Quick Recipes
on Symbian OS

Mastering C++ Smartphone
Development

Michael Aubert

With
Alexey Gusev, Tanzim Husain, Jenny Mulholland,
Antony Pranata, Jukka Silvennoinen, Jo Stichbury

Reviewed by

Sandip Ahluwalia, Ashlee Godwin, Douglas Feather,
Maximiliano R. Fitman, Matthew O'Donnell, Tong Ren,
Attila Vamos, Jacek Wojciechowski, Colin Ward,
Hamish Willee

Head of Symbian Press
Freddie Gjertsen

Managing Editor
Satu McNabb

John Wiley & Sons, Ltd

Quick Recipes
on Symbian OS

Mastering C++ Smartphone Development

Quick Recipes
on Symbian OS

Mastering C++ Smartphone
Development

Michael Aubert

With
Alexey Gusev, Tanzim Husain, Jenny Mulholland,
Antony Pranata, Jukka Silvennoinen, Jo Stichbury

Reviewed by

Sandip Ahluwalia, Ashlee Godwin, Douglas Feather,
Maximiliano R. Firtman, Matthew O’Donnell, Tong Ren,
Attila Vamos, Jacek Wojciechowski, Colin Ward,
Hamish Willee

Head of Symbian Press
Freddie Gjertsen

Managing Editor
Satu McNabb

W

John Wiley & Sons, Ltd

Copyright © 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q), England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the
Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the
Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 85Q, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It
is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or
other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the
contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of
fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In
view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of
information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and
evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or
device for, among other things, any changes in the instructions or indication of usage and for added warnings and
precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or Website
may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work
may have changed or disappeared between when this work was written and when it is read. No warranty may be created
or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any
damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4)3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Aubert, Michael.
Quick recipes on Symbian OS : mastering C++ smartphone development /
Michael Aubert, with Alexey Gusev ... [etal.]
p.cm.
Includes bibliographical references and index.
ISBN 978-0-470-99783-3 (pbk. : alk. paper)
1. Smartphones — Programming. 2. Symbian OS (Computer file) 3. C++
(Computer program language) I. Gusev, Alexey. Il. Title.
TK6570.M6A92 2008
005.26'8 — dc22
2008013156

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-0-470-99783-3

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Pour Marcel et Paulette

Contents

List of Recipes

Foreword
About this Book

About the Authors

Acknowledgments

Symbian OS Code Conventions and Notations
Used in the Book

11
1.1
1.2
1.3

ntroduction and Setup

Tools: What You Need and Where to Find It
While You are Waiting
Post-Installation

2 Quick Start

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9

Hello World Project Template

Running Carbide.c++ IDE

Generating the Hello World Project

Building the Hello World Project

Running the Hello World Application on the
Emulator

Running the Hello World Application on the Device
Modifying the Hello World Project

Advanced Topics on Carbide.c++

Links

ix
XV
Xvii
Xix

xxiii

XXV

O W — =

w o o oo

14
16
18
21
26

viii

CONTENTS

3 Symbian OS Development Basics

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Fundamental Data Types on Symbian OS
Symbian OS Class Conventions

Leaves and Exception Handling

The Cleanup Stack

The Cleanup Stack FAQ: Advanced Information
Two-Phase Construction

Thin Templates

Descriptors — Symbian OS Strings

Arrays on Symbian OS

Executable Files

Platform Security: Capabilities

Platform Security: Data Caging

Stack Size and Heap Size

Streams

Active Objects

Threads

Timers and Callbacks

Summary

4 Symbian C++ Recipes

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

File Handling

Contacts and Calendar
Networking

Messaging

Graphics and Drawing

3D Graphics Using OpenGL ES
Multimedia

Telephony

Connectivity

Location-Based Services

5 Next Level Development

5.1
5.2
5.3

Advanced Technologies
Symbian Partners Only
Advanced Application Deployment

6 Releasing Your Application

6.1
6.2
6.3

Index

What To Do Before You Release Your Application

How To Distribute Your Application
Where To Go Next

29
29
30
33
36
38
40
42
44
54
58
60
62
62
63
65
73
74
75

77

78
106
136
172
194
217
236
263
282
299

319
319
325
326

329
329
341
345

349

List of Recipes

4.1 File Handling

4.2

4.1.1

4.1.2

4.1.3

Easy Recipes

4.1.1.1 Get A File Server Session

4.1.1.2 Write Binary Data to a File

4.1.1.3 Read Binary Data from a File

4.1.1.4 Read Text from a File

Intermediate Recipes

4.1.2.1 Get the Path of a Private Folder

4.1.2.2 Read from and Write to a File Stream

4.1.2.3 Read and Write Class Members from
and to a File Stream

Advanced Recipes

4.1.3.1 Read from and Write to a File Store

4.1.3.2 Share Files between Processes

Contacts and Calendar

423

4.2.4

Easy Recipes

4.2.3.1 Write Data to a Contact
4.2.3.2 Read Data from a Contact
4.2.3.3 Add a New Contact
4.2.3.4 Remove a Contact
4.2.3.5 Modify a Calendar Event
4.2.3.6 Add a New Calendar Event
4.2.3.7 Remove a Calendar Event
Intermediate Recipes

4.2.4.1 Sort Contacts

4.2.4.2 Use the vCard Format
4.2.4.3 Use the vCal Format

78
79
79
80
82
85
86
86
90

96
98
98
104

106
109
109
111
113
114
115
117
120
121
121
122
124

42.4.4

LIST OF RECIPES

Create a Repeating Calendar Event

4.2.5 Advanced Recipes

4.2.5.1
4252
4.2.5.3
4254

4.3 Networking

Find a Contact

Move a Contact to Another Group
Find Out If You are Available

Get Attendee List

4.3.5 Easy Recipes

4.3.5.1
4.3.5.2

4.3.5.3

4354
4.3.5.5
43.5.6
4.3.5.7

Send/Receive Data Using TCP Sockets

Force a Connection to Use a Specific
Bearer

Force a Connection to Use a Specific
IAP

Resolve Domain Name

Use HTTP GET Request

Parse a URI

Create a URI

4.3.6 Intermediate Recipes

4.3.6.1

4.3.6.2
4.3.6.3
4.3.6.4
4.3.6.5
4.3.6.6
4.3.6.7

Listen for an Incoming Connection
Using TCP

Observe Connection Status

Get Active Connection Information
Use Secure Socket

Use HTTP POST Request

Set Advanced HTTP Properties
Extract Local Filename from URI

4.3.7 Advanced Recipes

4.3.7.1

4.4 Messaging
4.4.5 Recipes
4.4.5.1

4.45.2
4.45.3
4454
4.4.5.5
4.45.6
4.45.7
4.45.8
4459
4.4.5.10
4.4.5.11

Retrieve HTTP Proxy Information

Initialize your Application to Use
Messaging

Create a Folder

Create a Message

Read Message Details

Edit a Message

Retrieve and Edit Message Settings
Copy a Message

Move a Message

Send a Message

Delete Messages

Handle Incoming Messages

126
128
128
131
133
134

136
142
142

145

146
148
150
153
154
157

157
159
161
162
164
167
168
169
169

172
177

177
180
182
183
185
187
188
189
190
191
192

LIST OF RECIPES Xi

4.5 Graphics and Drawing 194
4.5.1 Easy Recipes 197
4.5.1.1 Draw Lines and Shapes 197
4.5.1.2 Draw Background Color or Fill a Shape 198
4.5.1.3 Load and Draw MBM or MIF Images 199
4.5.1.4 Draw an Image with a Transparent
Section 200
4.5.2 Intermediate Recipes 201
4.52.1 Load a JPG or PNG Image 201
4.5.2.2 Draw Text to the Screen 203
4.5.2.3 Load Fonts 205
4.5.2.4 Draw Controls Inside Another Control 206
4.5.3 Advanced Recipes 208
4.5.3.1 Use Off-Screen Images for Drawing 208
4.5.3.2 Load GIF Animation Images 209

4.53.3 Draw Skins as Backgrounds (S60 Only) 211
4.5.3.4 Draw Outside the Symbian OS

Application Framework 213

4.5.3.5 Draw with Direct Screen Access 216

4.6 3D Graphics Using OpenGL ES 217

4.6.3 Easy Recipes 219

4.6.3.1 Full-Screen Setup 219

4.6.3.2 Display a 3D Object 222

4.6.3.3 Translate a 3D Object 226

4.6.3.4 Rotate a 3D Object 227

4.6.4 Intermediate Recipes 228

4.6.4.1 Apply a Texture to a 3D Object 228

4.6.4.2 Part-Screen Setup 229

4.6.5 Advanced Recipes 231

4.6.5.1 Animate a Scene 231

4.6.5.2 Adapt Performances 234

4.7 Multimedia 236

4.7.1 Easy Recipes 238

4.7.1.1 Play an Audio Clip 238

4.7.1.2 Perform Basic Audio Operations 241

4.7.1.3 Play an Audio Tone 242

4.7.1.4 Play a MIDI File 243

4.7.2 Intermediate Recipes 244
4.7.2.1 Get the Default Multimedia Storage

Location 244

4.7.2.2 Play a Video Clip 247

4.7.2.3 Audio Streaming 250

xii

4.7.3

LIST OF RECIPES

Advanced Recipes

4.7.3.1 Record Audio

4.7.3.2 Record a Phone Call

4.7.3.3 Display a Camera Viewfinder
4.7.3.4 Capture Still Images from a Camera
4.7.3.5 Record Video

4.8 Telephony

4.8.1

4.8.2

4.8.3

Easy Recipes

4.8.1.1 Handle Phone Calls

4.8.1.2 Send DTMF Tones to the Phone Line
4.8.1.3 Observe the Phone Line State

4.8.1.4 Retrieve the Network Signal Strength
4.8.1.5 Retrieve the Battery Status

4.8.1.6 Retrieve the IMEI Number of the Device
4.8.1.7 Retrieve the Current Network Name
4.8.1.8 Retrieve the Current Operator Name
4.8.1.9 Retrieve the Flight Mode Status
4.8.1.10 Retrieve the Network Registration Status

Intermediate Recipes

4.8.2.1 Retrieve the Phone Number from an
Incoming/Outgoing Call

4.8.2.2 Match a Name to a Phone Number

4.8.2.3 Retrieve the IMSI Number of the SIM
Card

4.8.2.4 Retrieve the Phone Lock Status

Advanced Recipes

4.8.3.1 Retrieve Cell ID and Network
Information

4.8.3.2 Retrieve Call Forwarding Status

4.8.3.3 Retrieve Call Barring Status

4.9 Connectivity

4.9.1

4.9.2

Easy Recipes

4.9.1.1 Print over IrDA

4.9.1.2 Discover Infrared Devices

4.9.1.3 Discover Bluetooth Devices

4.9.1.4 Discover Bluetooth Services for a Given
Device

Intermediate Recipes

4.9.2.1 Use the Sockets API

4.9.2.2 Create a Simple OBEX Client

4.9.2.3 Create a Simple OBEX Server over
Bluetooth

253
253
255
255
258
260

263
268
268
269
269
271
271
272
273
273
274
275
276

276
276

277
278
279

279
280
281

282
283
283
284
286

288
290
290
294

295

LIST OF RECIPES

4.9.3 Advanced Recipes
4.9.3.1 Advertise Bluetooth Services

4.10Location-Based Services
4.10.1 Easy Recipes
4.10.1.1 Get the List of Available Positioning
Technology Modules
4.10.1.2 Retrieve the Current Module Status
Information
4.10.1.3 Receive Module Status Change
Notifications
4.10.1.4 Set the Module Selection Criteria
4.10.2 Intermediate Recipes
4.10.2.1 Request Location Information
4.10.2.2 Request Extended Location Information

xiii

297
297

299
302

302
304

305
308
310
310
315

Foreword

David Wood, Executive Vice President Research, Symbian

This book has been designed for people who are in a hurry.

Perhaps you are a developer who has been asked to port some software,
initially written for another operating system (such as may run on a
desktop computer), to Symbian OS. Or perhaps you have to investigate
whether Symbian OS could be suited to an idea from a designer friend of
yours. But the trouble is, you don’t have much time, and you have heard
that Symbian OS is a sophisticated and rich software system with a not
insignificant learning curve.

If you are like the majority of software engineers, you would like to
take some time to investigate this kind of task. You might prefer to attend
a training course, or work your way through some of the comprehensive
reference material that already exists for Symbian OS. However, | guess
that you don’t have the luxury of doing that — because you are facing
tight schedule pressures. There isn’t sufficient slack in your schedule to
research options as widely as you’d like. Your manager is expecting your
report by the end of the week. So you need answers in a hurry.

That’s why Symbian Press commissioned the book you are now holding
in your hands. We are assuming that you are a bright, savvy, experienced
software developer, who is already familiar with C++ and with modern
software programming methods and idioms. You are willing to work
hard and can learn fast. You are ready to take things on trust for a
while, provided you can quickly find out how to perform various tasks
within Symbian OS. Over time, you would like to learn more about the
background and deeper principles behind Symbian OS, but that will have
to wait — since at the moment, you’re looking for quick recipes.

XVi FOREWORD

Congratulations, you have found them!

In the pages ahead, you will find recipes covering topics such as
Bluetooth, networking, location-based services, multimedia, telephony,
file handling, personal information management — and much more. In
most recipes we provide working code fragments that you should be
able to copy and paste directly into your own programs, and we pro-
vide a full set of sample code for download from the book’s website
(developer.symbian.com/quickrecipesbook). We have also listed some
common gotchas, so you can steer clear of these potential pitfalls.

Since you are in a hurry, | will stop writing now (even though there is
lots more | would like to discuss with you), so that you can proceed at
full pace into the material in the following pages. Good speed!

David Wood, Symbian, March 2008

About this Book

This book sets out to accomplish two goals:

e Forreaders who don’t know Symbian OS C++ development, this book
is a two-week crash-course in developing applications for mobile
phones.

e For readers who know Symbian OS C++ development, this book
explains how to use 10 different technologies in a condensed form.
It can be used as a desk reference or to learn a new technology in a
familiar environment.

The focus of the book is on the reader being able to manage the time
it takes to understand and implement the new concepts in Symbian OS.

Chapter 1 will explain how to set up a development environment. It
also contains useful information for you to read while you wait for your
software development kit to download and install.

Chapter 2 is about your first HelloWorld application and basic use of
the new toolchain.

Chapter 3 explains the essentials of the common Symbian C++ APIs
and idioms. Without understanding these, you cannot make much pro-
gress.

Chapter 4 is the main course of this book. It consists of recipes
for ten self-contained technologies, each explained as a time-bound
development learning task. For each technology, the recipes are listed in
order of increasing complexity.

Chapter 5 will help you reach the next level of Symbian OS develop-
ment expertise.

Chapter 6 is dedicated to commercial-grade application development.

xviii ABOUT THIS BOOK

This book is by no means an introduction to software development in
general or even to the C++ language. The authors expect the readers to
be familiar with both.

We have included some links to help you find additional infor-
mation, but to avoid repetition, we don’t always refer you to the
Symbian Developer Library APl reference documentation whenever
we introduce a new API. It's worth mentioning it here though. You'll
find a huge amount of reference material in the Symbian Developer
Library, which is available in every SDK, and can also be browsed
online on the Symbian Developer Network (developer.symbian.com/
main/oslibrary/osdocs). Chapter 6, Section 6.3 contains other links and
suggestions for how to get more information.

About the Authors

Michael Aubert

Michael has worked on Symbian OS for 7 years, in the Java team
at Symbian itself and the R&D team at iAnywhere. During that time,
he has received in-depth exposure to a wide range of technologies
including telephony, messaging, 3D graphics, networking, multimedia,
PIM, cryptography, platform security and software deployment.

He holds an MSc in Software Engineering from E.S.I.A.L. and is
probably the only person to have ever explained the crazy Java Team
Event Server Framework to a French audience.

Alexey Gusev

Alexey started to play with mainframes at the end of the 1980s, using
Pascal and REXX, but soon switched to C/C++ and Java on different
platforms before moving into mobile technologies. After working for
almost a decade as a team leader and architect on Windows Mobile, he
decided to join the Symbian Core Development team, originally working
on Security and later on USB.

He holds an MSc in Applied Mathematics and Physics from the
Moscow Institute of Physics and Technology. He is also an Accredited
Symbian Developer and regular author at www.developer.com.

Tanzim Husain

Tanzim joined Symbian in 2004 as a member of the networking technol-
ogy team and has worked there ever since, surviving two architectural

XX ABOUT THE AUTHORS

changes and three team re-organizations. Before joining Symbian, he
worked extensively on Windows Mobile, delivering pioneering applica-
tions in the areas of mapping and GIS.

Tanzim holds a B.S. in Computer Science from NSU. Outside work,
he likes to fiddle around with photography and enjoys escaping to the
countryside. He tries to maintain an infrequently updated website/blog at
www.tanzim.co.uk.

Jenny Mulholland

Since graduating with an MSc in Physics from the University of Cambridge
in 2006, Jenny has worked in Symbian’s Licensee Product Development
team, as a member of the Comms Porting Group. Jenny recently renewed
her Accredited Symbian Developer status.

Outside of work, when she is not in the pub with her colleagues, she
enjoys performing concerts with the Chandos Chamber Choir and has
recently taken up the flute.

Antony Pranata

Antony holds an MSc in Information Technology from the University of
Stuttgart, Germany.

He has been involved in a number of Symbian OS projects in different
technology areas, including security, tools, multimedia and location-
based services. He currently works for Nokia in Canada.

Antony is a Forum Nokia Champion, Accredited Symbian Developer
and Accredited S60 Developer. He has a personal website and blog at
www.antonypranata.com. He now lives in Vancouver with his wife, Emi.

Jukka Silvennoinen

Jukka holds a PhD in Computer Information Systems.

Before joining Forum Nokia recently, he spent several years developing
many Symbian OS applications, mainly for the Asian markets. As a
certified Nokia Trainer he was also a visiting lecturer in one of the best
universities in Thailand.

Jukka can often be found haunting the Forum Nokia developer dis-
cussion boards and wiki. He recently renewed his Accredited Symbian
Developer and Accredited S60 Developer status.

ABOUT THE AUTHORS XXi

Jo Stichbury

Jo is Senior Technical Editor with Symbian Press. She has worked within
the Symbian ecosystem since 1997; in the Base, Connectivity and Security
teams of Symbian, as well as for Advansys, Sony Ericsson and Nokia.

Jo is the author of Symbian OS Explained: Effective C++ Programming
for Smartphones, published by Symbian Press in 2004; she also co-
authored The Accredited Symbian Developer Primer: Fundamentals of
Symbian OS with Mark Jacobs, in 2006. Her most recent publication is
Games on Symbian OS: A Handbook for Mobile Development, published
in early 2008.

Jo became an Accredited Symbian Developer in 2005 and a Forum
Nokia Champion in 2006 and 2007.

Acknowledgments

The authors would like to thank the Symbian Press team for allowing us
this opportunity, for their patience and for making the process as smooth
as possible.

The authors would also like to thank all the technical reviewers for
their invaluable comments and for stopping us from making fools of
ourselves.

Michael would like to thank: my fellow authors on this book for
making me look cleverer than | am, the kind people at Symbian Press
for entrusting this project to a new author, David Wood for initiating the
project, my family and my current or former colleagues for their help and
inspiration.

Tanzim would like to thank: my great colleagues, particularly Nadeem,
Tom and Petr, for their insightful knowledge of the Symbian OS network-
ing architecture, and my fellow authors for their helpful suggestions.

Jenny would like to thank: Aaron for all the weekends when his living
room became my study, and the Quick Recipes team for all their help.

Antony would like to thank: Emi for her support and understanding
during this project and my uncle, William Suryawijaya, for introducing
me to the wonderful world of programming back in the 1990s.

Symbian Press would like to thank: each of the authors, who gave up so
much of their time to contribute to this book, and our technical reviewers,
for their generous feedback. In particular, we’d also like to thank Tanzim
for dropping everything to work with us on the copy edits. We'd also like
to thank Daniel Mattioli, for letting us ‘borrow’ Tanzim, and Emmanouil
Papathanassiou and Neil Taylor, for help with our example code.

1.1

Symbian OS Code Conventions
and Notations Used in the Book

For you to get the most out of this book, let’s quickly run through the
notation we use. The text is straightforward, and where we quote example
code, resource files, or project definition files, they will be highlighted as
follows:

This is example code;

Symbian C++ uses established naming conventions. We encourage you
to follow them too, in order for your own code to be understood most
easily by other Symbian OS developers, and because the conventions
have been chosen carefully to reflect object cleanup and ownership,
and make code more comprehensible. An additional benefit to using the
conventions is that your code can then be tested with automatic code
analysis tools, which can flag potential bugs or areas to review.

The best way to get used to the conventions is to look at code snippets
in this book, and those provided with your chosen SDK.

Capitalization

The first letter of class names is capitalized:

Class TColor;

The words making up variable, class, or function names are adjoining,
with the first letter of each word capitalized. Classes and functions have

xxvi SYMBIAN OS CODE CONVENTIONS AND NOTATIONS USED IN THE BOOK

their initial letter capitalized while, in contrast, function parameters, local,
global, and member variables have a lower case first letter.

Apart from the first letter of each word, the rest of each word is given
in lower case, including acronyms. For example:

void CalculateScore (TInt aCorrectAnswers, TInt aQuestionsAnswered) ;
class CActiveScheduler;

TInt localVariable;

CShape* iShape;

class CBbc;//Acronyms are not usually written in upper case

1.2 Prefixes

137

Member variables are prefixed with a lower case ‘i’, which stands for

‘instance’:

TInt iCount;
CBackground* iBitmap;

Parameters are prefixed with a lower case ‘a’, which stands for ‘argu-
ment’. We do not use ‘an’ for arguments that start with a vowel.

void ExampleFunction (TBool aExampleBool, const TDesC& aName) ;

(Note: TBool aExampleBool rather than TBool anExampleBool).
Local variables have no prefix:

TInt localVariable;
CMyClass* ptr = NULL;

Class names should be prefixed with the letter appropriate to their
Symbian OS type (usually ‘C’, 'R’, ‘T’, or ‘M’), as will be described further
in Chapter 3:

class CActive;
class TParse;
class RFs;

class MCallback;

Constants are prefixed with ‘K’

const TInt KMaxFilenameLength = 256;
#define KMaxFilenameLength 256

SYMBIAN OS CODE CONVENTIONS AND NOTATIONS USED IN THE BOOK xxvii

Enumerations are simple types, and so are prefixed with ‘T’. Enumera-
tion members are prefixed with ‘E’:

enum TWeekdays {EMonday, ETuesday, ...};

1.3 Suffixes

A trailing ‘L” on a function name indicates that the function may leave:

void AllocL() ;

A trailing ‘C’ on a function name indicates that the function returns a
pointer that has been pushed onto the cleanup stack:

Ccylon* NewLC () ;

A trailing ‘D’ on a function name means that it will result in the
deletion of the object referred to by the function:

TInt ExecuteLD(TInt aResourceId) ;

1

Introduction and Setup

The first part of this chapter will help you set up your development
environment using free tools.

While your computer is busy downloading and installing software, you
should read the second part of this chapter. It contains a host of critical
information you need before you start using the development tools.

When all the tools are installed, there are a few more minor configu-
ration steps to go through in the last part of this chapter.

1.1 Tools: What You Need and Where to Find It

1.1.1 System Requirements
System requirements for C++ development on Symbian OS v9.x are as
follows:

e Microsoft Windows 2000 Professional with Service Pack 3 or MS
Windows XP Professional with Service Pack 2, running on a laptop or
desktop computer. At the time of writing this book, most Symbian OS
SDKs do not support Windows Vista.

e Atleast 512 MB of RAM (1.5 GB recommended).

e 1-GHz or faster Pentium-class processor (2-GHz Pentium-class pro-
cessor recommended).

e Atleast T GB of free disk space (5 GB recommended).
e 16-bit color display capable of a 1,024 x 768 pixels resolution.

e Java™ Runtime Environment (JRE) 1.4.1_02 or later (available from
java.sun.com).

e ActivePerl 5.6.1 build 568 or later (available from activestate.com).

2 INTRODUCTION AND SETUP

e Microsoft Core XML Services (MSXML) 4.0.
e ZIP decompression software to open the installation package.
e Local-administrator rights for installation and removal of software.

e The PC Suite software for your handset. You should find the latest
version of this software on the website of the manufacturer of the
handset.

ActivePerl may be bundled in some of the Software Development Kit
packages you will be installing.

1.1.2 IDE

The recommended Integrated Development Environment for Symbian
OS C++ development is called Carbide.c++. You can download the free
Express Edition from: forum.nokia.com/carbide. Section 1.2.1 describes
Carbide.c++ in more detail.

1.1.3 SDKs

Symbian OS is split into two platforms: S60 3rd Edition and UIQ 3. (There
is a third one, called MOAP, available only in Japan, which this book
doesn’t cover.)

Each platform is replaced as different versions (or Feature Pack numbers
for S60).

Once you know which handsets you want your applications to
run on, you can identify all your target platforms and their version
using the following websites: www.s60.com/life/s60phone (for S60) and
www.uiq.com/uigphones (for U1Q).

You need to download all the SDKs for all your target platforms. At the
time of writing, this could mean up to five different SDKs for development
on Symbian OS v9.x: S60 3rd Edition Maintenance Release, Feature Pack
1 and Feature Pack 2 Beta, along with UIQ 3.0 and UIQ 3.1.

The SDKs can be downloaded from: developer.symbian.com/main/
tools.

1.1.4 Compilers

There are two free compilers used for Symbian OS C++ development.
The Nokia x86 compiler targets the Symbian OS emulator for Microsoft
Windows included in the SDK. You will see this referenced as WINSCW.
The open source GCC-E compiler targets the actual handsets, where
Symbian OS runs on an ARM processor.
Both compilers should be bundled in the SDK installation package,
but GCC-E must be installed to a folder whose path contains no ‘space’
characters or your builds will fail with ‘missing separator’ errors.

WHILE YOU ARE WAITING 3

1.2 While You are Waiting

1.2.1 Carbide.c++

There are four different editions of Carbide.c++:

e Express Edition
e Developer Edition
e Professional Edition

e OEM Edition.

The free Express Edition is the only one that doesn’t allow debugging
an application running on the actual phone (on-target debugging). All
versions allow emulator debugging.

Carbide.c++ is based on Eclipse and is highly customizable. You can
even create your own plug-ins to extend its functionality.

When you first launch Carbide.c++ it allows you to define a ‘work-
space’. We suggest you create a different workspace for each SDK.

There is a very nice Flash tutorial to introduce Carbide.c++ at
developer.symbian.com/main/learning/flash, and a booklet about get-
ting started with Carbide.c++ available from developer.symbian.com/
carbide_booklet_wikipage.

1.2.2 Development Communities
In order to get more information, meet your fellow developers, ask
questions and find out the solutions for common problems, you should
visit the following links:
e Symbian Developer Network: developer.symbian.com.
e Forum Nokia: forum.nokia.com.
e UIQ Developer Community: developer.uiq.com.
e Sony Ericsson Developer Forum: developer.sonyericsson.com.
e MOTODEV Developer Forum: developer.motorola.com.

While you are waiting, you should register on, at the very least, the
following website:

e Symbian Signed: www.symbiansigned.com.

There are also many independent sites, which contain a lot of helpful
and educational information; for instance, www.newlc.com.

4 INTRODUCTION AND SETUP

1.2.3 Concepts of Mobile Development

On an open operating system such as Symbian OS, third-party developers
like you can install their own applications.

Programming for smartphones puts you in a position where you
have quite limited resources, such as CPU capabilities, battery power,
input methods, available memory amount and so on. Software developers
targeting such a challenging environment need to focus on code efficiency
and robustness more than they may be used to for desktop platforms.

We are working in an environment where any heap memory allocation
can fail and where the cost of forcing the CPU to switch between processes
(or even between threads) is non-negligible.

Several Symbian OS development efforts are worth being aware of:

e Open Source projects at www.symbianos.org.

e P.ILP.S. and Open C are there to help you port applications using the
Posix libraries to Symbian OS (see www.forum.nokia.com/openc).

e The Standard Template Library is being ported to Symbian OS.

e The Net60 framework from Red Five Labs allows you to use Microsoft
.NET Compact Framework (see www.redfivelabs.com).

e There are runtime environments for Java, Ruby and Python available
for Symbian OS (see developer.symbian.com/main/getstarted/hub/
runtimes_hub.jsp).

1.2.4 ARM Hardware

When targeting the actual handset, Symbian OS binaries are based on
the Application Binary Interface (ABI) for the ARM Architecture. ABI is a
standard for the interfaces of binary code running in ARM environments.
The specification is published by ARM at: www.arm.com/products/
DevTools/ABI.html.

We will not go into the details of various ARM instruction sets and ABI
versions in this book.

1.2.5 Emulator

In addition to debugging using a stack trace, breakpoints and variable
monitoring, the emulator allows you to test your deployment packages to
ensure your application will be installed properly on the real smartphone.

The S60 emulator preferences allow you to set up several useful
parameters, like Bluetooth and IrDA (Infrared) ports and platform security

WHILE YOU ARE WAITING 5

BEE

i Events:| Route

HMulkimedia Card (MMC) | Basic Events | Enhancement Evets | Notification Events | Messaging

(%) Use ¥irtual MMC 1024KE

MMC status: INSERTED

Send ewent: Insert MMC
Remave MMC

() Use local drive as a memary card

Select drive:

Figure 1.1 S60 Utilities

settings. In addition, the emulator has a powerful utilities application
which helps you test your software by triggering various events, like
memory card insertion (Figure 1.1).

The UIQ emulator also offers some configuration capabilities via a
separate utility — SDKConfig (Figure 1.2) — a graphical configuration tool
located in the ...\epoc32\tools\distrib folder of your SDK.

1" SpK Configurator, @

Devices | Styles Commurioations |

Communication Ports

Bluetooth port | hd
IR port | 2

Apply ports

Emulator ethernet settings
& se DHCP settings

" Define seftings

IP-address: T T
swnetmask: [[[[
T I
Galeway: I

Por:

I Use proxy

Apply ethemet

Figure 1.2 UIQ SDK Configurator

6 INTRODUCTION AND SETUP

SDKConfig launches a number of scripts from ...\epoc32\tools.
This utility can be used to select the default device, change the Ul style of
the emulator and set up communication ports and Ethernet connection.
The easiest way to define Ethernet setting is to use DHCP and uncheck the
‘Modify MAC-address’ checkbox.

1.3 Post-Installation

1.3.1 Command Line Tools

Without arguments, the devices command lists all the installed SDKs
from a DOS prompt:

S60_3rd:com.nokia.s60

S60_3rd FP2_Beta:com.nokia.s60 - default
S60_3rd_FPl:com.nokia.s60
UIQ3.1l:com.symbian.UIQ

It also allows you to switch between SDKs as follows:

devices -setdefault @S60_3rd_FPl:com.nokia.s60

1.3.2 SDK Directories Structure

Each SDK installs its own emulator binaries, handset libraries, tools code
examples and documentation on your hard drive.

...\epoc32\winscw) is where you will find the emulator drives.
...\epoc32\release\winscw\udeb\ is where you will find the bina-
ries for the emulator, particularly epoc.exe which launches the
emulator.

...\epoc32\release\gcce\urel is where you will find the ARM
libraries your code will compile against.

The code examples are split between the generic Symbian OS examples
and the examples using APIs specific to the S60 or UIQ platform.

SDK documentation is mainly in the form of CHM or PDF files. It
contains information related to all the APIs publicly available in Symbian
OS, along with information about the tools included in the SDK.

POST-INSTALLATION 7

1.3.3 Emulators

The DOS command line to start the emulator is always:

...\epoc32\release\winscw\udeb\epoc.exe

On a UIQ 3.1 emulator, it is recommended to lower the color depth
by replacing WINDOWMODE COLOR16MU by WINDOWMODE COLOR64K in
the file

...\epoc32\release\winscw\udeb\z\system\data\wsini.ini

In the Symbian OS file system, the Z: drive represents the phone’s ROM.

