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Introduction

Python is an example of a language that does everything right within the 
domain of things that it’s designed to do. This isn’t just me saying it, either: 
Programmers have voted by using Python enough that it’s now the  

fifth-ranked language in the world (see https://www.tiobe.com/tiobe-index/ 
for details). The amazing thing about Python is that you really can write an 
 application on one platform and use it on every other platform that you need to 
support. In contrast to other programming languages that promised to provide 
platform independence, Python really does make that independence possible. In 
this case, the promise is as good as the result you get.

Python emphasizes code readability and a concise syntax that lets you write 
 applications using fewer lines of code than other programming languages require. 
You can also use a coding style that meets your needs, given that Python supports 
the functional, imperative, object-oriented, and procedural coding styles (see 
 Chapter 3 for details). In addition, because of the way Python works, you find it 
used in all sorts of fields that are filled with nonprogrammers. Beginning  
Programming with Python for Dummies, 2nd Edition is designed to help everyone, 
including nonprogrammers, get up and running with Python quickly.

Some people view Python as a scripted language, but it really is so much more. 
(Chapter 18 gives you just an inkling of the occupations that rely on Python to 
make things work.) However, Python it does lend itself to educational and other 
uses for which other programming languages can fall short. In fact, this book uses 
Jupypter Notebook for examples, which relies on the highly readable literate pro-
gramming paradigm advanced by Stanford computer scientist Donald Knuth (see 
Chapter 4 for details). Your examples end up looking like highly readable reports 
that almost anyone can understand with ease.

About This Book
Beginning Programming with Python For Dummies, 2nd Edition is all about getting up 
and running with Python quickly. You want to learn the language fast so that you 
can become productive in using it to perform your real job, which could be any-
thing. Unlike most books on the topic, this one starts you right at the beginning 
by showing you what makes Python different from other languages and how it can 
help you perform useful work in a job other than programming. As a result, you 

https://www.tiobe.com/tiobe-index/
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gain an understanding of what you need to do from the start, using hands-on 
examples and spending a good deal of time performing actually useful tasks. You 
even get help with installing Python on your particular system.

When you have a good installation on whatever platform you’re using, you start 
with the basics and work your way up. By the time you finish working through the 
examples in this book, you’ll be writing simple programs and performing tasks 
such as sending an email using Python. No, you won’t be an expert, but you will 
be able to use Python to meet specific needs in the job environment. To make 
absorbing the concepts even easier, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is bold. The 
exception is when you’re working through a step list: Because each step is 
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to replace 
that value with something that works for you. For example, if you see “Type Your 
Name and press Enter,” you need to replace Your Name with your actual name.

 » Web addresses and programming code appear in monofont. If you’re reading 
a digital version of this book on a device connected to the Internet, note that 
you can click the web address to visit that website, like this: www.dummies.com.

 » When you need to type command sequences, you see them separated by a 
special arrow, like this: File ➪   New File. In this case, you go to the File menu 
first and then select the New File entry on that menu. The result is that you 
see a new file created.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after 
all, I haven’t even met you yet! Although most assumptions are indeed foolish,  
I made these assumptions to provide a starting point for the book.

Familiarity with the platform you want to use is important because the book 
doesn’t provide any guidance in this regard. (Chapter 2 does provide Python instal-
lation instructions for various platforms, and Chapter 4 tells you how to install 
Anaconda, which includes Jupyter Notebook  — the Integrated  Development 
 Environment, or IDE, used for this book.) To provide you with maximum 
 information about Python, this book doesn’t discuss any platform-specific issues. 
You really do need to know how to install applications, use applications, and 
 generally work with your chosen platform before you begin working with this book.

This book also assumes that you can locate information on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance your 

http://www.dummies.com/
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learning experience. However, these added sources are useful only if you actually 
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of interest 
(or not, as the case may be). This section briefly describes each icon in this book.

Tips are nice because they help you save time or perform some task without a lot 
of extra work. The tips in this book are time-saving techniques or pointers to 
resources that you should try in order to get the maximum benefit from Python.

I don’t want to sound like an angry parent or some kind of maniac, but you should 
avoid doing anything marked with a Warning icon. Otherwise, you could find that 
your program only serves to confuse users, who will then refuse to work with it.

Whenever you see this icon, think advanced tip or technique. You might find these 
tidbits of useful information just too boring for words, or they could contain the 
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the 
material marked by this icon. This text usually contains an essential process or a 
bit of information that you must know to write Python programs successfully.

Beyond the Book
This book isn’t the end of your Python programming experience — it’s really just 
the beginning. I provide online content to make this book more flexible and better 
able to meet your needs. That way, as I receive email from you, I can do things like 
address questions and tell you how updates to either Python or its associated 
libraries affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python that not 
every other developer knows. You can find the cheat sheet for this book by 
going to www.dummies.com and searching Beginning Programming For 
Dummies, 2nd Edition Cheat Sheet. It contains really neat information like the 
top ten mistakes developers make when working with Python and some of 
the Python syntax that gives most developers problems.

http://www.dummies.com
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 » Updates: Sometimes changes happen. For example, I might not have seen  
an upcoming change when I looked into my crystal ball during the writing of 
this book. In the past, that simply meant the book would become outdated 
and less useful, but you can now find updates to the book at by going to  
www.dummies.com and searching this book’s title.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book? Most 
readers would prefer to spend their time actually working through coding 
examples, rather than typing. Fortunately for you, the source code is available for 
download, so all you need to do is read the book to learn Python coding tech-
niques. Each of the book examples even tells you precisely which example project 
to use. You can find these files at going to www.dummies.com and searching this 
book’s title. On the page that appears, scroll down to the graphic of the book’s 
cover and click it; then click More About This Book. Click the Downloads tab on 
the page that appears.

Where to Go from Here
It’s time to start your Programming with Python adventure! If you’re a complete 
programming novice, you should start with Chapter 1 and progress through the 
book at a pace that allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python as quickly as 
possible, you could skip to Chapter 2 with the understanding that you may find 
some topics a bit confusing later. Skipping to Chapter 3 is possible if you already 
have Python installed, but be sure to at least skim Chapter 2 so that you know 
what assumptions were made when writing this book.

Readers who have some exposure to Python can save time by moving directly to 
Chapter 4. It’s essential to install Anaconda to gain access to Jupyter Notebook, 
which is the IDE used for this book. Otherwise, you won’t be able to use the down-
loadable source easily. Anaconda is free, so there is no cost involved.

Assuming that you already have Jupyter Notebook installed and know how to use 
it, you can move directly to Chapter 6. You can always go back to earlier chapters 
as necessary when you have questions. However, it’s important that you under-
stand how each example works before moving to the next one. Every example has 
important lessons for you, and you could miss vital content if you start skipping 
too much information.

http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com
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IN THIS PART . . .

Communicate with your computer.

Install Python on your Linux, Mac, or Windows system.

Interact with the Python-supplied tools.

Install and use Anaconda to write your first application.

Use Anaconda to perform useful work.
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Chapter 1
Talking to Your 
Computer

Having a conversation with your computer might sound like the script of a 
science fiction movie. After all, the members of the Enterprise on Star Trek 
regularly talked with their computer. In fact, the computer often talked 

back. However, with the rise of Apple’s Siri (http://www.apple.com/ios/siri/), 
Amazon’s Echo (https://www.amazon.com/dp/B00X4WHP5E/), and other  interactive 
software, perhaps you really don’t find a conversation so unbelievable.

Asking the computer for information is one thing, but providing it with instruc-
tions is quite another. This chapter considers why you want to instruct your com-
puter about anything and what benefit you gain from it. You also discover the need 
for a special language when performing this kind of communication and why you 
want to use Python to accomplish it. However, the main thing to get out of this 
chapter is that programming is simply a kind of communication that is akin to 
other forms of communication you already have with your computer.

IN THIS CHAPTER

 » Talking to your computer

 » Creating programs to talk to your 
computer

 » Understanding programs and their 
creation

 » Considering why you want to use 
Python

http://www.apple.com/ios/siri/
https://www.amazon.com/dp/B00X4WHP5E/
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Understanding Why You Want to Talk 
to Your Computer

Talking to a machine may seem quite odd at first, but it’s necessary because a 
computer can’t read your mind — yet. Even if the computer did read your mind, 
it would still be communicating with you. Nothing can occur without an exchange 
of information between the machine and you. Activities such as

 » Reading your email

 » Writing about your vacation

 » Finding the greatest gift in the world

are all examples of communication that occurs between a computer and you. That 
the computer further communicates with other machines or people to address 
requests that you make simply extends the basic idea that communication is nec-
essary to produce any result.

In most cases, the communication takes place in a manner that is nearly invisible 
to you unless you really think about it. For example, when you visit a chat room 
online, you might think that you’re communicating with another person. However, 
you’re communicating with your computer, your computer is communicating with 
the other person’s computer through the chat room (whatever it consists of), and 
the other person’s computer is communicating with that person. Figure 1-1 gives 
you an idea of what is actually taking place.

Notice the cloud in the center of Figure 1-1. The cloud could contain anything, but 
you know that it at least contains other computers running other applications. 
These computers make it possible for your friend and you to chat. Now, think 
about how easy the whole process seems when you’re using the chat application. 
Even though all these things are going on in the background, it seems as if you’re 
simply chatting with your friend, and the process itself is invisible.

FIGURE 1-1: 
Communication 

with your 
computer may be 

invisible unless 
you really think 

about it.



CHAPTER 1  Talking to Your Computer      9

Knowing that an Application is a Form 
of Communication

Computer communication occurs through the use of applications. You use one 
application to answer your email, another to purchase goods, and still another to 
create a presentation. An application (sometimes called an app) provides the means 
to express human ideas to the computer in a manner the computer can under-
stand and defines the tools needed to shape the data used for the communication 
in  specific ways. Data used to express the content of a presentation is different from 
data used to purchase a present for your mother. The way you view, use, and under-
stand the data is  different for each task, so you must use different applications to 
interact with the data in a manner that both the computer and you can understand.

You can obtain applications to meet just about any general need you can conceive 
of today. In fact, you probably have access to applications for which you haven’t 
even thought about a purpose yet. Programmers have been busy creating millions 
of applications of all types for many years now, so it may be hard to understand 
what you can accomplish by creating some new method for talking with your 
computer through an application. The answer comes down to thinking about the 
data and how you want to interact with it. Some data simply isn’t common enough 
to have attracted the attention of a programmer, or you may need the data in a 
format that no application currently supports, so you don’t have any way to tell 
the computer about it unless you create a custom application to do it.

The following sections describe applications from the perspective of working with 
unique data in a manner that is special in some way. For example, you might have 
access to a video library database but no method to access it in a way that makes 
sense to you. The data is unique and your access needs are special, so you may 
want to create an application that addresses both the data and your needs.

Thinking about procedures you use daily
A procedure is simply a set of steps you follow to perform a task. For example, 
when making toast, you might use a procedure like this:

1. Get the bread and butter from the refrigerator.

2. Open the bread bag and take out two pieces of toast.

3. Remove the cover from the toaster.

4. Place each piece of bread in its own slot.

5. Push the toaster lever down to start toasting the bread.
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6. Wait for the toasting process to complete.

7. Remove toast from the toaster.

8. Place toast on a plate.

9. Butter the toast.

Your procedure might vary from the one presented here, but it’s unlikely that 
you’d butter the toast before placing it in the toaster. Of course, you do actually 
have to remove the bread from the wrapper before you toast it (placing the bread, 
wrapper and all, into the toaster would likely produce undesirable results). Most 
people never actually think about the procedure for making toast. However, you 
use a procedure like this one even though you don’t think about it.

Computers can’t perform tasks without a procedure. You must tell the computer 
which steps to perform, the order in which to perform them, and any exceptions 
to the rule that could cause failure. All this information (and more) appears within 
an application. In short, an application is simply a written procedure that you use 
to tell the computer what to do, when to do it, and how to do it. Because you’ve 
been using procedures all your life, all you really need to do is apply the knowl-
edge you already possess to what a computer needs to know about specific tasks.

Writing procedures down
When I was in grade school, our teacher asked us to write a paper about making 
toast. After we turned in our papers, she brought in a toaster and some loaves of 
bread. Each paper was read and demonstrated. None of our procedures worked as 
expected, but they all produced humorous results. In my case, I forgot to tell the 
teacher to remove the bread from the wrapper, so she dutifully tried to stuff the 
piece of bread, wrapper and all, into the toaster. The lesson stuck with me. Writing 
about procedures can be quite hard because we know precisely want we want to 
do, but often we leave steps out — we assume that the other person also knows 
precisely what we want to do.

Many experiences in life revolve around procedures. Think about the checklist 
used by pilots before a plane takes off. Without a good procedure, the plane could 
crash. Learning to write a great procedure takes time, but it’s doable. You may 
have to try several times before you get a procedure that works completely, but 
eventually you can create one. Writing procedures down isn’t really sufficient, 
though — you also need to test the procedure by using someone who isn’t familiar 
with the task involved. When working with computers, the computer is your per-
fect test subject.
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Seeing applications as being  
like any other procedure
A computer acts like the grade school teacher in my example in the previous sec-
tion. When you write an application, you’re writing a procedure that defines a 
series of steps that the computer should perform to accomplish whatever task you 
have in mind. If you leave out a step, the results won’t be what you expected. The 
computer won’t know what you mean or that you intended for it to perform cer-
tain tasks automatically. The only thing the computer knows is that you have 
provided it with a specific procedure and it needs to perform that procedure.

Understanding that computers  
take things literally
People eventually get used to the procedures you create. They automatically compen-
sate for deficiencies in your procedure or make notes about things that you left out. 
In other words, people compensate for problems with the procedures that you write.

When you begin writing computer programs, you’ll get frustrated because com-
puters perform tasks precisely and read your instructions literally. For example, if 
you tell the computer that a certain value should equal 5, the computer will look 
for a value of exactly 5. A human might see 4.9 and know that the value is good 
enough, but a computer doesn’t see things that way. It sees a value of 4.9 and 
decides that it doesn’t equal 5 exactly. In short, computers are inflexible, unintui-
tive, and unimaginative. When you write a procedure for a computer, the com-
puter will do precisely as you ask absolutely every time and never modify your 
procedure or decide that you really meant for it to do something else.

Defining What an Application Is
As previously mentioned, applications provide the means to define express human 
ideas in a manner that a computer can understand. To accomplish this goal, the 
application relies on one or more procedures that tell the computer how to per-
form the tasks related to the manipulation of data and its presentation. What you 
see onscreen is the text from your word processor, but to see that information, the 
computer requires procedures for retrieving the data from disk, putting it into a 
form you can understand, and then presenting it to you. The following sections 
define the specifics of an application in more detail.
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Understanding that computers  
use a special language
Human language is complex and difficult to understand. Even applications such as 
Siri and Alexa have serious limits in understanding what you’re saying. Over the 
years, computers have gained the capability to input human speech as data and to 
understand certain spoken words as commands, but computers still don’t quite 
understand human speech to any significant degree. The difficulty of human 
speech is exemplified in the way lawyers work. When you read legalese, it appears 
as a gibberish of sorts. However, the goal is to state ideas and concepts in a way 
that isn’t open to interpretation. Lawyers seldom succeed in meeting their objec-
tive precisely because human speech is imprecise.

Given what you know from previous sections of this chapter, computers could 
never rely on human speech to understand the procedures you write. Computers 
always take things literally, so you’d end up with completely unpredictable results 
if you were to use human language to write applications. That’s why humans use 
special languages, called programming languages, to communicate with computers. 
These special languages make it possible to write procedures that are both specific 
and completely understandable by both humans and computers.

Computers don’t actually speak any language. They use binary codes to flip 
switches internally and to perform math calculations. Computers don’t even 
understand letters — they understand only numbers. A special application turns 
the computer-specific language you use to write a procedure into binary codes. For 
the purposes of this book, you really don’t need to worry too much about the low-
level specifics of how computers work at the binary level. However, it’s interesting 
to know that computers speak math and numbers, not really a language at all.

Helping humans speak to the computer
It’s important to keep the purpose of an application in mind as you write it. An 
application is there to help humans speak to the computer in a certain way. Every 
application works with some type of data that is input, stored, manipulated, and 
output so that the humans using the application obtain a desired result. Whether 
the application is a game or a spreadsheet, the basic idea is the same. Computers 
work with data provided by humans to obtain a desired result.

When you create an application, you’re providing a new method for humans to 
speak to the computer. The new approach you create will make it possible for other 
humans to view data in new ways. The communication between human and com-
puter should be easy enough that the application actually disappears from view. 
Think about the kinds of applications you’ve used in the past. The best applica-
tions are the ones that let you focus on whatever data you’re interacting with.  
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For example, a game application is considered immersive only if you can focus on 
the planet you’re trying to save or the ship you’re trying to fly, rather than the 
application that lets you do these things.

One of the best ways to start thinking about how you want to create an application 
is to look at the way other people create applications. Writing down what you like 
and dislike about other applications is a useful way to start discovering how you 
want your applications to look and work. Here are some questions you can ask 
yourself as you work with the applications:

 » What do I find distracting about the application?

 » Which features were easy to use?

 » Which features were hard to use?

 » How did the application make it easy to interact with my data?

 » How would I make the data easier to work with?

 » What do I hope to achieve with my application that this application doesn’t 
provide?

Professional developers ask many other questions as part of creating an applica-
tion, but these are good starter questions because they begin to help you think 
about applications as a means to help humans speak with computers. If you’ve 
ever found yourself frustrated by an application you used, you already know how 
other people will feel if you don’t ask the appropriate questions when you create 
your application. Communication is the most important element of any applica-
tion you create.

You can also start to think about the ways in which you work. Start writing pro-
cedures for the things you do. It’s a good idea to take the process one step at a 
time and write everything you can think of about that step. When you get fin-
ished, ask someone else to try your procedure to see how it actually works. You 
might be surprised to learn that even with a lot of effort, you can easily forget to 
include steps.

The world’s worst application usually begins with a programmer who doesn’t 
know what the application is supposed to do, why it’s special, what need it 
addresses, or whom it is for. When you decide to create an application, make sure 
that you know why you’re creating it and what you hope to achieve. Just having a 
plan in place really helps make programming fun. You can work on your new 
application and see your goals accomplished one at a time until you have a com-
pleted application to use and show off to your friends (all of whom will think 
you’re really cool for creating it).
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Understanding Why Python is So Cool
Many programming languages are available today. In fact, a student can spend an 
entire semester in college studying computer languages and still not hear about 
them all. (I did just that during my college days.) You’d think that programmers 
would be happy with all these programming languages and just choose one to talk 
to the computer, but they keep inventing more.

Programmers keep creating new languages for good reason. Each language has 
something special to offer — something it does exceptionally well. In addition, as 
computer technology evolves, so do the programming languages in order to keep 
up. Because creating an application is all about efficient communication, many pro-
grammers know multiple programming languages so that they can choose just the 
right language for a particular task. One language might work better to obtain data 
from a database, and another might create user interface elements especially well.

As with every other programming language, Python does some things exception-
ally well, and you need to know what they are before you begin using it. You might 
be amazed by the really cool things you can do with Python. Knowing a program-
ming language’s strengths and weaknesses helps you use it better as well as avoid 
frustration by not using the language for things it doesn’t do well. The following 
sections help you make these sorts of decisions about Python.

Unearthing the reasons for using Python
Most programming languages are created with specific goals in mind. These goals 
help define the language characteristics and determine what you can do with the 
language. There really isn’t any way to create a programming language that  
does everything because people have competing goals and needs when creating 
 applications. When it comes to Python, the main objective was to create a 
 programming language that would make programmers efficient and productive. 
With that in mind, here are the reasons that you want to use Python when creating 
an application:

 » Less application development time: Python code is usually 2–10 times 
shorter than comparable code written in languages like C/C++ and Java, which 
means that you spend less time writing your application and more time using it.

 » Ease of reading: A programming language is like any other language — you 
need to be able to read it to understand what it does. Python code tends to be 
easier to read than the code written in other languages, which means you 
spend less time interpreting it and more time making essential changes.
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 » Reduced learning time: The creators of Python wanted to make a program-
ming language with fewer odd rules that make the language hard to learn. 
After all, programmers want to create applications, not learn obscure and 
difficult languages.

Although Python is a popular language, it’s not always the most popular language 
out there (depending on the site you use for comparison). In fact, it currently ranks 
fifth on sites such as TIOBE (http://www.tiobe.com/index.php/content/ 
paperinfo/tpci/index.html), an organization that tracks usage statistics (among 
other things). However, if you look at sites such as IEEE Spectrum (https:// 
spectrum.ieee.org/computing/software/the-2017-top-programming- 
languages), you see that Python is actually the number-one language from that 
site’s perspective. Tech Rapidly has it as the number-three language (see http://
techrapidly.com/top-10-best-programming-languages-learn-2018/).

If you’re looking for a language solely for the purpose of obtaining a job, Python 
is a great choice, but Java, C/C++, or C# might be better choices, depending on the 
kind of job you want to get. Visual Basic is also a great choice, even if it isn’t cur-
rently quite as popular as Python. Make sure to choose a language you like and one 
that will address your application-development needs, but also choose on the 
basis of what you intend to accomplish. Python was the language of the year in 
both 2007 and 2010 and has ranked as high as the fourth most popular language 
in February 2011. So it truly is a good choice if you’re looking for a job, but not 
necessarily the best choice. However, you may be surprised to learn that many 
colleges now use Python to teach coding, and it has become the most popular lan-
guage in that venue. Check out my blog post at http://blog.johnmuellerbooks.
com/2014/07/14/python-as-a-learning-tool for details.

Deciding how you can personally benefit 
from Python
Ultimately, you can use any programming language to write any sort of applica-
tion you want. If you use the wrong programming language for the job, the pro-
cess will be slow, error prone, bug ridden, and you’ll absolutely hate it — but you 
can get the job done. Of course, most of us would rather avoid horribly painful 
experiences, so you need to know what sorts of applications people typically use 
Python to create. Here’s a list of the most common uses for Python (although 
people do use it for other purposes):

 » Creating rough application examples: Developers often need to create a 
prototype, a rough example of an application, before getting the resources to 
create the actual application. Python emphasizes productivity, so you can use 
it to create prototypes of an application quickly.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool
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 » Scripting browser-based applications: Even though JavaScript is probably 
the most popular language used for browser-based application scripting, 
Python is a close second. Python offers functionality that JavaScript doesn’t 
provide (see the comparison at https://blog.glyphobet.net/essay/2557 
for details) and its high efficiency makes it possible to create browser-based 
applications faster (a real plus in today’s fast-paced world).

 » Designing mathematic, scientific, and engineering applications: Interestingly 
enough, Python provides access to some really cool libraries that make it easier 
to create math, scientific, and engineering applications. The two most popular 
libraries are NumPy (http://www.numpy.org/) and SciPy (http://www.scipy.
org/). These libraries greatly reduce the time you spend writing specialized code 
to perform common math, scientific, and engineering tasks.

 » Working with XML: The eXtensible Markup Language (XML) is the basis of 
most data storage needs on the Internet and many desktop applications 
today. Unlike most languages, where XML is just sort of bolted on, Python 
makes it a first-class citizen. If you need to work with a Web service, the main 
method for exchanging information on the Internet (or any other XML-
intensive application), Python is a great choice.

 » Interacting with databases: Business relies heavily on databases. Python 
isn’t quite a query language, like the Structured Query Language (SQL) or 
Language INtegrated Query (LINQ), but it does do a great job of interacting 
with databases. It makes creating connections and manipulating data 
relatively painless.

 » Developing user interfaces: Python isn’t like some languages like C# where 
you have a built-in designer and can drag and drop items from a toolbox onto 
the user interface. However, it does have an extensive array of graphical user 
interface (GUI) frameworks — extensions that make graphics a lot easier to 
create (see https://wiki.python.org/moin/GuiProgramming for details). 
Some of these frameworks do come with designers that make the user 
interface creation process easier. The point is that Python isn’t devoted to just 
one method of creating a user interface — you can use the method that best 
suits your needs.

Discovering which organizations  
use Python
Python really is quite good at the tasks that it was designed to perform. In fact, 
that’s why a lot of large organizations use Python to perform at least some  
application-creation (development) tasks. You want a programming language 
that has good support from these large organizations because these organizations 
tend to spend money to make the language better. Table 1-1 lists the large orga-
nizations that use Python the most.

https://blog.glyphobet.net/essay/2557
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
https://wiki.python.org/moin/GuiProgramming
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These are just a few of the many organizations that use Python extensively. You 
can find a more complete list of organizations at http://www.python.org/about/
success/. The number of success stories has become so large that even this list 
probably isn’t complete and the people supporting it have had to create categories 
to better organize it.

Finding useful Python applications
You might have an application written in Python sitting on your machine right 
now and not even know it. Python is used in a vast array of applications on the 
market today. The applications range from utilities that run at the console to 
full-fledged CAD/CAM suites. Some applications run on mobile devices, while 
others run on the large services employed by enterprises. In short, there is no 
limit to what you can do with Python, but it really does help to see what others 
have done. You can find a number of places online that list applications written 
in Python, but the best place to look is https://wiki.python.org/moin/
Applications.

TABLE 1-1	 Large Organizations That Use Python
Vendor URL Application Type

Alice Educational Software – 
Carnegie Mellon University

(https://www.alice.org/) Educational applications

Fermilab (https://www.fnal.gov/) Scientific applications

Go.com (http://go.com/) Browser-based applications

Google (https://www.google.com/) Search engine

Industrial Light & Magic (http://www.ilm.com/) Just about every 
programming need

Lawrence Livermore 
National Library

(https://www.llnl.gov/) Scientific applications

National Space and Aeronautics 
Administration (NASA)

(http://www.nasa.gov/) Scientific applications

New York Stock Exchange (https://nyse.nyx.com/) Browser-based applications

Redhat (http://www.redhat.com/) Linux installation tools

Yahoo! (https://www.yahoo.com/) Parts of Yahoo! mail

YouTube (http://www.youtube.com/) Graphics engine

Zope – Digital Creations (http://www.zope.org/en/latest/) Publishing application

http://www.python.org/about/success/
http://www.python.org/about/success/
https://wiki.python.org/moin/Applications
https://wiki.python.org/moin/Applications
https://www.alice.org/
https://www.fnal.gov/
http://go.com/
https://www.google.com/
http://www.ilm.com/
https://www.llnl.gov/
http://www.nasa.gov/
https://nyse.nyx.com/
http://www.redhat.com/
https://www.yahoo.com/
http://www.youtube.com/
http://www.zope.org/en/latest/


18      PART 1  Getting Started with Python

As a Python programmer, you’ll also want to know that Python development tools 
are available to make your life easier. A development tool provides some level of 
automation in writing the procedures needed to tell the computer what to do. 
Having more development tools means that you have to perform less work in 
order to obtain a working application. Developers love to share their lists of favor-
ite tools, but you can find a great list of tools broken into categories at http://
www.python.org/about/apps/.

Of course, this chapter describes a number of tools as well, such as NumPy and 
SciPy (two scientific libraries). The remainder of the book lists a few other tools; 
make sure that you copy down your favorite tools for later.

Comparing Python to other languages
Comparing one language to another is somewhat dangerous because the selection 
of a language is just as much a matter of taste and personal preference as it is any 
sort of quantifiable scientific fact. So before I’m attacked by the rabid protectors 
of the languages that follow, it’s important to realize that I also use a number of 
languages and find at least some level of overlap among them all. There is no best 
language in the world, simply the language that works best for a particular appli-
cation. With this idea in mind, the following sections provide an overview com-
parison of Python to other languages. (You can find comparisons to other 
languages at https://wiki.python.org/moin/LanguageComparisons.)

C#
A lot of people claim that Microsoft simply copied Java to create C#. That said, C# 
does have some advantages (and disadvantages) when compared to Java. The 
main (undisputed) intent behind C# is to create a better kind of C/C++ language — 
one that is easier to learn and use. However, we’re here to talk about C# and 
Python. When compared to C#, Python has these advantages:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Supported fully as open source

 » Better multiplatform support

 » Easily allows use of multiple development environments

 » Easier to extend using Java and C/C++

 » Enhanced scientific and engineering support

http://www.python.org/about/apps/
http://www.python.org/about/apps/
https://wiki.python.org/moin/LanguageComparisons
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Java
For years, programmers looked for a language that they could use to write an 
application just once and have it run anywhere. Java is designed to work well on 
any platform. It relies on some tricks that you’ll discover later in the book to 
accomplish this magic. For now, all you really need to know is that Java was so 
successful at running well everywhere that other languages have sought to emu-
late it (with varying levels of success). Even so, Python has some important 
advantages over Java, as shown in the following list:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Enhanced variables (storage boxes in computer memory) that can hold 
different kinds of data based on the application’s needs while running 
(dynamic typing)

 » Faster development times

Perl
Perl was originally an acronym for Practical Extraction and Report Language. 
Today, people simply call it Perl and let it go at that. However, Perl still shows its 
roots in that it excels at obtaining data from a database and presenting it in report 
format. Of course, Perl has been extended to do a lot more than that — you can use 
it to write all sorts of applications. (I’ve even used it for a Web service application.) 
In a comparison with Python, you’ll find that Python has these advantages over 
Perl:

 » Simpler to learn

 » Easier to read

 » Enhanced protection for data

 » Better Java integration

 » Fewer platform-specific biases

R
Data scientists often have a tough time choosing between R and Python because 
both languages are adept at statistical analysis and the sorts of graphing that data 
scientists need to understand data patterns. Both languages are also open source 
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and support a large range of platforms. However, R is a bit more specialized than 
Python and tends to cater to the academic market. Consequently, Python has these 
advantages over R in that Python:

 » Emphasizes productivity and code readability

 » Is designed for use by enterprises

 » Offers easier debugging

 » Uses consistent coding techniques

 » Has greater flexibility

 » Is easier to learn
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Chapter 2
Getting Your Own 
Copy of Python

Creating applications requires that you have another application, unless you 
really want to get low level and write applications in machine code — a 
decidedly difficult experience that even true programmers avoid if at all 

possible. If you want to write an application using the Python programming lan-
guage, you need the applications required to do so. These applications help you 
work with Python by creating Python code, providing help information as you 
need it, and letting you run the code you write. This chapter helps you obtain a 
copy of the Python application, install it on your hard drive, locate the installed 
applications so that you can use them, and test your installation so that you can 
see how it works.

Downloading the Version You Need
Every platform (combination of computer hardware and operating system 
 software) has special rules that it follows when running applications. The Python 
application hides these details from you. You type code that runs on any platform 
that Python supports, and the Python applications translate that code into some-
thing the platform can understand. However, in order for the translation to take 

IN THIS CHAPTER

 » Obtaining a copy of Python for 
your system

 » Performing the Python installation

 » Finding and using Python on your 
system

 » Ensuring your installation works 
as planned
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place, you must have a version of Python that works on your particular platform. 
Python supports these platforms (and possibly others):

 » Advanced IBM Unix (AIX)

 » Android

 » BeOS

 » Berkeley Software Distribution (BSD)/FreeBSD

 » Hewlett-Packard Unix (HP-UX)

 » IBM i (formerly Application System 400 or AS/400, iSeries, and System i)

 » iPhone Operating System (iOS)

 » Linux

 » Mac OS X (comes pre-installed with the OS)

 » Microsoft Disk Operating System (MS-DOS)

 » MorphOS

 » Operating System 2 (OS/2)

 » Operating System 390 (OS/390) and z/OS

 » PalmOS

 » PlayStation

 » Psion

 » QNX

 » RISC OS (originally Acorn)

 » Series 60

 » Solaris

 » Virtual Memory System (VMS)

 » Windows 32-bit (XP and later)

 » Windows 64-bit

 » Windows CE/Pocket PC

Wow, that’s a lot of different platforms! This book is tested with the Windows, 
Mac OS X, and Linux platforms. However, the examples could very well work with 
these other platforms, too, because the examples don’t rely on any platform-
specific code. Let me know if it works on your non-Windows, Mac, or Linux 
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platform at John@JohnMuellerBooks.com. The current version of Python at the 
time of this writing is 3.6.2. I’ll talk about any Python updates on my blog at 
http://blog.johnmuellerbooks.com. You can find the answers to your Python 
book-specific questions there, too.

To get the right version for your platform, you need to go to https://www.python.
org/downloads/release/python-362/. The download section is initially hidden 
from view, so you need to scroll halfway down the page. You see a page similar to 
the one shown in Figure  2-1. The main part of the page contains links for  
Windows, Mac OS X, and Linux downloads. These links provide you with the 
default setup that is used in this book. The platform-specific links on the left side 
of the page show you alternative Python configurations that you can use when the 
need arises. For example, you may want to use a more advanced editor than the 
one provided with the default Python package, and these alternative configura-
tions can provide one for you.

If you want to work with another platform, go to https://www.python.org/
download/other/ instead. You see a list of Python installations for other  platforms, 
as shown in Figure 2-2. Many of these installations are maintained by volunteers 
rather than by the people who create the versions of Python for Windows, Mac OS 
X, and Linux. Make sure you contact these individuals when you have installation 
questions because they know how best to help you get a good installation on your 
platform.

FIGURE 2-1: 
The Python 

download page 
contains links for 

all sorts of 
versions.

mailto:John@JohnMuellerBooks.com
http://blog.johnmuellerbooks.com/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/download/other/
https://www.python.org/download/other/
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Installing Python
After you download your copy of Python, it’s time to install it on your system. The 
downloaded file contains everything needed to get you started:

 » Python interpreter

 » Help files (documentation)

 » Command-line access

 » Integrated DeveLopment Environment (IDLE) application

 » Preferred Installer Program (pip)

 » Uninstaller (only on platforms that require it)

This book assumes that you’re using one of the default Python setups found at 
https://www.python.org/downloads/release/python-362/. If you use a ver-
sion other than 3.6.2, some of the examples won’t work as anticipated. The fol-
lowing sections describe how to install Python on the three platforms directly 
supported by this book: Windows, Mac OS X, and Linux.

FIGURE 2-2: 
Volunteers have 

made Python 
available on 

all sorts of 
 platforms.

https://www.python.org/downloads/release/python-362/
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Working with Windows
The installation process on a Windows system follows the same procedure that 
you use for other application types. The main difference is in finding the file you 
downloaded so that you can begin the installation process. The following proce-
dure should work fine on any Windows system, whether you use the 32-bit or the 
64-bit version of Python.

1. Locate the downloaded copy of Python on your system.

The name of this file varies, but normally it appears as python-3.6.2.exe for 
both 32-bit systems and python-3.6.2-amd64.exe for 64-bit systems. The 
version number is embedded as part of the filename. In this case, the filename 
refers to version 3.6.2, which is the version used for this book.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether 
you want to run this file. Click Run if you see this dialog box pop up.) You see a 
Python Setup dialog box similar to the one shown in Figure 2-3. The exact 
dialog box you see depends on which version of the Python installation 
program you download.

3. Choose a user installation option (the book uses the default setting of 
Install for All Users).

Using a personalized installation can make it easier to manage systems that 
have multiple users. In some cases, the personalized installation also reduces 
the number of Security Warning dialog boxes you see.

FIGURE 2-3: 
The setup 

process begins by 
asking you who 

should have 
access to Python.
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4. Select Add Python 3.6 to PATH.

Adding this setting enables you to access Python from anywhere on your hard 
drive. If you don’t select this setting, you must manually add Python to the path 
later.

5. Click Customize Installation.

Install asks you to choose which features to use with your copy of Python, as 
shown in Figure 2-4. Keep all the features selected for this book. However, for 
your own installation, you may find that you don’t actually require all the 
Python features.

6. Click Next.

You see the Advanced Options dialog box, shown in Figure 2-5. Note that Install 
for All Users isn’t selected, despite your having requested that feature earlier. 
Install also asks you to provide the name of an installation directory for Python. 
Using the default destination will save you time and effort later. However, you 
can install Python anywhere you desire.

FIGURE 2-4: 
Choose the 

Python features 
you want to 

install.

FIGURE 2-5: 
Decide on an 

installation 
location for your 
copy of Python.


