Python
available on

all sorts of
 platforms.

https://www.python.org/downloads/release/python-362/

CHAPTER 2 Getting Your Own Copy of Python 25

Working with Windows
The installation process on a Windows system follows the same procedure that
you use for other application types. The main difference is in finding the file you
downloaded so that you can begin the installation process. The following proce-
dure should work fine on any Windows system, whether you use the 32-bit or the
64-bit version of Python.

1. Locate the downloaded copy of Python on your system.

The name of this file varies, but normally it appears as python-3.6.2.exe for
both 32-bit systems and python-3.6.2-amd64.exe for 64-bit systems. The
version number is embedded as part of the filename. In this case, the filename
refers to version 3.6.2, which is the version used for this book.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see a
Python Setup dialog box similar to the one shown in Figure 2-3. The exact
dialog box you see depends on which version of the Python installation
program you download.

3. Choose a user installation option (the book uses the default setting of
Install for All Users).

Using a personalized installation can make it easier to manage systems that
have multiple users. In some cases, the personalized installation also reduces
the number of Security Warning dialog boxes you see.

FIGURE 2-3:
The setup

process begins by
asking you who

should have
access to Python.

26 PART 1 Getting Started with Python

4. Select Add Python 3.6 to PATH.

Adding this setting enables you to access Python from anywhere on your hard
drive. If you don’t select this setting, you must manually add Python to the path
later.

5. Click Customize Installation.

Install asks you to choose which features to use with your copy of Python, as
shown in Figure 2-4. Keep all the features selected for this book. However, for
your own installation, you may find that you don’t actually require all the
Python features.

6. Click Next.

You see the Advanced Options dialog box, shown in Figure 2-5. Note that Install
for All Users isn’t selected, despite your having requested that feature earlier.
Install also asks you to provide the name of an installation directory for Python.
Using the default destination will save you time and effort later. However, you
can install Python anywhere you desire.

FIGURE 2-4:
Choose the

Python features
you want to

install.

FIGURE 2-5:
Decide on an

installation
location for your
copy of Python.

