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Foreword

David Wood, Executive Vice President Research, Symbian

This book has been designed for people who are in a hurry.

Perhaps you are a developer who has been asked to port some software,
initially written for another operating system (such as may run on a
desktop computer), to Symbian OS. Or perhaps you have to investigate
whether Symbian OS could be suited to an idea from a designer friend of
yours. But the trouble is, you don’t have much time, and you have heard
that Symbian OS is a sophisticated and rich software system with a not
insignificant learning curve.

If you are like the majority of software engineers, you would like to
take some time to investigate this kind of task. You might prefer to attend
a training course, or work your way through some of the comprehensive
reference material that already exists for Symbian OS. However, | guess
that you don’t have the luxury of doing that — because you are facing
tight schedule pressures. There isn’t sufficient slack in your schedule to
research options as widely as you’d like. Your manager is expecting your
report by the end of the week. So you need answers in a hurry.

That’s why Symbian Press commissioned the book you are now holding
in your hands. We are assuming that you are a bright, savvy, experienced
software developer, who is already familiar with C++ and with modern
software programming methods and idioms. You are willing to work
hard and can learn fast. You are ready to take things on trust for a
while, provided you can quickly find out how to perform various tasks
within Symbian OS. Over time, you would like to learn more about the
background and deeper principles behind Symbian OS, but that will have
to wait — since at the moment, you’re looking for quick recipes.
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Congratulations, you have found them!

In the pages ahead, you will find recipes covering topics such as
Bluetooth, networking, location-based services, multimedia, telephony,
file handling, personal information management — and much more. In
most recipes we provide working code fragments that you should be
able to copy and paste directly into your own programs, and we pro-
vide a full set of sample code for download from the book’s website
(developer.symbian.com/quickrecipesbook). We have also listed some
common gotchas, so you can steer clear of these potential pitfalls.

Since you are in a hurry, | will stop writing now (even though there is
lots more | would like to discuss with you), so that you can proceed at
full pace into the material in the following pages. Good speed!

David Wood, Symbian, March 2008



About this Book

This book sets out to accomplish two goals:

e Forreaders who don’t know Symbian OS C++ development, this book
is a two-week crash-course in developing applications for mobile
phones.

e For readers who know Symbian OS C++ development, this book
explains how to use 10 different technologies in a condensed form.
It can be used as a desk reference or to learn a new technology in a
familiar environment.

The focus of the book is on the reader being able to manage the time
it takes to understand and implement the new concepts in Symbian OS.

Chapter 1 will explain how to set up a development environment. It
also contains useful information for you to read while you wait for your
software development kit to download and install.

Chapter 2 is about your first HelloWorld application and basic use of
the new toolchain.

Chapter 3 explains the essentials of the common Symbian C++ APIs
and idioms. Without understanding these, you cannot make much pro-
gress.

Chapter 4 is the main course of this book. It consists of recipes
for ten self-contained technologies, each explained as a time-bound
development learning task. For each technology, the recipes are listed in
order of increasing complexity.

Chapter 5 will help you reach the next level of Symbian OS develop-
ment expertise.

Chapter 6 is dedicated to commercial-grade application development.



xviii ABOUT THIS BOOK

This book is by no means an introduction to software development in
general or even to the C++ language. The authors expect the readers to
be familiar with both.

We have included some links to help you find additional infor-
mation, but to avoid repetition, we don’t always refer you to the
Symbian Developer Library APl reference documentation whenever
we introduce a new API. It's worth mentioning it here though. You'll
find a huge amount of reference material in the Symbian Developer
Library, which is available in every SDK, and can also be browsed
online on the Symbian Developer Network (developer.symbian.com/
main/oslibrary/osdocs). Chapter 6, Section 6.3 contains other links and
suggestions for how to get more information.
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1.1

Symbian OS Code Conventions
and Notations Used in the Book

For you to get the most out of this book, let’s quickly run through the
notation we use. The text is straightforward, and where we quote example
code, resource files, or project definition files, they will be highlighted as
follows:

This is example code;

Symbian C++ uses established naming conventions. We encourage you
to follow them too, in order for your own code to be understood most
easily by other Symbian OS developers, and because the conventions
have been chosen carefully to reflect object cleanup and ownership,
and make code more comprehensible. An additional benefit to using the
conventions is that your code can then be tested with automatic code
analysis tools, which can flag potential bugs or areas to review.

The best way to get used to the conventions is to look at code snippets
in this book, and those provided with your chosen SDK.

Capitalization

The first letter of class names is capitalized:

Class TColor;

The words making up variable, class, or function names are adjoining,
with the first letter of each word capitalized. Classes and functions have



xxvi  SYMBIAN OS CODE CONVENTIONS AND NOTATIONS USED IN THE BOOK

their initial letter capitalized while, in contrast, function parameters, local,
global, and member variables have a lower case first letter.

Apart from the first letter of each word, the rest of each word is given
in lower case, including acronyms. For example:

void CalculateScore (TInt aCorrectAnswers, TInt aQuestionsAnswered) ;
class CActiveScheduler;

TInt localVariable;

CShape* iShape;

class CBbc;//Acronyms are not usually written in upper case

1.2 Prefixes

137

Member variables are prefixed with a lower case ‘i’, which stands for

‘instance’:

TInt iCount;
CBackground* iBitmap;

Parameters are prefixed with a lower case ‘a’, which stands for ‘argu-
ment’. We do not use ‘an’ for arguments that start with a vowel.

void ExampleFunction (TBool aExampleBool, const TDesC& aName) ;

(Note: TBool aExampleBool rather than TBool anExampleBool).
Local variables have no prefix:

TInt localVariable;
CMyClass* ptr = NULL;

Class names should be prefixed with the letter appropriate to their
Symbian OS type (usually ‘C’, 'R’, ‘T’, or ‘M’), as will be described further
in Chapter 3:

class CActive;
class TParse;
class RFs;

class MCallback;

Constants are prefixed with ‘K’

const TInt KMaxFilenameLength = 256;
#define KMaxFilenameLength 256
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Enumerations are simple types, and so are prefixed with ‘T’. Enumera-
tion members are prefixed with ‘E’:

enum TWeekdays {EMonday, ETuesday, ...};

1.3 Suffixes

A trailing ‘L” on a function name indicates that the function may leave:

void AllocL() ;

A trailing ‘C’ on a function name indicates that the function returns a
pointer that has been pushed onto the cleanup stack:

Ccylon* NewLC () ;

A trailing ‘D’ on a function name means that it will result in the
deletion of the object referred to by the function:

TInt ExecuteLD(TInt aResourceId) ;
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Introduction and Setup

The first part of this chapter will help you set up your development
environment using free tools.

While your computer is busy downloading and installing software, you
should read the second part of this chapter. It contains a host of critical
information you need before you start using the development tools.

When all the tools are installed, there are a few more minor configu-
ration steps to go through in the last part of this chapter.

1.1 Tools: What You Need and Where to Find It

1.1.1 System Requirements
System requirements for C++ development on Symbian OS v9.x are as
follows:

e Microsoft Windows 2000 Professional with Service Pack 3 or MS
Windows XP Professional with Service Pack 2, running on a laptop or
desktop computer. At the time of writing this book, most Symbian OS
SDKs do not support Windows Vista.

e Atleast 512 MB of RAM (1.5 GB recommended).

e 1-GHz or faster Pentium-class processor (2-GHz Pentium-class pro-
cessor recommended).

e Atleast T GB of free disk space (5 GB recommended).
e 16-bit color display capable of a 1,024 x 768 pixels resolution.

e Java™ Runtime Environment (JRE) 1.4.1_02 or later (available from
java.sun.com).

e ActivePerl 5.6.1 build 568 or later (available from activestate.com).



2 INTRODUCTION AND SETUP

e Microsoft Core XML Services (MSXML) 4.0.
e ZIP decompression software to open the installation package.
e Local-administrator rights for installation and removal of software.

e The PC Suite software for your handset. You should find the latest
version of this software on the website of the manufacturer of the
handset.

ActivePerl may be bundled in some of the Software Development Kit
packages you will be installing.

1.1.2 IDE

The recommended Integrated Development Environment for Symbian
OS C++ development is called Carbide.c++. You can download the free
Express Edition from: forum.nokia.com/carbide. Section 1.2.1 describes
Carbide.c++ in more detail.

1.1.3 SDKs

Symbian OS is split into two platforms: S60 3rd Edition and UIQ 3. (There
is a third one, called MOAP, available only in Japan, which this book
doesn’t cover.)

Each platform is replaced as different versions (or Feature Pack numbers
for S60).

Once you know which handsets you want your applications to
run on, you can identify all your target platforms and their version
using the following websites: www.s60.com/life/s60phone (for S60) and
www.uiq.com/uigphones (for U1Q).

You need to download all the SDKs for all your target platforms. At the
time of writing, this could mean up to five different SDKs for development
on Symbian OS v9.x: S60 3rd Edition Maintenance Release, Feature Pack
1 and Feature Pack 2 Beta, along with UIQ 3.0 and UIQ 3.1.

The SDKs can be downloaded from: developer.symbian.com/main/
tools.

1.1.4 Compilers

There are two free compilers used for Symbian OS C++ development.
The Nokia x86 compiler targets the Symbian OS emulator for Microsoft
Windows included in the SDK. You will see this referenced as WINSCW.
The open source GCC-E compiler targets the actual handsets, where
Symbian OS runs on an ARM processor.
Both compilers should be bundled in the SDK installation package,
but GCC-E must be installed to a folder whose path contains no ‘space’
characters or your builds will fail with ‘missing separator’ errors.
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1.2 While You are Waiting

1.2.1 Carbide.c++

There are four different editions of Carbide.c++:

e Express Edition
e Developer Edition
e Professional Edition

e OEM Edition.

The free Express Edition is the only one that doesn’t allow debugging
an application running on the actual phone (on-target debugging). All
versions allow emulator debugging.

Carbide.c++ is based on Eclipse and is highly customizable. You can
even create your own plug-ins to extend its functionality.

When you first launch Carbide.c++ it allows you to define a ‘work-
space’. We suggest you create a different workspace for each SDK.

There is a very nice Flash tutorial to introduce Carbide.c++ at
developer.symbian.com/main/learning/flash, and a booklet about get-
ting started with Carbide.c++ available from developer.symbian.com/
carbide_booklet_wikipage.

1.2.2 Development Communities
In order to get more information, meet your fellow developers, ask
questions and find out the solutions for common problems, you should
visit the following links:
e Symbian Developer Network: developer.symbian.com.
e Forum Nokia: forum.nokia.com.
e UIQ Developer Community: developer.uiq.com.
e Sony Ericsson Developer Forum: developer.sonyericsson.com.
e MOTODEV Developer Forum: developer.motorola.com.

While you are waiting, you should register on, at the very least, the
following website:

e Symbian Signed: www.symbiansigned.com.

There are also many independent sites, which contain a lot of helpful
and educational information; for instance, www.newlc.com.
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1.2.3 Concepts of Mobile Development

On an open operating system such as Symbian OS, third-party developers
like you can install their own applications.

Programming for smartphones puts you in a position where you
have quite limited resources, such as CPU capabilities, battery power,
input methods, available memory amount and so on. Software developers
targeting such a challenging environment need to focus on code efficiency
and robustness more than they may be used to for desktop platforms.

We are working in an environment where any heap memory allocation
can fail and where the cost of forcing the CPU to switch between processes
(or even between threads) is non-negligible.

Several Symbian OS development efforts are worth being aware of:

e Open Source projects at www.symbianos.org.

e P.ILP.S. and Open C are there to help you port applications using the
Posix libraries to Symbian OS (see www.forum.nokia.com/openc).

e The Standard Template Library is being ported to Symbian OS.

e The Net60 framework from Red Five Labs allows you to use Microsoft
.NET Compact Framework (see www.redfivelabs.com).

e There are runtime environments for Java, Ruby and Python available
for Symbian OS (see developer.symbian.com/main/getstarted/hub/
runtimes_hub.jsp).

1.2.4 ARM Hardware

When targeting the actual handset, Symbian OS binaries are based on
the Application Binary Interface (ABI) for the ARM Architecture. ABI is a
standard for the interfaces of binary code running in ARM environments.
The specification is published by ARM at: www.arm.com/products/
DevTools/ABI.html.

We will not go into the details of various ARM instruction sets and ABI
versions in this book.

1.2.5 Emulator

In addition to debugging using a stack trace, breakpoints and variable
monitoring, the emulator allows you to test your deployment packages to
ensure your application will be installed properly on the real smartphone.

The S60 emulator preferences allow you to set up several useful
parameters, like Bluetooth and IrDA (Infrared) ports and platform security
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settings. In addition, the emulator has a powerful utilities application
which helps you test your software by triggering various events, like
memory card insertion (Figure 1.1).

The UIQ emulator also offers some configuration capabilities via a
separate utility — SDKConfig (Figure 1.2) — a graphical configuration tool
located in the ...\epoc32\tools\distrib folder of your SDK.
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SDKConfig launches a number of scripts from ...\epoc32\tools.
This utility can be used to select the default device, change the Ul style of
the emulator and set up communication ports and Ethernet connection.
The easiest way to define Ethernet setting is to use DHCP and uncheck the
‘Modify MAC-address’ checkbox.

1.3 Post-Installation

1.3.1 Command Line Tools

Without arguments, the devices command lists all the installed SDKs
from a DOS prompt:

S60_3rd:com.nokia.s60

S60_3rd FP2_Beta:com.nokia.s60 - default
S60_3rd_FPl:com.nokia.s60
UIQ3.1l:com.symbian.UIQ

It also allows you to switch between SDKs as follows:

devices -setdefault @S60_3rd_FPl:com.nokia.s60

1.3.2 SDK Directories Structure

Each SDK installs its own emulator binaries, handset libraries, tools code
examples and documentation on your hard drive.

...\epoc32\winscw) is where you will find the emulator drives.
...\epoc32\release\winscw\udeb\ is where you will find the bina-
ries for the emulator, particularly epoc.exe which launches the
emulator.

...\epoc32\release\gcce\urel is where you will find the ARM
libraries your code will compile against.

The code examples are split between the generic Symbian OS examples
and the examples using APIs specific to the S60 or UIQ platform.

SDK documentation is mainly in the form of CHM or PDF files. It
contains information related to all the APIs publicly available in Symbian
OS, along with information about the tools included in the SDK.
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1.3.3 Emulators

The DOS command line to start the emulator is always:

...\epoc32\release\winscw\udeb\epoc.exe

On a UIQ 3.1 emulator, it is recommended to lower the color depth
by replacing WINDOWMODE COLOR16MU by WINDOWMODE COLOR64K in
the file

...\epoc32\release\winscw\udeb\z\system\data\wsini.ini

In the Symbian OS file system, the Z: drive represents the phone’s ROM.






