

Developing Software for
Symbian OS

A Beginner’s Guide to Creating
Symbian OS v9 Smartphone
Applications in C++

Developing Software for
Symbian OS
A Beginner’s Guide to Creating
Symbian OS v9 Smartphone
Applications in C++

Steve Babin

Reviewed by

Antony Pranata, Bruce Carney, Chris Notton, Douglas Feather,
Freddie Gjertsen, Howard Sykes, Jehad Al-Ansari, Jo Stichbury,
Laura Sykes, Lucinda Barlow, Mark Jacobs, Matthew O’Donnell,
Neil Hepworth, Ricky Junday, Roderick Burns, Steve Rawlings,
and Warren Day

Head of Symbian Press

Freddie Gjertsen

Managing Editor

Satu McNabb

Copyright â 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-470-72570-2

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Foreword (Jo Stichbury) ix

Foreword (Warren Day) xi

Biography xiii

Author Acknowledgments xv

Symbian Press Acknowledgments xvii

Symbian OS Code Conventions and Notations Used
in the Book xix

1 Smartphones and Symbian OS 1
1.1 Notes on this New Edition 1
1.2 Smartphone Concepts 2
1.3 Smartphone Features 3
1.4 The Mobile OS 11
1.5 Symbian OS – A Little History 12
1.6 Symbian OS Smartphones 15
1.7 Other Smartphone Operating Systems 20

2 Symbian OS Quick Start 23
2.1 What Do You Need to Get Started? 23
2.2 Firing Up the Development Tools 31
2.3 Simple Example Application 38
2.4 Building and Executing on the Emulator 56

vi CONTENTS

2.5 A Carbide.c++ Project 58
2.6 Building for the Smartphone 59

3 Symbian OS Architecture 63
3.1 Components in Symbian OS 63
3.2 Multitasking in Symbian OS 64
3.3 Shared Code: Libraries, DLLs, and Frameworks 65
3.4 Client–Server Model 68
3.5 Memory in Symbian OS 70
3.6 The Kernel 77
3.7 Active Objects and Asynchronous Functions 81
3.8 GUI Architecture 83
3.9 High-Performance Graphics 85
3.10 The Communication Architecture 86
3.11 Application Engines and Services 90
3.12 Platform Security 90

4 Symbian OS Programming Basics 93
4.1 Use of C++ in Symbian OS 93
4.2 Non-standard C++ Characteristics 94
4.3 Basic Data Types 94
4.4 Symbian OS Classes 95
4.5 Exception Error Handling and Cleanup 101
4.6 Libraries 115
4.7 Executable Files 118
4.8 Naming Conventions 119
4.9 Summary 122

5 Symbian OS Build Environment 123
5.1 SDK Directory Structure 123
5.2 Build System Overview 126
5.3 Basic Build Flow 126
5.4 Build Targets 131
5.5 What is a UID? 135
5.6 The Emulator 137
5.7 Building Shared Libraries 141
5.8 DLL Interface Freezing 144
5.9 Installing Applications on the Smartphone 149

6 Strings, Buffers, and Data Collections 161
6.1 Introducing the Text Console 161
6.2 Descriptors for Strings and Binary Data 165
6.3 The Descriptor Classes 168
6.4 Descriptor Methods 186
6.5 Converting Between 8-Bit and 16-Bit Descriptors 198

CONTENTS vii

6.6 Dynamic Buffers 199
6.7 Templates in Symbian OS 203
6.8 Arrays 205
6.9 Other Data Collection Classes 213

7 Platform Security and Symbian Signed 217
7.1 What is Platform Security? 217
7.2 What Platform Security is Not 218
7.3 What this Means to a Developer 219
7.4 Capabilities for API Security 219
7.5 Application Signing in Symbian 232
7.6 Getting Your Application Symbian Signed 238
7.7 Developer Certificates 244

8 Asynchronous Functions and Active Objects 247
8.1 Asynchronous Functions 247
8.2 Introducing Active Objects 249
8.3 The Active Scheduler 254
8.4 Active Scheduler Error Handling 258
8.5 Active Object Priorities 260
8.6 Canceling Outstanding Requests 260
8.7 Removing an Active Object 262
8.8 Active Object Example 262
8.9 Active Object Issues 269
8.10 Using Active Objects for Background Tasks 271

9 Processes, Threads, and Synchronization 277
9.1 Processes 277
9.2 Using Threads on Symbian OS 286
9.3 Sharing Memory Between Processes 292
9.4 Memory Chunks 293
9.5 Thread Synchronization 297

10 Client–Server Framework 303
10.1 Client–Server Overview 304
10.2 A Look at the Client–Server Classes 305
10.3 Client–Server Example 306

11 Symbian OS TCP/IP Network Programming 323
11.1 Introduction to TCP/IP 324
11.2 Network Programming Using Sockets 327
11.3 Symbian OS Socket API 334
11.4 Example: Retrieving Weather Information 345
11.5 Making a Network Connection 356

viii CONTENTS

12 GUI Application Programming 359
12.1 Symbian OS User Interfaces 360
12.2 Anatomy of a GUI Application 365
12.3 Application Classes 367
12.4 Resource Files 377
12.5 Dialogs 387
12.6 Symbian OS Controls 405
12.7 View Architecture 409
12.8 Application Icon and Caption 409

References 413
Index 415

Foreword

Jo Stichbury
Symbian Press

Symbian has recently reported combined cumulative licensee sales of
over 145 million smartphones worldwide. And with over 120 smart-
phone models available, Symbian has by far the largest installed base of
smartphones, at approximately 72% of the market. Calculations suggest
that there are two Symbian smartphones shipping every second.

Symbian smartphone users can buy and install after-market applica-
tions, and evidence is that they are doing this in increasing numbers.
Symbian Signed has recently reached a milestone, having signed over
20,000 application and content files, ranging from games and multimedia
applications to enterprise and messaging utilities.

Symbian OS is a great platform for creating applications such as
these, and others. New handsets are shipping with technologies such as
Wi-Fi, GPS, DVB-H, HSDPA, IMS, multi-megapixel cameras, multi-GB
storage, biometrics, industry-leading security, 3D hardware accelerated
graphics, tilt-sensors, DNLA and uPnP (Universal Plug and Play), demand
paging, VoIP and much more. . . there’s scope to create some of the most
imaginative smartphone applications ever.

What about the people creating these applications? Symbian has over
300 Platinum Partner companies and a community of over 55,000 devel-
opers. These are not just based in mainland Europe, but are worldwide:
in Australia, Canada, Brazil, USA, India, People’s Republic of China,
Russian Federation, Singapore, Japan, and Thailand, to name just a few
of the countries where Accredited Symbian Developers can be found.

Symbian OS offers a range of development environments for applica-
tion development, from C and C++ to managed runtime environments
such as Java, Python, and Ruby. The best access to the smartphone

x FOREWORD

hardware, and the best performance on Symbian OS, comes from native
C++ and Software Development Kits for both major UI platforms – S60
and UIQ – are freely available. But, however available a development
environment may be, it isn’t necessarily easy to start work on a platform,
particularly a mobile operating system that demands robust and efficient
code. Newcomers to Symbian OS can be intimidated by the vocabulary
and the range of information, libraries, and tools provided.

This book sets out to make it easier to get started. It is aimed primarily
at C++ developers who are new to Symbian development. It makes
no assumptions of knowledge about Symbian OS, or any other mobile
platform, although it does assume a reasonable understanding of C++.

After introducing the Symbian platform and explaining how you can
get the tools and kits you need, Steve goes through the fundamental
topics needed to write an application to run on either UI platform built
on Symbian OS v9 (UIQ 3 and S60 3rd Edition). This new edition of
the book includes a chapter on platform security and application signing
(Chapter 7), and a set of downloadable sample code for the major code
examples in the book, for both UI platforms.

The original book Developing Software for Symbian OS, published
in 2005 for versions of Symbian OS pre-dating v9, has been a very
popular Symbian Press title. It was a ground-breaking book because it
was our first aimed squarely at beginners. Readers appreciated Steve’s
practical approach to the subject, and they report having learnt far more
than just the basics – it was a book packed with valuable and accessible
information.

Based on the number of times we’ve seen the original book recom-
mended on developer discussion forums, and our own belief in the quality
of the title, we decided to ask Steve to create a new edition for Symbian
OS v9. This book is the result, and I believe it is a valuable contribution to
the Symbian Press series – our 23rd Symbian Press title. I anticipate it to
be a useful addition to the bookshelves of many developers as they learn
how to create more applications to help those millions of smartphone
users to ‘do more with Symbian’.

Foreword

Warren Day
Senior Technical Trainer, Symbian Software Ltd

Why read this book?
It has the best explanations I’ve read of the fundamental things we

must understand about Symbian OS, in that it covers the ‘what’ and the
‘how’ of Symbian C++ software development.

And there are several parts to the how.
It is important to understand what facilities are provided (so we don’t

reinvent the wheel). Just as importantly we should know both how to
think about these components and how to use them appropriately. A car
isn’t meant to be driven in just first gear; doing so would quickly empty
the fuel tank and put great strain on the vehicle’s internal workings.

As it is for a vehicle’s transmission system, so it is also true for a software
system. Misusing software components can result in everything from short
battery life (so phones need frequent recharging) to inappropriate or poor
functionality, and phones that are difficult to use. By having a clear insight
into the fundamentals (such as memory management, string classes and
asynchronous events), your software will be more efficient, because it
utilizes the underlying system as intended.

We are living in exciting times. Society is evolving; being always-
connected to others and the Internet is standard for many. Now smart-
phones have the ability to make phone calls, access the Internet, capture
video, as well as perform personal organizer, word processor and spread-
sheet functionality, all from a small handset. However, smartphones are
very different from computers in one fundamental way, people have used
phones before! The telephone is easy to use and works correctly about
100% of the time. Smartphones should be equally usable and reliable.
This is the case with the other things a smartphone can do too, such as

xii FOREWORD

take photographs, play video and music. People have equivalent experi-
ences of reliability: the devices they are used to just work. Thus we now
have raised standards for rich functionality, power efficiency and perhaps
most importantly, reliability.

So, this book is a good ‘start writing and running programs from scratch’
book. It covers similar material to Symbian’s OS Essentials training course
and shows you how to take your first steps to writing good quality
applications for Symbian smartphones as they should be written.

Biography

Steve Babin works at IBM developing enterprise software for smartphones
based on Symbian OS and Microsoft Windows Mobile. He has a BSEE
from Louisiana State University and over 20 years of software devel-
opment and leadership experience on a variety of products – including
medical devices, Java accelerators, avionics, Internet appliances, and
system-on-chip silicon devices – using numerous operating systems. Steve
is married to Sharon and has a daughter named Hillary. They live in Austin,
TX. He is an Accredited Symbian Developer.

Author Acknowledgments

I would like to thank the people at Symbian Press for their interest in,
and enthusiasm for, doing this update. It was a pleasure working with
them again. I especially want to thank Jo Stichbury for her very thorough
reviews and edits, as well as her excellent suggestions and advice.
Special thanks also go to Satu McNabb and all the technical reviewers,
including Antony Pranata, Steve Rawlings, Howard Sykes, Laura Sykes,
Matthew O’Donnell, Jehad Al-Ansari, Chris Notton, Douglas Feather,
Neil Hepworth, Bruce Carney, Ricky Junday, Roderick Burns, and Warren
Day. Updating the book for Symbian OS v9 was quite a challenge, but
I was glad to have the help of such talented people. Thanks also go to
the people at John Wiley for their interest in this project, and their hard
work – I can only imagine what it takes to bring a book like this all the
way through the process and into the reader’s hands. I also want to thank
my wife Sharon and my daughter Hillary, for putting up with me on
this – again.

Symbian Press Acknowledgments

Symbian Press would like to thank Steve Babin for resolutely revising
his much-respected repository of knowledge. Thank you Steve, for being
professional, reliable, and a pleasure to work with. We’d also like to
thank each of the reviewers, and in particular Antony Pranata and Steve
Rawlings, who lent us the weight of their experience on each of the
UI platforms at very short notice. Thanks must also go to the Symbian
Technical Training team for their feedback and support.

We couldn’t have put this book together without the team at John
Wiley, and it’s thanks to Rosie Kemp that it happened so rapidly. Phil
Northam came to the rescue in our darkest hour, and Jo has promised to
buy him and Satu lunch, in recognition and with gratitude.

Symbian OS Code Conventions
and Notations Used in the Book

For you to get the most out of this book, let’s quickly run through the
notation we use. The text is straightforward, and where we quote example
code, resource files, or project definition files, they will be highlighted as
follows:

This is example code;

C++ code for Symbian OS uses an established naming convention.
We encourage you to follow it in order for your own code to be
understood most easily by other Symbian OS developers, and because
the conventions have been chosen carefully to reflect object cleanup
and ownership, and make code more comprehensible. An additional
benefit to using the conventions is that your code can then be tested with
automatic code analysis tools, which can flag potential bugs or areas to
review.

If they are unfamiliar, the best way to get used to the conventions is to
look at code examples in this book, and those provided with your chosen
SDK.

Capitalization

The first letter of class names is capitalized:

class TColor;

xx SYMBIAN OS CODE CONVENTIONS AND NOTATIONS USED IN THE BOOK

The words making up variable, class, or function names are adjoining,
with the first letter of each word capitalized. Classes and functions have
their initial letter capitalized while, in contrast, function parameters, local,
global, and member variables have a lowercase first letter.

Apart from the first letter of each word, the rest of each word is given
in lower case, including acronyms. For example:

void CalculateScore(TInt aCorrectAnswers, TInt aQuestionsAnswered);
class CActiveScheduler;
TInt localVariable;
CShape* iShape;
class CBbc;//Acronyms are not usually written in upper case

Prefixes

Member variables are prefixed with a lowercase ‘i’, which stands for
‘instance’.

TInt iCount;
CBackground* iBitmap;

Parameters are prefixed with a lowercase ‘a’, which stands for ‘argument’.
We do not use ‘an’ for arguments that start with a vowel.

void ExampleFunction(TBool aExampleBool, const TDesC& aName);

(Note: TBool aExampleBool rather than TBool anExampleBool).
Local variables have no prefix:

TInt localVariable;
CMyClass* ptr = NULL;

Class names should be prefixed with the letter appropriate to their
Symbian OS type (usually ‘C’, ‘R’, ‘T’, or ‘M’):

class CActive;
class TParse;
class RFs;
class MCallback;

Constants are prefixed with ‘K’:

const TInt KMaxFilenameLength = 256;
#define KMaxFilenameLength 256

SYMBIAN OS CODE CONVENTIONS AND NOTATIONS USED IN THE BOOK xxi

Enumerations are simple types, and so are prefixed with ‘T’. Enumeration
members are prefixed with ‘E’:

enum TWeekdays {EMonday, ETuesday, ...};

Suffixes

A trailing ‘L’ on a function name indicates that the function may leave:

void AllocL();

A trailing ‘C’ on a function name indicates that the function returns a
pointer that has been pushed onto the cleanup stack:

CCylon* NewLC();

A trailing ‘D’ on a function name means that it will result in the deletion
of the object referred to by the function:

TInt ExecuteLD(TInt aResourceId);

Underscores

Underscores are avoided in names except in macros (ASSERT DEBUG)
or resource files (MENU ITEM).

Code Layout

You’ll notice that the curly bracket layout in Symbian OS code, used
throughout this book, is to indent the bracket as well as the following
statement:

void CNotifyChange::StartFilesystemMonitor()
{// Only allow one request to be submitted at a time
// Caller must call Cancel() before submitting another

if (IsActive())
{
_LIT(KAOExamplePanic, "CNotifyChange");
User::Panic(KAOExamplePanic, KErrInUse);
}

iFs.NotifyChange(ENotifyAll, iStatus, *iPath);
SetActive(); // Mark this object active
}

1
Smartphones and Symbian OS

Symbian OS is a full-featured, open, mobile operating system that powers
many of today’s smartphones. As these smartphones become more pow-
erful and popular, the demand for smartphone software has grown.
Symbian smartphones are shipped with a variety of useful pre-loaded
and targeted applications, which are selected by each phone’s manu-
facturer. Today, the average Symbian smartphone ships with over 30
pieces of third-party software pre-installed. However, the exciting aspect
of Symbian smartphones is that they are ‘open’, meaning that users can
further customize their phone experience by downloading, installing,
and uninstalling applications written by third-party developers (or by the
users themselves). Users can download applications from a PC to the
smartphone through a link such as USB, or Bluetooth technology, or
over-the-air via the Internet.

With the largest installed base of smartphones worldwide, Symbian
OS offers a great opportunity for software developers to establish them-
selves in the mobile market by creating novel and exciting software for
the growing mass of smartphone users around the world. There is a
growing list of Symbian applications available as freeware or as paid
downloads on numerous Internet sites (http://www.handango.com and
http://www.epocware.com are good examples). They range from pro-
ductivity, entertainment, navigation, multimedia, and communications
software to programs that can count fast food calories, improve your
golf swing, keep diaries, and calculate foreign currency exchange. And
business opportunities aside, sometimes it’s just plain fun writing your
own code to run on your own smartphone.

The purpose of this book is to help and inspire software developers to
create good software for Symbian smartphones.

1.1 Notes on this New Edition
Developing Software for Symbian OS was first published in 2005, and in
the two years since then smartphones have continued their phenomenal

2 SMARTPHONES AND SYMBIAN OS

growth rate. The number of Symbian OS smartphones shipped in 2006
alone was 51 million – a 52% increase from the year before. In the first
half of 2007, 47.9 million smartphones were shipped (a 39% increase on
the same period in 2006) and the total number of Symbian OS phones
in circulation now surpasses 145 million. Smartphones now make up
9% of the total mobile market. Symbian continues to be the most widely
shipped smartphone OS. According to Canalys, Symbian’s share of the
smartphone OS market was 72.4% in Q2 2007.1 Many new Symbian
smartphones have been introduced that run on the latest versions of
Symbian OS, that is Symbian OS v9, which was a significant upgrade to
previous versions of the operating system.

The main purpose of this edition is to update the original Developing
Software for Symbian OS for Symbian OS v9. The basic programming
concepts of Symbian OS have not changed, so much of the content
of the core programming chapters remains. The main areas of change
include covering the new Symbian OS v9 software development kits
(SDKs) and development environment changes, as well as the significant
addition of the platform security architecture to v9, which is used to
protect the integrity of the smartphone. Since it affects various aspects of
development, platform security is discussed in various places throughout
this book as needed, and a new chapter has been added to the book to
discuss this subject in depth.

In addition to updating the book for Symbian OS v9, we have made
sure the book is updated in general for new developments that have
occurred since the original book, and we have fixed a few errata reported
against the original.

Before launching into programming for Symbian OS, this chapter
introduces the smartphone itself and gives an overview of its features
and associated technologies. Understanding the smartphone’s range of
features helps you as a programmer to exploit these features to their full
potential. (For more information about the typical features and design
of a smartphone, please consult How Smartphones Work, published by
Symbian Press in 2006.)

I’ll also discuss the company Symbian Ltd, give an introduction to
Symbian OS, and discuss how Symbian OS, as well as other operating
systems, fit into the marketplace.

1.2 Smartphone Concepts

A mobile phone that fits in your pocket and lets you communicate
from and to anywhere in the world is an amazing invention. Like most
inventions, mobile phones are built on a chain of prior technolog-
ical advancements. Without advancements such as integrated circuits,

1 http://www.canalys.com

SMARTPHONE FEATURES 3

microprocessors, semiconductor miniaturization, battery technology and,
of course, the invention of telephone and radio, the modern cell phone
would not be possible.

Smartphones combine the mobile phone with another stream of tech-
nology: the computer, which adds the ‘smart’ in smartphone. Computers
have progressed from centralized mainframes to personal computers with
user-downloadable applications and graphical user interfaces. With the
introduction of the Internet and email, the PC is a part of everyday life as
a productivity, entertainment, and communication device. Laptops were
introduced to allow PCs to be portable. Then came the mobile computing
device known as the PDA – a true handheld computer.

Since the PDA and the cell phone are both mobile devices, it’s only
natural that we would want to combine them into one device. After all,
you only have so much pocket and/or purse space! This is the basic idea
of a smartphone – but a smartphone is more than just a PDA combined
with a cell phone. Smartphones also contain features such as a digital
camera, video and music players, and GPS, thus combining other portable
devices as well.

1.3 Smartphone Features

Like PDAs, smartphones can run applications such as organizers, games,
and communications programs (e.g., email, browser). They can, of course,
also make telephone calls! The smartphone’s goal, however, is not just to
limit the number of devices you carry, but also to combine mobile phone
and computing technologies in a synergistic way. A simple example is
the ability to pull up a person’s contact information or even picture,
hit a button and automatically dial the person’s phone number. Other
examples include taking a picture, adding some text, and sending it
instantly to a PC or another smartphone user. There are many more
examples of this – and certainly many that have not even been thought
of yet.

1.3.1 How Smartphones Communicate
Smartphones, like traditional cell phones, use radio to communicate
with base towers, which in turn act as gateways into landline-based
communication infrastructures. While traditional cell phone systems are
based mainly on relaying voice communication between the wireless
handset and the wired telephone infrastructure, smartphones provide
more features that rely on network data transfer. After all, the basic concept
of the smartphone is to combine a mobile phone with a networked PDA.
Improving data transfer is the current challenge for next generation mobile
communications; unlike voice transfer, which requires a fixed bandwidth,
the rule for data transfer is the faster the better.

4 SMARTPHONES AND SYMBIAN OS

Generations of mobile communication

With faster data speeds come better services. For example, when the
bandwidth reaches a certain threshold, applications and services that
transfer real-time audio and video become possible. The industry goals
in wireless data communications have been categorized into genera-
tions – each generation includes a target data bandwidth as well as a set
of data services available for it:

First Generation (1G)
Original analog cell phone technology.

Second Generation (2G)
Voice-centric digital systems with increased coverage and capacity.
Introduces messaging.

Third Generation Transitional (2.5G)
Stepping stone to 3G. Introduces always-on network connections,
bandwidths up to 170 Kbps, allowing better Internet browsing, email,
and some audio video. GPRS has been the dominant technology here.

Third Generation (3G)/Fourth Generation (4G)
Supports bandwidths up to 2 Mbps and 200 Mbps, respectively, for
high-end services such as video teleconferencing.

The topic of wireless communication protocols is vast and could
easily take up another book. But let’s briefly cover some of the key
communication technologies that apply to smartphones.

GSM

GSM, short for Global System for Mobile Communication, is a digi-
tal cell-based communication service that started in Europe, and has
quickly spread throughout most of the world. A notable exception is the
USA, where CDMA is the dominant standard; however, GSM is gaining
popularity there. GSM is the most supported protocol in smartphones.

GSM was designed for circuit-switched voice communication. Circuit-
switched means that fixed bandwidth is reserved for each direction of a
phone call for the entire duration of the voice call, whether you are talking
or not. Although originally designed for voice, GSM now has a variety of
higher bandwidth data services (e.g., GPRS and EDGE) available, running
on top of the base GSM protocol. This allows for faster data transfer, as
we will see shortly.

The following types of GSM exist, each using its own band in the
frequency spectrum: GSM 850, GSM 900, GSM 1800, and GSM 1900.
The number indicates the frequency band, in MHz, that the protocol uses.
Cell phones supporting GSM 900 and GSM 1800 will ensure coverage in
Europe and many other areas outside the USA, while GSM 850 and GSM
1900 are used in the USA (mostly GSM 1900).

SMARTPHONE FEATURES 5

Fortunately, smartphones support multiple bands to ensure as wide a
coverage as possible. It’s common to have tri-band phones that support
GSM 900, GSM 1800, and GSM 1900 to ensure maximum international
coverage – although some still offer separate US models to reduce costs.

A GSM phone uses a Subscriber Identification Module (SIM) to gain
access to the GSM network. A SIM contains all the pertinent information
regarding a user’s account, including the services allowed. It is used to
identify the user to the GSM network for billing purposes. The user can
switch their SIM from one GSM phone to another, provided that the
phone is either not locked to a specific carrier, or locked to the carrier
that the SIM is associated with.

CDMA

CDMA, which stands for Code Division Multiple Access, is a cell phone
standard that competes with GSM. CDMA currently dominates in the
USA and Korea, while GSM dominates virtually everywhere else. CDMA
supports a high-speed data mode called CDMA2000 1xRTT, which tends
to hover around 50–70 Kbps, bursting up to 144 Kbps.

EV-DO is the high-speed, 3G version of CDMA. EV-DO supports
rates up to 2.4 Mbps (with actual speeds averaging closer to 1 Mbps)
and is adopted by many services including Verizon and Sprint in the
United States.

CSD

CSD, short for Circuit Switched Data, is the most basic mode of transfer-
ring data over a circuit-switched connection like GSM. The connection
is established by dialing the number of an ISP, in the same manner that
a dialup connection is started on a land-based telephone line using a PC
modem. With CSD, you do not need any extra data plan like GPRS to
send data. You can use up your existing voice minutes.

There are two major disadvantages to using CSD, however. First, it
takes a long time to connect since this involves dialing a number and
waiting for the server to answer the call. Second, it is slow; data transfer
speed is only about 9.6 Kbps.

In GSM-based smartphones, this mode is referred to as ‘Dial’ or simply
as GSM data. Earlier smartphones such as the Nokia 9290 rely entirely
on this mode of data communication.

GPRS

GPRS, short for General Packet Radio Service, is a wireless technology
that allows the smartphone user to quickly connect to the network and
obtain good data rates. Connection time is fast since GPRS does not
require any dialing (as CSD does), and the smartphone feels as if it is
always connected.

6 SMARTPHONES AND SYMBIAN OS

Protocol-wise, GPRS runs on top of GSM. While GSM alone is circuit-
switched, GPRS is based on packet-switching technology. This means
that the radio bandwidth is used only when data is actually transferred,
even though you are constantly connected (circuit switching keeps the
full bandwidth reserved throughout a connection).

GPRS, in theory, supports bandwidths up to 170 Kbps. In practice,
however, you’ll get between 20 and 60 Kbps, depending on network
conditions – but this is still significantly faster than the GSM dialup data
rate! The best way to think of the speed of GPRS is that it matches
approximately with a PC connected to the network via a wired telephone
modem. However, GPRS can feel better than dialup since it connects
almost instantly to the network without the lengthy delay in dialing a
number and establishing a call.

GPRS is categorized as a 2.5G technology due to its speed. Although
many networks now support higher-speed protocols, GPRS was an excel-
lent stepping stone and preview for the now-available 3G technologies.

HSCSD

HSCSD is the high-speed version of CSD. HSCSD is another 2.5G
standard that supplies a comparable speed to that of GPRS (although
on the lower side in many cases), but with a significant difference – the
bandwidth is reserved to the smartphone throughout the connection. This
is because HSCSD, like CSD and GSM, is a circuit-switched technology.
This makes HSCSD better suited for applications that require a constant
bit rate, although the practical bandwidth is rather low for good real-time
multimedia transfers, and these are the transfers that would benefit the
most from constant bit rates.

HSCSD is not widely used due to the higher costs to implement. The
Nokia 6600 and the Motorola A920 are examples of smartphones that
support HSCSD.

EDGE

EDGE, short for Enhanced Data Rates for GSM Evolution, is a GSM-based
protocol that provides theoretical speeds up to 384 Kbps. It is a 2.5G
technology that is sometimes referred to as 3G because of its higher speed.
It is not yet as widely used as GPRS, but is gaining support. For example,
AT&T has deployed EDGE on its GSM networks in the USA, reaching
speeds of around 90 Kbps in practice. Most modern GSM smartphones
now support EDGE.

UMTS

UMTS, short for Universal Mobile Telecommunication Services, is a
high-speed data transfer which supports bandwidths up 2 Mbps. This

SMARTPHONE FEATURES 7

protocol is the basis of third generation mobile communications that
make many media-rich services a possibility. UMTS is not based on GSM
technology – it uses a technology called W-CDMA. However, the UMTS
platform is designed to work with GSM systems to ease its deployment.
It’s exciting that many service providers now have this high-speed service.

HSDPA

HSDPA, short for High-Speed Data Packet Access, is based on UMTS and
supports even higher speeds than UMTS (up to 3.6 Mbps). It is known
as a 3.5G technology. Many service providers have launched HSDPA
support recently.

Wi-Fi

Wi-Fi is a popular communication protocol used to connect devices such
as PCs, game consoles, PDAs, and mobile phones to a network wirelessly.
Wi-Fi service is found not just at corporations for their employees to access
their network, but also for Internet users at coffee shops, hotels, book
stores, airports, and even parks.

Wi-Fi is a high-speed protocol when compared with cell tower-based
protocols – it supports speeds up to 54 Mbps. Wi-Fi is a much shorter-
range protocol when compared with cell-based radio protocols, with its
range being about 600 ft.

In the last couple of years, numerous smartphones have been released
with Wi-Fi capability. This allows for high-speed data transfer when in
range of a Wi-Fi ‘hotspot’.

A standard called WiMAX, which is in its beginning stages now,
promises to extend the range of Wi-Fi to 2–3 miles for more global area
coverage.

1.3.2 Smartphone Messaging

Text messaging, such as email and instant messaging, is widely used
on PCs connected to the Internet. It makes sense that similar modes of
communication be used in mobile devices. Below are the messaging
features supported by smartphones.

SMS

SMS stands for Short Messaging Service. SMS allows mobile phone users
to send and receive short text messages up to 160 characters. These
messages are sent between phones with only a small delay and can occur
even while a voice call is in progress. SMS is well suited for many types
of communication exchange, and is less intrusive than making a voice

8 SMARTPHONES AND SYMBIAN OS

call. SMS is a part of the GSM communication platform and used by
cell phones all over the world. SMS is not yet widely used in the United
States, but is slowly growing in popularity. SMS is a standard feature on
today’s smartphones.

MMS

MMS, short for Multimedia Messaging Service, is an extension of SMS
that provides the ability to send media data such as pictures, audio, and
even video along with your text message. MMS is a natural complement
to smartphones due to its need for, and use of, audio and video capability
and, in many cases, an attached video camera. For example, a smartphone
user could snap a picture of a landmark, record a quick voice comment
on it, and send it instantly to another mobile phone user.

MMS messages can even be sent to people who have only SMS
capability by sending a text link to a browser URL containing the MMS
message. You can also send and receive MMS messages between a
smartphone and an email account used from a PC.

Email

Having the ability to keep up with your email while on the road is a
standard feature found in smartphones. With the high-resolution scrol-
lable displays and alphanumeric entry methods, it does not feel much
different from email on a PC. Smartphones allow the user to set up
multiple POP3 and IMAP email accounts.

Fax

Many smartphones include the ability to send and receive faxes, or can
be customized to do so with fax software.

1.3.3 Web Browsing
Internet browsing is a standard feature for smartphones. There are many
different browsers available, and they fall into two main types: WAP and
HTML.

WAP

WAP, which stands for Wireless Application Protocol, was specifi-
cally designed for Internet browsing on resource-constrained devices.
It includes lightweight markup languages designed to minimize the pro-
cessing power and memory needed by the mobile device to render the
web page. WAP also ensures that the page is useable on a small screen.
Markup languages include WML and xHTML (mobile profile).

SMARTPHONE FEATURES 9

In many cases, proxy servers are used, which will automatically
translate traditional HTML websites to the WAP markup language before
transferring to the mobile device. This is known as transcoding.

HTML

Although WAP was considered important for earlier mobile devices, the
smartphones today have better memory, processing power, and displays.
Because of this, it is feasible to include traditional HTML browsers that
load websites directly in their native format, similar to a browser on a PC.
Many smartphones have HTML browsers and those usually include WAP
capability as well – sometimes combined in one browser.

1.3.4 Local Device Communication Features

Smartphones have a variety of communication features in addition to basic
access to the cellular network. These features allow a smartphone to link
directly with other devices, including PCs, PDAs, wireless headsets, and
other smartphones to undertake a wide variety of data transfer functions.
Below are the popular device-to-device communication mediums, along
with some of their uses.

USB/Serial cable connection

Smartphones can be connected to a PC via either a USB or serial
cable (varies from phone to phone). This high-speed link is normally
used for downloading new applications to the smartphone as well as
synchronizing user data, such as calendar and contact entries. Many
products provide a cradle into which the smartphone can be plugged, for
both PC connectivity and for charging the phone’s battery.

Infrared (IR)

The smartphone provides the capability to communicate through an
infrared port to a PC or other device such as a PDA or phone. You can
do all the things that can be done with the USB/serial cable, but without
plugging in any wires. IR requires a line-of-sight connection between the
devices in the same way that a TV remote control does.

Bluetooth technology

Bluetooth technology is a short-range radio technology that enables
devices to find and connect to each other and communicate. While
technologies like GSM replace long lengths of wire, Bluetooth technol-
ogy replaces the rat’s nest of short wires connecting various pieces of

10 SMARTPHONES AND SYMBIAN OS

equipment. Unlike infrared, Bluetooth technology does not require a line
of sight and will even communicate through walls.

With Bluetooth technology, you can connect more conveniently to PCs
and PDAs than you can with cable and IR to download applications and
synchronize user data. In addition to providing basic PC-to-smartphone
linkage, Bluetooth technology makes more device-to-device communi-
cation scenarios possible. For instance, you can snap a picture on your
smartphone and send it to a nearby printer for printing or connect to a
wireless headset for hands-free operation.

Some smartphones allow themselves to be used as a modem, with
access to the cellular network. In this case, a device such as a PC
connects to the smartphone via Bluetooth technology, cable, or IR to
provide the PC with Internet connectivity.

As more devices become available with Bluetooth technology, expect
many new possibilities for Bluetooth-enabled smartphones.

1.3.5 Location Based Services

More smartphones are being equipped with features that allow a device
to know its physical location. In some cases – for example, the Nokia
N95 – Global Positioning Satellite (GPS) hardware is built into the phone.
Alternatively, the phone may use the cell service’s location information
(e.g., the GSM cell id can tell which particular cell tower you are com-
municating with), which is being increasingly supported for emergency
purposes.

Location Based Services (LBS) uses the device’s location to provide a
personalized experience to the user. The most obvious (and useful!) is the
traditional map-based turn-by-turn navigation service. Other interesting
applications are:

• Software that shows the hotels, stores, theaters, and other businesses
in your immediate vicinity along with any special discounts or other
deals offered. Weather and traffic can also be reported for your
vicinity.

• Software that allows you to track your children who are carrying
LBS-enabled smartphones.

• Software to help with health and fitness by tracking how far and fast
you are walking or jogging.

• Games that use your location as input. For example, Blister Entertain-
ment has a fishing game called Swordfish where you find schools of
fish based on your phone’s real location (launched in North America
on Sprint Nextel, Bell Mobility, and Boost Mobile). Once you find
them, you can catch them, arcade style. There are a few other LBS
games around, and could be many more to come.

THE MOBILE OS 11

LBS is at a very early stage for smartphones at the time of this writing,
but its future looks promising. Reference http://www.lbszone.com for
more details on LBS.

1.3.6 Mobile TV

As smartphones get more powerful, have better displays and faster con-
nections, mobile TV video is becoming a reality for these devices. Mobile
TV content can consist of live television shows, news and sports, as well
as movies on demand and music videos.

Currently, most mobile TV services use the existing cellular network
for transferring video data using both 2G and 3G transport protocols. 3G
is, of course, the better transport since a good TV picture requires a lot of
bandwidth.

However, to realize its full benefits, mobile TV needs a dedicated
video communication protocol, and the most promising protocol for this
is DVB-H. DVB-H is an adaptation of the standard digital TV DVB-T
protocol to make it viable for handheld devices. Mobile TV services on a
smartphone would use a combination of DVB-H and the 2G/3G network.
Although not common yet, some carriers have launched DVB-H mobile
TV services (Vodafone in Italy is an example). The Nokia N92 and Nokia
N77 are examples of smartphones that support DVB-H.

1.4 The Mobile OS

In the past, portable devices such as cell phones did not require sophis-
ticated operating systems. These earlier devices used simple, and usually
proprietary, system software. In many cases they used no operating sys-
tem at all, and all software remained fixed in the device’s Read Only
Memory (ROM). Now that mobile devices such as PDAs and smartphones
have greater hardware power and implement sophisticated, media-rich
(downloadable) applications, it’s apparent that a sophisticated operating
system is needed.

1.4.1 What Makes a Good Smartphone OS?

Smartphone devices have certain characteristics that are different from tra-
ditional desktop computers, and that must be addressed by a smartphone
operating system.

Run on resource-limited hardware
Smartphones should be small, have long battery life, and cost as little as
possible. To meet these requirements, smartphones, like other mobile
devices, have limited memory and processing power compared with

12 SMARTPHONES AND SYMBIAN OS

desktop PCs and laptops. The operating system must be frugal in using
hardware resources – especiallymemory.Notonlymust theOS itself not
use much memory, but the architecture should be such that it provides
limits and support to help OS applications also limit their use of memory,
as well as allowing them to handle low-memory situations gracefully.

Robustness
A user expects a mobile phone to be stable and will not tolerate the
device locking up. This is a challenge for any full-featured operating
system due to the complexity of the system software itself; however, it is
especially challenging for resource-limited devices like smartphones,
which also allow third-party applications – that may be of questionable
quality – to be downloaded.

Not only must the OS itself be designed to avoid crashing on
its own, the OS must also provide support functions and policies for
applications to follow, allowing the device to handle application errors
and (as alluded to before) out-of-memory situations without locking
up the phone.

User interface for limited user hardware
The OS should implement a user interface environment that is efficient
and intuitive to use, despite the smaller screen and limited user input
capabilities of a smartphone. Also, screen sizes and input capabilities
vary between different models of smartphones, so the UI architecture
should also be flexible, so that it can be customized for the varying
form factors.

Library support for smartphone features
Smartphone operating systems should contain middleware libraries
and frameworks with APIs that implement and abstract the function-
ality of the features of the smartphone. The purpose is to provide
functional consistency and to ease software development. Examples of
smartphone middleware include libraries and frameworks for email,
SMS, MMS, Bluetooth technology, cryptography, multimedia, UI,
GSM/GPRS – the more smartphone feature support the better.

Support for application development
Smartphone buyers want to know that there are many good applica-
tions available for their device, and that they can expect more and
better software for it in the future. In order for this to be a reality,
the OS must have good software development tools, support, training,
and documentation. The more productive the developers, the more
powerful, easy to use, and bug-free applications will appear for the
smartphone.

1.5 Symbian OS – A Little History

The creation of Symbian OS can be traced back to a talented team of
software developers at a company called Psion, an early pioneer in the

SYMBIAN OS – A LITTLE HISTORY 13

handheld computer market. After successive generations of software for
Psion’s handheld devices, the team created an object-oriented operating
system called EPOC, which was designed specifically for the unique
requirements of mobile computing devices.

Psion realized that there was a need for a mobile OS that could be
licensed to other manufacturers for use in their mobile products, and
that their EPOC operating system was well suited for this. At the time,
the mobile phone industry was looking for a general operating system
suitable for mobile phones and was interested in using EPOC. In June of
1998, Symbian was formed as a joint venture owned by the major cell
phone manufacturers of the day (Nokia, Ericsson, and Motorola) as well
as Psion, with the primary goal of licensing the EPOC operating system
and improving it.

Fast forward to today, and we find that Symbian’s operating sys-
tem – now known as Symbian OS – is a major player in the smartphone
marketplace, residing in the majority of today’s smartphone devices.
Symbian is jointly owned by Ericsson (15.6%), Nokia (47.9%), Panasonic
(10.5%), Samsung (4.5%), Siemens (8.4%), and Sony Ericsson (13.1%),
which, together, represent a major portion of the cell phone industry.

1.5.1 Symbian OS Overview

Symbian OS was designed from the ground up for mobile communications
devices. While some competing operating systems (such as Microsoft’s
Windows Mobile for Smartphones OS) evolved from operating systems
written for larger, more resource-laden systems, Symbian OS approached
it from the other direction. Symbian’s earlier versions (when known as
EPOC) would run on devices with as little as 2 MB of memory.

Symbian OS is a multitasking operating system with features that
include a file system, a graphical user interface framework, multimedia
support, a TCP/IP stack, and libraries for all the communication features
found on smartphones.

Symbian OS has software development kits available for third-party
application development. Furthermore, the hardware layers of the oper-
ating system are abstracted, so that phone manufacturers can port the OS
to the specific requirements of their phone.

1.5.2 One OS, Various Flavors

It is challenging to create an operating system that provides common core
capabilities and a consistent programming environment across all smart-
phones – yet at the same time allows for manufacturers to differentiate
their products. Smartphones come in many different shapes and sizes,
with varying screen sizes and user input capabilities; the user interface
software needs to vary to fit these differences.

14 SMARTPHONES AND SYMBIAN OS

Symbian OS has a flexible architecture that allows for different user
interfaces to exist on top of the core operating system functionality.
Of course, it is not wise to be too flexible for two reasons: (1) having
too many different user interfaces inhibits code reuse among different
devices and (2) too much work is required by the original equipment
manufacturer (OEM) to create a GUI user interface from scratch for their
smartphone.

So, to give the phone makers a starting point, Symbian created a few
reference platforms, each packaging the Symbian OS core functionality
along with a user interface that matched one of the basic smartphone
form factors (screen size and input capability). This was important in
the beginning; the idea was for smartphone manufacturers to choose
a reference platform that most closely matched their phone’s hardware
characteristics, and use that as a starting point for their own customized
UI layer. This indeed is what happened, and these reference platforms
were the origin of the main flavors of Symbian OS you see today – S60,
UIQ, and Series 80.

Symbian OS no longer supports the original user interface reference
platforms and the smartphone programmer has no contact with these at
all. Instead, the developer uses the software development kit (SDK) for the
end platform supported by the phone. Also, there is no generic Symbian
OS SDK for the developer – all core functionality is also included in the
particular platform SDK.

Here are the major platforms for Symbian OS:

Nokia S60
The Nokia S60 (originally known as Series 60) user interface platform
was originally designed for lower-end smartphones with small displays
(176 × 208) and limited user input, such as a numeric-style keyboard
used to enter text. This has changed in that S60 devices are getting
more sophisticated, having larger displays, and even full keyboards.
Nokia based S60 on the Symbian reference design known as Pearl,
although Nokia did make significant modifications to it. S60 is a
popular Symbian user interface. S60 is the most shipped platform
for Nokia smartphones. At the time of writing, over 100 million S60
smartphones have been shipped.

The Nokia E61, Nokia E90 Communicator, Nokia N76, Nokia N93
and Nokia N95 are examples of phones that run S60 3rd Edition.
Earlier S60 phones include the Nokia 6680, Nokia 7610 (which are
S60 2nd Edition platforms) and Nokia 3650 (which is a S60 1st Edition
platform). At the time of going to press, the latest S60 smartphone to
be announced is the Nokia N81.

Nokia also licenses the S60 platform to other manufacturers such as
Lenovo, LG, Panasonic, Samsung, and Siemens. At the time of writing,

SYMBIAN OS SMARTPHONES 15

the most recently announced S60 smartphone from a licensee is the
Samsung SGH-i400.

Nokia Series 80
Series 80 is designed for Nokia phones known as communicators.
These phones have a half VGA, landscape screen, a foldout keyboard,
and hard buttons along the right side of the screen that have dynamic
functions as defined by the application. Series 80 is based on a
Symbian OS reference design called Crystal. The Nokia 9210/9290
and 9500/9300/9300i communicator devices use the Series 80 user
interface.

Nokia is discontinuing Series 80; it will not use it in any new phones
going forward. Nokia now includes support for the communicator
device form factor in the S60 3rd Edition platform. The Nokia E90 is
the first communicator device to use this S60 platform.

UIQ
UIQ originated from a Symbian reference design known as Quartz.
UIQ is owned, developed, maintained, and licensed by UIQ Technol-
ogy AB. UIQ is designed for pen-based (i.e., touchscreen) smartphones
with quarter VGA display and no keyboard. A virtual screen keyboard
and handwriting recognition is provided for user input.

The Sony Ericsson P1i, W960i, W950i, P990i and M600i, and the
Motorola MOTORIZR Z8, are examples of UIQ phones. These phones
are based on UIQ version 3, the newest UIQ version at the time of
this writing. Earlier UIQ version 2 phones include the Sony Ericsson
P800/P900 and Motorola A920, A925, and A1000 smartphones.

Note that originally, S60 was designed for one-handed operation,
and UIQ for two-handed operation. This distinction has been blurred,
however, since higher-end S60 phones now have full keyboards, and
some UIQ phones are now geared toward one-handed operation (e.g.,
the MOTORIZR Z8).

As mentioned, Symbian OS no longer supports or maintains the
original Pearl, Crystal, and Quartz reference platforms; however, they
do maintain an internal platform known as Techview. This UI is
used and maintained internally by Symbian to validate development,
and is the basis of Symbian’s Training SDKs. Unlike the other UIs,
the Training SDK does not support building for any target phone
hardware.

1.6 Symbian OS Smartphones

A large variety of Symbian smartphones are on the market today. These
devices have various feature sets so that users have a choice of which
smartphones to buy based on what features are important to them – and
within the price range they are willing to pay.

16 SMARTPHONES AND SYMBIAN OS

For example, there are smartphones that target music lovers, empha-
sizing high-quality audio playback and large storage capability for songs
in addition to other smartphone functionality. There are also smartphones
that target video enthusiasts, which include high-resolution cameras and
video capture. There are enterprise phones that contain large displays
and keyboards that are well suited for the business person on the go.
Another example is TV-oriented smartphones that support DVB-H capa-
bility for high-quality video service. And of course, there many other,
more general phones that contain a combination of these and other
features.

While Symbian OS powers many high- and medium-end smartphone
models, another important – and big – market is the low-end, low-cost
phone market. Symbian has been concentrating on getting more into this
market in recent years. For example, in 2006 Symbian announced new
scalable pricing options for phone manufacturers that lower the cost of
licensing Symbian OS for high-volume smartphones.

This section introduces three Symbian OS-based smartphones: the
Sony Ericsson P990i, Nokia N95, and Nokia 9300i Communicator.
These phones are not necessarily representative of all Symbian OS
smartphones, since they are more on the high-end, but they show
a good sampling of some of the features we have discussed in this
chapter, as well as representing the different UI platforms described
in the last section. To see a complete list of Symbian OS smart-
phones, reference the Symbian phones section of Symbian’s website
(http://www.symbian.com/phones).

1.6.1 Sony Ericsson P990i

The Sony Ericsson P990i (shown in Figure 1.1) is a pen-based smartphone
that uses the UIQ user interface. It has a 262K color, 240 × 320 pixel
display with touchscreen, and a small keyboard that flips out. The phone
has handwriting recognition, along with many pre-packaged organizer
and game applications. The device plugs into a cradle that is connected
to a PC via USB for downloading applications and syncing user data.
IR and Bluetooth technology are also supported. The P990i has an
integrated 2 megapixel camera, and will record video also. The phone
contains a combination WAP/HTML browser, audio and video playback,
email and SMS, as well as MMS. The device has 60 MB of internal
memory for storage and supports an external memory card to expand
this (a 64 MB memory card comes with the phone, but you can expand
up to 4 GB).

The P990i supports UMTS, making it a 3G phone. But note that due
to it using 2100 MHz for this, 3G for the P990i will not work in the
USA since the UTMS there is typically 850/1900 MHz. The P990i also
supports Wi-Fi and GSM 900, 1800, 1900 MHz and GPRS.

