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PREFACE

Bioinformatics and Computational Biology are fields that requires skills from a vari-
ety of fields to enable the gathering, storing, handling, analyzing, interpreting, and
spreading of biological information. It requires the use of high-performance com-
puters and innovative software tools to manage enormous quantities of genomic and
proteomic data. It also involves the development and application of innovative algo-
rithmic techniques necessary for the analysis, interpretation, and prediction of data
to provide insight into the design and validation of experiments for the life sciences.

Most of the above functionalities require the capabilities that are beyond those
of a desktop machine and can only be found in a supercomputer. This is especially
true now with the rapid increase of the amounts of data generated on a daily basis.
Therefore, high-performance computing systems are expected to play an increased
role in assisting life scientists in exploring possibilities that were impossible in the
past. In return, the variety and richness of problems offered by bioinformatics and
computational biology open up new vistas for computer scientists, which could keep
them occupied for the next 50 years.

The book is based on a number of standalone chapters that seek to provide an oppor-
tunity for researchers to explore the rich and complex subjects of bioinformatics and
computational biology and the use of parallel computing techniques and technologies
(parallel computing, distributed computing, grid computing, etc.) in solving problems
in these dynamic disciplines.

However, as with any new discipline, related applications should be designed and
implemented in such a way that enables users to depend on the application avail-
ability and results. This book aims to highlight some of the important applications
in bioinformatics and computational biology and to identify how parallel computing
can be used to better implement these applications.

BOOK OVERVIEW

This is the first book that deals with the topic of parallel computing and its use to
drive applications in bioinformatics and computational biology in such a compre-
hensive manner. The material included in this book was carefully chosen for quality
and relevance. This book also provides a mixture of algorithmics, experiments, and
simulations, which provide not only qualitative but also quantitative insights into the
rich field of bioinformatics and computational biology.

xv
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This book is intended to be a repository of case studies that deal with a variety
of difficult problems and how parallel computing was used to produce better results
in a more efficient manner. It is hoped that this book will generate more interest in
developing parallel solutions to wider life sciences applications. This should enable
researchers to deal with more complex applications and with larger and richer data sets.

Although the material in this book spans a number of bioinformatics and compu-
tational biology applications, the material is written in a way that makes the book
self-contained so that the reader does not have to consult with external material. This
book offers (in a single volume) a comprehensive coverage of a range of bioinfor-
matics and computational biology applications and how they can be parallelized to
improve their performance and lead to faster rates of computations.

This book is intended for researchers, educators, students, and practitioners in the
fields of bioinformatics, computational biology, and computer science, who are inter-
ested in using high-performance computing to target applications in the life sciences.
This book can also be used as a reference for graduate level courses. This book
is divided into five parts: algorithms and models, sequence analysis and microar-
rays, phylogenetics, protein folding, and platforms and enabling techniques. In what
follows is a brief précis of the chapters included.

Chapter 1, after an introduction to genes and genomes, describes several efficient
parallel algorithms that efficiently solve applications in computational biology. An
evolutionary approach to computational biology is presented based first on the search
space, which is the set of all possible solutions. The second factor used for the for-
mulation of an optimization problem is the determination of a fitness function that
measures how good a particular answer is. Finally, a significant deviation from the
standard parallel solution to genetic parallel algorithms approach theory is pointed
out by arguing that parallel computational biology is an important sub-discipline that
merits significant research attention and that combining different solution paradigms
is worth implementing.

Chapter 2 introduces an approach to simulating the molecular evolution of human
immunodeficiency virus type 1 (HIV-1) that uses an individual virus-based model
of viral infection of a single patient. Numerical methods, including Monte Carlo,
are used to realistically simulate viral mutation, recombination, replication, infec-
tion, and selection by cell-surface receptor molecules and neutralizing antibodies.
The stochastic nature of various events being simulated, such as mutation and recom-
bination, requires that simulations be replicated to account for stochastic variation.
In addition, because of the high level of realism, simulations may take a long time
to run, and so replicate simulations are preferably run in parallel. The applications
of the message-passing interface and the scalable parallel random number generator
interface to this problem are described.

To analyze a biological system it is necessary to find out new mathematical models
allowing to explain the evolution of the system in a dynamic context or to dread doing
of a simple manner the complex situations where the human experience overtakes the
mathematical reasoning. Computers have been used since the 1940s to simulate the
kinetics of biochemical reactions. Using a pathway structure and a kinetic scheme,
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the time of reaction and the admissible steady states can be computed. These are
discussed in Chapter 3.

A cell is an incredibly complex object as are the dynamical processes that take place
within the cell. In spite of this complexity we can hope to understand the dynamics
of a cell by building up a set of models and simulation approaches that can lock
together in a modular fashion. The focus of Chapter 4 is on how stochasticity manifests
itself in cellular processes and how this stochasticity can be modeled, simulated, and
visualized. In particular, this chapter addresses the issues of how to simulate stochastic
chemical kinetics in both temporal and spatial settings using both sequential parallel
computing environments.The models for these simulations are associated with genetic
regulation within a single cell but this work also considers colonies of cells.

The purpose of Chapter 5 is to survey some recent developments in the application
of parallel and high-performance computation in simulating the diffusion process
in the human brain and in modeling the deformation of the human brain. Compu-
tational neuroscience is a branch of biomedical science and engineering in which
sophisticated high-performance computing techniques can make a huge difference
in extracting brain anatomical information non-invasively and in assisting minimal
invasive neurosurgical interventions. This chapter demonstrates that there are lots of
potential opportunities for computational scientists to work with biomedical scientists
to develop high-performance computing tools for biomedical applications.

In Chapter 6, the authors first introduce several basic concepts of molecular biology.
This is then followed by a definition of the global and local sequence alignment
problems and the exact algorithms used to solve them which are normally based
on dynamic programming to solve them. The authors also present several heuristics
that can be used to solve the local alignment problem. The chapter concludes with
a description of some parallel algorithms that can be used to solve the alignment
problems in shorter time.

Chapter 7 presents a hybrid parallel system based on commodity components to
gain supercomputer power at low cost. The architecture is built around a coarse-
grained PC cluster linked to a high-speed network and fine-grained parallel processor
arrays connected to each node. Identifying applications that profit from this kind of
computing power is crucial to justify the use of such a system. This chapter presents
an approach to high-performance protein database scanning with hybrid computing.
To derive an efficient mapping onto this architecture, we have designed instruction
systolic array implementations for the Smith–Waterman and Viterbi algorithm. This
results in a database scanning implementation with significant run-time savings.

Chapter 8 presents a parallel version of ClustalW for multiple sequence alignment.
The algorithm is implemented using the message-passing interface (MPI), a platform
for implementing parallel algorithms on a distributed shared memory model. This
chapter presents a tutorial introduction to the ClustalW algorithm. First, the authors
discuss the dynamic programming algorithm for pairwise sequence alignment. Then
this is followed by a discussion of the neighbor-joining method of Seitou and Nei
for constructing a phylogenetic tree using the pairwise distances. Finally, the authors
present the progressive sequence alignment step based on this phylogenetic tree.
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They discuss their strategy for parallelizing the ClustalW algorithm next and provide
detailed results for their implementation and analyze the results extensively.

Chapter 9 examines several high-performance versions of BLAST, which is one of
the most widely used search tools for screening large sequence databases. Even though
BLAST is very efficient in practice, the growing size of sequence databases has created
a demand for even more powerful versions of BLAST for use on multiprocessors and
clusters. This chapter briefly reviews the basic BLAST algorithm, then describe and
analyze several parallel versions of BLAST designed for high performance.

The purpose of pairwise alignment is to extract the sequences that are similar
(homologous) to a given input sequence from a database of target sequences. While
CPU architectures are struggling to show increased performance, the volume of bio-
logical data is greatly accelerating. For example, GenBank, a public database of DNA,
RNA, and protein sequence information, is doubling every 6 months. Parallel algo-
rithms for analyzing DNA and protein sequences are becoming increasingly important
as sequence data continue to grow. Novel parallel architectures are also being pro-
posed to deal with the growth in computational complexity. Chapter 10 reviews
the parallel software and hardware implementations of local sequence alignment
techniques. These include various implementations of Smith–Waterman algorithm,
FASTA, BLAST, HMMER, and ClustalW.

DNA microarrays provide the technology needed to study gene expression. This
technology facilitates large-scale surveys of gene expression in which transcript levels
can be determined for thousands of genes simultaneously. These experiments generate
an immense quantity of data. Investigators need computational methods to analyze this
data to gain an understanding of the phenomena the data represent. Chapter 11 presents
two advanced methods for analyzing gene expression data that go beyond standard
techniques but require the use of parallel computing. The first method provides for
the assessment of the codetermination of gene transcriptional states from large-scale
simultaneous gene expression measurements with cDNA microarrays. The parallel
implementation exploits the inherent parallelism exhibited in the codetermination
methodology that the authors apply. The second method involves classification using
cDNA microarrays. The goal is to perform classification based on different expres-
sion patterns such as cancer classification. The authors present an efficient parallel
implementation of the σ -classifier where the computational work is distributed among
available system processors.

As more research centers embark on sequencing new genomes, the problem of
DNA fragment assembly for shotgun sequencing is growing in importance and com-
plexity. Accurate and fast assembly is a crucial part of any sequencing project and
many algorithms have been developed to tackle it. As the DNA fragment assembly
problem is NP-hard, exact solutions are very difficult to obtain. Various heuris-
tics, including genetic algorithms, were designed for solving the fragment assembly
problem. Although the sequential genetic algorithm has given good results, it is
unable to sequence very large DNA molecules. In Chapter 12, the authors present
a distributed genetic algorithm that surmounts that problem. They show how the dis-
tributed genetic algorithm can tackle problem instances that are 77K base pairs long
accurately.
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DNA microarrays allow the simultaneous measurement of the expression level of
thousands of genes. This is a great challenge for biologists who see in this new tech-
nology the opportunity to discover interactions between genes. The main drawback
is that data generated with such experiments is so large that very efficient knowledge
discovery methods have to be developed. This is the aim of Chapter 13. The authors
propose to study microarray data by using association rules via a combinatorial opti-
mization approach. A cooperative method, based on an evolutionary algorithm, is
proposed and several models are tested and compared.

Chapter 14 provides a brief review of phylogenetics and provides an introduc-
tion to the maximum likelihood method (one of the most popular techniques used
in phylogeney) and describes the abstract computational problems which arise at the
computation of the likelihood score for one single-tree topology. This is followed by
state-of-the-art description of sequential and parallel maximum likelihood programs.
This chapter also explains the maximum likelihood program development cycle and
describes algorithmic as well as technical enhancements of RAxMLIII. The chap-
ter concludes by addressing promising technical and algorithmic developments and
solutions which could enable the computation of larger and more accurate trees in the
near future.

Phylogenetic analysis is a routine task in biological research. Chapter 15 discusses
the different factors that influence the performance of parallel implementations. Using
the example of parameter estimation in the TREE-PUZZLE program, the authors ana-
lyze the performance and speedup of different scheduling algorithms on two different
kinds of workstation clusters, which are the most abundant parallel platform in bio-
logical research. To that end different parts of the TREE-PUZZLE program with
diverse parallel complexity are examined and the impact of their characteristics is
discussed. In addition, an extended parallelization for the parameter estimation part
of the program is introduced.

Phylogenetic trees are extremely useful in many areas of biology and medicine,
and one of the primary tools for understanding evolution. Unfortunately, for a given
set of organisms, the number of possible evolutionary trees is exponential. Many
phylogenetic algorithms exist, but the most popular approaches attempt to solve
difficult optimization problems such as maximum parsimony (NP-hard) or maxi-
mum likelihood (conjectured to be NP-hard). Chapter 16 surveys the state-of-the-art
in phylogenetic algorithms for reconstructing maximum parsimony trees. Each new
algorithmic development attempts to get us closer to reconstructing the “Tree of Life,”
the holy grail of phylogenetics. Thus, this chapter concludes with a list of research
questions that must be addressed to reconstruct extremely large-scale phylogenies
such as the “Tree of Life.”

A highly parallel replica exchange molecular dynamics (REMD) method and its
application in protein folding and protein structure prediction are described in Chap-
ter 17.The REMD method couples molecular dynamics trajectories with a temperature
exchange Monte Carlo process for efficient sampling of the conformational space.
Two sample protein systems, one α-helix and one β-hairpin, are used to demonstrate
the power of the algorithm. Up to 64 replicas of solvated protein systems are simulated
in parallel over a wide range of temperatures. Very high efficiency (>98%) can be
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achieved with this embarrassingly parallel algorithm. The simulation results show that
the combined trajectories in temperature and configurational space allow a replica to
overcome free energy barriers present at low temperatures. These large-scale simula-
tions also reveal detailed results on folding mechanisms, intermediate-state structures,
thermodynamic properties, and the temperature dependencies for both protein sys-
tems. Furthermore, the extensive data from REMD simulations are used to assess the
various solvation models and force fields, which provide insights to the fix of the
problems and further improvement of the models. Finally, the usage of the REMD
method in protein structure refinement is also discussed.

Chapter 18 deals with a method known as threading which uses information
about already known protein structures stored in databases. The authors present the
point of view of a computer scientist with particular interests in combinatorial opti-
mization problems. They focus on the computational aspects of finding the optimal
sequence-to-structure alignment referred as protein-threading problem (PTP). A for-
mal definition of the PTP is given, and several mixed integer models are presented in
a unified framework, analyzed, and compared. Different divide-and-conquer strate-
gies are also described. They reduce the time needed to solve the master problem
by solving auxiliary sub-problems of a moderate size. One section is particularly
dedicated to a parallel implementation of such a technique, which happened to be
efficient even in a sequential implementation. The results in this chapter demonstrate
that a careful combination of modeling, decomposing, and a parallel implementation
leads to solving PTP real-life instances of tremendous size in a reasonable amount
of time.

In Chapter 19, the authors report results of a parallel modified fast messy GA
(fmGA), which is found to be quite “good” at finding semi-optimal protein struc-
ture prediction solutions in a reasonable time. They focus on modifications to this
EA called the fmGA, extensions to the multiobjective implementation of the fmGA
(MOfmGA), constraint satisfaction via Ramachandran plots, identifying secondary
protein structures, a farming model for the parallel fmGA (pfmGA), and fitness func-
tion approximation techniques. These techniques reflect marked improvement over
previous GA applications for protein structure determination. Problem definition, pro-
tein model representation, mapping to algorithm domain, tool selection modifications,
and conducted experiments are discussed.

Over the last few years Grid Computing has generated considerable interest among
researchers, scientific institutions, research centers, universities, governments, fund-
ing bodies, and others. Grid technology can be used for many applications in the
life sciences that require high computational power, data-intensive processing, stor-
age management, and resource sharing. Chapter 20 reviews the current worldwide
activities in Grid Computing as used to drive applications in bioinformatics and the
health sciences. The chapter attempts to categorize grid activities by region and by
the nature of the application. The review is by no means exhaustive and it is only
meant to give the reader an appreciation that current applications that are benefiting
from grid deployment and could also provide the thrust for future developments.

Chapter 21 discusses parallel algorithms for bioinformatics in the context of the
Cray MTA architecture. This chapter shows how several bioinformatics algorithms
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can be implemented on this machine and develops an entirely new algorithm for DNA
sequencing with very long reads that was developed with the MTA as target archi-
tecture. The chapter provides the insights that the authors gained by using the MTA
architecture and shows that parallel algorithms may be implemented on this machine
with a minimum of rewriting or reorganization. Finetuning of code requires only a
basic understanding of the architecture and of the behavior of the tagged memory.
The issues of data reorganization, partitioning, scheduling, mapping, and so on, which
are central to conventional parallel processors, are nonexistent on this machine. The
MTA is thus the ideal machine for a rapidly advancing field like bioinformatics, where
algorithm development and coding must charge ahead in tandem.

Many computational chemists requiring significant and relatively flexible
resources have turned to parallel clusters to solve increasingly complex problems.
Evolving hardware technology and grid resources present new opportunities for
chemistry and biology, yet introduce new complexity related to grid, web, and com-
putational difficulties. Chapter 22 describes the author’s experience in using the
GAMESS quantum chemistry program on clusters, and their utilization of evolving
portal, grid, and workflow technologies to solve problems that would not be practical
on individual machines.

Chapter 23 sets forth the challenges faced by grid computing and discusses the
nature of applications that can be grid-enabled. It introduces a framework that can
be used to develop grid-enabled bioinformatics applications and provide examples
that show how this can be achieved. The author argues that a software development
framework for bioinformatics can only receive acceptance if all the complexity can
be hidden away from the scientists. That is why such environments need to have
sophisticated graphical user interfaces that enable the easy composition and execution
of bioinformatics workflows.

Chapter 24 focuses on the design and implementation of a critical computer
program in structural biology onto two computational and data grids. The first is
the Buffalo-based ACDC grid, which uses facilities at SUNY–Buffalo and several
research institutions in the greater Buffalo area. The second is Grid2003, an interna-
tional grid established late in 2003 primarily for physics and astronomy applications.
The authors present an overview of the ACDC Grid and Grid2003, focusing on the
implementation of several new tools that they have developed for the integration of
computational and data grids, lightweight job monitoring, predictive scheduling, and
opportunities for improved grid utilization through an elegant backfill facility. A new
computational framework is developed for the evolutionary determination, an efficient
implementation of an algorithm to determine molecular crystal structures using the
Shake-and-Bake methodology. Finally, the grid-enabled data mining approach that
the authors introduce is able to exploit computational cycles that would otherwise go
unused.

Recently, there has been an increase in the number of completely sequenced
genomes due to the numerous genome-sequencing projects. The enormous biological
sequence data thus generated necessitate the development of efficient tools for mining
the information on structural and functional properties of biomolecules. Such a kind
of information can prove invaluable for pharmaceutical industries, for in silico drug
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target identification and new drug discovery. However, the enormity of data and com-
plexity of algorithms make the above tasks computationally demanding, necessitating
the use of high-performance computing. Lately, the cost-effective general-purpose
clusters of PCs and workstations have been gaining importance in bioinformatics.
However, to use these techniques one must still have significant expertise not only in
the bioinformatics domain but also in parallel computing.A problem-solving environ-
ment (PSE) relieves the scientist of the burdens associated with the needless and often
confidential details of the hardware and software systems by providing a user-friendly
environment either through web portals or graphical user interfaces. The PSE thus
leaves the scientist free to concentrate on the job. This chapter describes the design
and development of GIPSY, a PSE for bioinformatics applications.

Chapter 26 describes the TaskSpaces software framework for grid computing.
TaskSpaces is characterized by two major design choices: decentralization, pro-
vided by an underlying tuple space concept, and platform independence, provided
by implementation in Java. This chapter discusses advantages and disadvantages of
this approach, and demonstrate seamless performance on an ad hoc grid composed
of a wide variety of hardware for a real-life parallel bioinformatics problem. Specif-
ically, the authors performed virtual experiments in RNA folding on computational
grids composed of fast supercomputers, to estimate the smallest pool of random
RNA molecules that would contain enough catalytic motifs for starting a primitive
metabolism. These experiments may establish one of the missing links in the chain
of events that led to the origin of life.

Desktop grids have been used to perform some of the largest computations in
the world and have the potential to grow by several orders of magnitude. However,
current approaches to using desktop resources require either centralized servers or
extensive knowledge of the underlying system, limiting their scalability. The authors
propose a new design for desktop grids that relies on a self-organizing, fully decen-
tralized approach to the organization of the computation. Their approach, called the
Organic Grid, is a radical departure from current approaches and is modeled after
the way complex biological systems organize themselves. Similar to current desk-
top grids, a large computational task is broken down into sufficiently small subtasks.
Each subtask is encapsulated into a mobile agent, which is then released on the grid
and discovers computational resources using autonomous behavior. In the process
of “colonization” of available resources, the judicious design of the agent behav-
ior produces the emergence of crucial properties of the computation that can be
tailored to specific classes of applications. The authors demonstrate this concept
with a reduced-scale proof-of-concept implementation that executes a data-intensive
independent-task application on a set of heterogeneous, geographically distributed
machines. They present a detailed exploration of the design space of our system and a
performance evaluation of our implementation using metrics appropriate for assessing
self-organizing desktop grids.

A new computing approach is introduced in Chapter 28 that makes use of field
programmable gate arrays (FPGAs). This new approach uses FPGA processors that
are integrated into existing computing nodes. The FPGA processors provide a com-
puting structure that enables to execute the algorithms in a parallel architecture.
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The transformation from the sequential algorithm to the parallel architecture is
described by the energy calculation part of a protein structure prediction task.

Technological advances in microscopy, digital image acquisition, and automation
have allowed digital, virtual slides to be used in pathology and microbiology. Vir-
tual microscopy has the benefits of parallel distribution, on-demand reviews, rapid
diagnosis, and long-term warehousing of slides. Sensor technologies combined with
high-power magnification generate uncompressed images that can reach 50 GB per
image in size. In a clinical or research environment, the number of slides scanned
can compound the challenges in storing and managing these images. A distributed
storage system coupled with a distributed execution framework is currently the best
way to overcome these challenges to perform large-scale analysis and visualization.
Chapter 29 demonstrates an implementation that integrates several middleware com-
ponents in a distributed environment to enable and optimize the storage and analysis
of this digital information. These systems support and enable virtual slide reviews,
pathology image analysis, and three-dimensional reconstruction and visualization of
microscopy data sets in both clinical and research settings.

ALBERT Y. ZOMAYA
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CHAPTER 1

Parallel and Evolutionary Approaches
to Computational Biology

NOUHAD J. RIZK

Many of the today’s problems, such as those involved in weather prediction,
aerodynamics, and genetic mapping, require tremendous computational resources
to be solved accurately. These applications are computationally very intensive and
require vast amounts of processing power and memory requirements. Therefore,
to give accurate results, powerful computers are needed to reduce the run time, for
example, finding genes in DNA sequences, predicting the structure and functions of
new proteins, clustering proteins into families, aligning similar proteins, and gen-
erating phylogenetic trees to examine evolutionary relationships all need complex
computations. To develop parallel computing programs for such kinds of compu-
tational biology problems, the role of a computer architect is important; his or her
role is to design and engineer the various levels of a computer system to maximize
performance and programmability within limits of technology and cost. Thus, paral-
lel computing is an effective way to tackle problems in biology; multiple processors
being used to solve the same problem. The scaling of memory with processors enables
the solution of larger problems than would be otherwise possible, while modeling a
solution is as much important as the computation.

In this chapter, after an introduction to genes and genomes, we describe some effi-
cient parallel algorithms that efficiently solve applications in computational biology.
An evolutionary approach to computational biology is presented based first on the
search space, which is the set of all possible solutions. The second factor used for the
formulation of an optimization problem is the determination of a fitness function that
measures how good a particular answer is. Finally, a significant deviation from the
standard parallel solution to genetic parallel algorithms approach theory is pointed
out by arguing that parallel computational biology is an important sub-discipline that
merits significant research attention and that combining different solution paradigms
is worth implementing.

Parallel Computing for Bioinformatics and Computational Biology, Edited by Albert Y. Zomaya
Copyright © 2006 John Wiley & Sons, Inc.
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4 PARALLEL AND EVOLUTIONARY APPROACHES TO COMPUTATIONAL BIOLOGY

1.1 INTRODUCTION

Computational biology is the use of computational techniques to model biological
systems at various levels of complexity — atomic, metabolic, cellular, and pathologic.
The field of computational biology covers many areas: structural biology, biochem-
istry, physical chemistry, molecular biology, genomics and bioinformatics, control
theory, statistics, mathematics, and computer science. Bioinformatics provides a
wealth of potential challenges that can be used to advance the state of the art by creating
scalable applications that can be used in customer environments. Thus, in computa-
tional biology, conducting research related to the realization of parallel/distributed
scalable applications requires an understanding of the basics of all related fields.
Therefore, this chapter starts with a detailed explanation of certain technical terms
that have proved to be essential for researchers in computational biology.

1.1.1 Chromosome

A chromosome is a long string of double-stranded deoxyribonucleic acid (DNA), the
molecule that serves as a primary repository of genetic information. Thomas Hunt
Morgan found that genes on a chromosome have a remarkable statistical property,
that is, genes appear as being linearly arranged along the chromosome and also that
chromosomes can recombine and exchange genetic material. A gene is a unit of
heredity used to describe a unit of phenotype variation.

1.1.2 Allele

Alleles are alternate forms of the same gene. There may be hundreds of alleles for
a particular gene, but usually only one or a few are common. A homologous pair of
chromosomes contain two alleles, one in the chromosome derived from the father and
the other in the chromosome derived from the mother. If, for example, the chromosome
inherited from the mother has a mutant allele at a specific position, this position on
a chromosome is called a locus, and the presence of a single mutant allele creates
the trait of disease. However, the child will not suffer from the disease caused by this
mutation unless both the genes inherited from parents are defective or one of them
is on the X chromosome, for example, hemophilus. In brief, an allele is a type of the
DNA at a particular locus on a particular chromosome.

1.1.3 Recombination

Recombination or crossing over is defined as the recombination of maternal chromo-
some pairs with its paternal chromosome and exchanges material in the genesis of a
sperm or egg. This formation of new gene combination is the result of the physical
event of crossing over. The intensity of linkage of two genes can be measured by
the frequency of the recombinants. The probability that a recombination event occurs
between two loci is a function of the distance between these loci. In fact, the alleles
at two loci that are far apart on a chromosome are more likely to combine than the
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alleles that are close together on a chromosome. Genes that tend to stay together
during recombination are called linked. Sometimes, one gene in a linked pair serves
as a marker that can be used by geneticists to infer the presence of the other genes
causing disease.

1.1.4 Meiosis

Before explaining meiosis, let us explain the relationship between genes and alleles.
In Figure 1.1, we notice two gametes inherited from the father AD, which are called
the gene 1, and the two gametes inherited from the mother ad, which are called gene
2. Therefore, the formation of haploid germ cells from diploid parent cell is called
meiosis. Meiosis is informative for linkage when we identify whether the gamete is
recombinant.

1.1.5 Genetic Linkage

Geneticists seek to locate genes for disorder traits (gene disease) among the genome,
which is pairs of 23 human chromosomes. The statistical procedure used to trace the
transmission of a disordered allele within a family is called linkage analysis. This
analysis is based on genes, whose locations on a particular chromosome are already
known, and are called markers [1].

Genes will be inherited together if they are close on the same chromosome because
recombination is less likely. Recombinant chromosomes will occur less frequently

Chromosome from the father Chromosome from the mother

Loci with
normal allele A mutant allele at

the same locus

A               D                          a               d

Names of gametes at a
certain locus

1                                             2

Names of genes
inherited from the father

Names of genes
inherited from the
mother

Figure 1.1 Genes and alleles at a specific locus.
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TABLE 1.1 Expected Frequency of Children Through
the Mother

Mother’s Gametes Recombinant Probability

Ad No 1
Ad No 1
Ad No 1
Ad No 1

(less than half of the time) than nonrecombinant chromosomes (more than half of the
time). The recombination is measured by the recombination fraction denoted by θ ,
which is the probability of a recombination between two loci. The lowest possible
value for θ is zero, which means that there is no recombination between the marker
and the trait locus. In fact, either the marker is the trait or the two loci are so close
together that they rarely recombine. The upper limit of θ is 0.5, which means that the
loci are not linked. The recombination frequency θ for unlinked loci is 0.5. In brief,
0 ≤ θ ≤ 0.5 [2].

The family is said to be idealized pedigree if no recombination has taken place.
If there are recombinations, it is quite easy to calculate θ ; it is the summation of the
number of recombinants among offspring divided by the total number of offspring. For
example, if one recombinant out of nine offspring means that θ is equal to 1/9 = 0.11.

1.1.6 Expected Frequency of Offspring

The computation of expected frequency of offspring genotypes in linkage is as follows
[3]: As an example, consider a father who has haplotype AD/ad and a mother with
haplotype ad/ad.All the mother’s gametes will be genotyped ad. Thus, the probability
that the mother gives the alleles ad is equal to 1 (see Table 1.1).

Father, however, may have one of the four different gametes, AD, Ad, aD, ad. In
addition, the probability that the father gives the alleles AD is equal to the probability
that the father gives allele A at marker multiplied by the probability of having no
recombination between marker and trait. In fact, it is equal to 1/2(1 − θ). Similarly,
the probability that the father gives the alleles Ad is equal to the probability that the
father gives allele A at marker multiplied by the probability of having recombination
between marker and trait. In fact, it is equal to 1/2θ . The probability that the father

TABLE 1.2 Expected Frequency of Children Through
the Father

Father’s Gametes Recombinant Probability

AD No 1/2(1 − θ)

Ad Yes 1/2θ

AD Yes 1/2θ

Ad No 1/2(1 − θ)
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TABLE 1.3 Expected Frequency of Children

Father’s and Mother’s Gametes Recombinant Probability

AD/ad No 1/2(1 − θ)

AD/ad Yes 1/2θ

aD/ad Yes 1/2θ

ad/ad No 1/2(1 − θ)

gives the alleles aD is equal to the probability that the father gives allele a at marker
multiplied by the probability of having no recombination between marker and trait.
In fact, it is equal to 1/2θ . Finally, the probability that the father gives the alleles ad
is equal to the probability that the father gives allele a at marker multiplied by the
probability of having recombination between marker and trait. In fact, it is equal to
1/2(1 − θ) (see Tables 1.2–1.4). Then, the expected frequency among the offspring
is a function of θ .

1.1.7 Multipoint Linkage Analysis

In the previous section, we assumed that we know where is the gene affected but what
if we do not know? Therefore, we need to gather a large number of families in which
we observe a disorder and we extract some biological specimen from each member of
the family to study the linkage, but this time with many markers simultaneously; this
procedure is called multipoint linkage [4]. There are two types of statistical techniques
used in the linkage analysis, parametric linkage analysis and nonparametric linkage
analysis. Parametric linkage analysis uses statistical procedures to estimate θ and
sometimes other quantities. The odds for linkage is a quantity that is equal to the
ratio of two probabilities; the numerator is the probability of observing the data
given that θ is less than 0.5 (i.e., the marker and the trait loci are linked) and the
denominator is the probability of observing the data given that θ is equal to 0.5
(i.e., the marker and the trait loci are not linked). The common logarithm (base 10)
of the odds (likelihood) of linkage is specific to geneticists for the computation of
parametric linkage analysis. It is called the LOD scores. The second method used in
linkage analysis is suitable for complex gene disorders, unlike the first one suitable
for single gene analysis. It is called the nonparametric approach. The advantages of
nonparametric techniques are that it is not necessary to make assumptions about the
mode of inheritance for the disorder; their disadvantage is they are less powerful than

TABLE 1.4 Expected Frequency Function of Theta

Offspring Recombinant Probability θ = 0 θ = 0.10 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5

AD No 1/2(1 − θ) 0.5 0.45 0.40 0.35 0.30 0.25
Ad Yes 1/2θ 0.00 0.05 0.10 0.15 0.20 0.25
aD Yes 1/2θ 0.00 0.05 0.10 0.15 0.20 0.25
ad No 1/2(1 − θ) 0.50 0.45 0.40 0.35 0.30 0.25
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the parametric techniques. An example of nonparametric techniques is the affected
sib-pair method. The geneticists gather data on a large number of sibships to locate
those that have at least two members of a sibship who are affected with the disorder.
The affected sib pairs are then genotyped at the marker locus, and the sib pairs are
placed into one of the two mutually exclusive categories based on their genotypes at
the marker. The first category includes all sib pairs who have the same genotype at the
marker, these being called marker-concordant pairs. The second category is for the
marker-discordant pairs, those sib pairs who have different genotypes at the marker.
If the marker is not linked to the gene for the disorder, then we should expect an equal
number in both categories. However, if the marker is linked to the disease locus, then
there should be more marker-concordant pairs than marker-discordant pairs.

Sib Pair Analysis The sib pair analysis is the probability of having 0, 1 or 2 common
alleles. This analysis is known as identity by descent (IBD) (Fig. 1.2). Consider a sib
pair and suppose we wish to identify the parental origin of the DNA inherited by each
sib at a particular locus, say. Label the paternal chromosomes containing the locus of
interest by (a, c), and similarly label the maternal chromosomes by (b, d).

The inheritance vector of the sib-pair at the locus l is the vector x = (x1, x2, x3, x4),
where x

x1 is the label of the paternal chromosome from which sib1 inherited DNA at
locus l (a),

x2 is the label of the maternal chromosome from which sib1 inherited DNA at
locus l (b),

x3 is the label of the paternal chromosome from which sib2 inherited DNA at
locus l (c), and

x4 is the label of the maternal chromosome from which sib1 inherited DNA at
locus l (d).

In practice, the inheritance vector of a sibship is determined by finding enough poly-
morphism in the parents to be able to identify the chromosomal fragments transmitted

a     c                       b    d

   a     c               c    d

Between two offsprings, IDB = 0

a     c                       b    d

   a     b                a    d

                   IDB = 1

a     c                       b    d

   a     b               a    b

                  IDB = 2

Figure 1.2 Identity by descent (IBD).


