
Professional Eclipse 3 for Java™ Developers

Berthold Daum

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iii

Innodata
0470021624.jpg

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vi

Professional Eclipse 3 for Java™ Developers

01_020059_ffirs.qxd 10/8/04 10:55 AM Page i

01_020059_ffirs.qxd 10/8/04 10:55 AM Page ii

Professional Eclipse 3 for Java™ Developers

Berthold Daum

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iii

Copyright © 2004 by dpunkt.verlag GmbH, Heidelberg, Germany.
Title of the German original: Java-Entwicklung mit Eclipse 3
ISBN: 3-89864-281-X

Translation copyright © 2005 John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by the
purchaser of the publication.Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering profes-
sional services. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 0-470-02005-9

Typeset in Indianapolis, IN USA
Printed and bound by Malloy printing in Ann Arbor, MI USA
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iv

http://www.wileyeurope.com
http://www.wiley.com

Credits
Author
Berthold Daum

Executive Editor
Gaynor Redvers-Mutton

Production Editors
Felicia Robinson
Juliet Booker

Book Producer
Ryan Publishing Group, Inc.

Copy Editor
Linda Recktenwald

Compositor
Gina Rexrode

Illustrator
Nathan Clement

Vice President & Executive Group Publisher
Richard Swadley

Vice President & Publishing Director
Sarah Stevens

Vice President and Publisher
Joseph B. Wikert

Editorial Manager
Kathryn Malm

01_020059_ffirs.qxd 10/8/04 10:55 AM Page v

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vi

About the Author

Berthold Daum has a Ph.D. in Mathematics and is a professional Java and XML developer who has
been using Eclipse since it was first developed. Mr. Daum specializes in innovative electronic business
technology and electronic content production; his clients include SAP Integrated Services AG and
Software AG. His experience in software training and ability to anticipate the needs of professional
developers has been demonstrated in his previous books, including Eclipse 2 for Java Developers (Wiley)
and Modeling Business Objects with XML Schema (Morgan-Kaufmann).

Mr. Daum studied photography in Melbourne and has both exhibited and published his images of
Australia's natural beauty.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vii

01_020059_ffirs.qxd 10/8/04 10:55 AM Page viii

Introduction

The first version of Eclipse was released in November 2001. Eclipse was announced by IBM as a $40 mil-
lion donation to the Open Source community. The first reactions to this gift, however, were mixed. While
many Java programmers hailed the release of Eclipse enthusiastically (when would one not be enthusi-
astic about a $40 million present?), Sun Microsystems was initially less than amused.

In the meantime, Eclipse has taken the Java world (and not only the Java world) by storm, despite the
fact that Sun Microsystems is still not onboard. Eclipse is now completely managed by eclipse.org, an
independent, nonprofit organization in which, however, IBM plays a major role. Despite the fact that the
membership fee is quite hefty ($250.00 per year) and commitment is asked in the form of staff members
working actively toward the development of Eclipse, the membership circle is not at all small: the
Eclipse consortium has about 150 member companies, and people from Ericsson, Genuitec LLC, IBM,
Hewlett Packard, Intel, MontaVista Software, QNX Software Systems Ltd., SAP AG, SAS, Serena
Software, and the University of Washington belong to the board (Microsoft, you guessed it, is not a
member).

So, the question is, what is Eclipse? Is it a Java IDE? Is it a new GUI for Java applications? Is it an
application platform or framework?

Eclipse.org refers to Eclipse as a platform for “everything and nothing in particular.” That we
can use Eclipse to develop Java programs (in fact, it is one of the finest Java IDEs) is just a special appli-
cation of this platform. But its real application domain reaches far beyond Java development. Because
of its plug-in architecture, Eclipse is as adaptable as a chameleon and can find a habitat in quite different
environments. The Eclipse Java IDE is, in fact, only an eminent example of an Eclipse plug-in. A large
number of other plug-ins have already been developed for Eclipse by various companies and developers
or are currently in development (see Appendix A for a small selection of such developments). For
example, there is a plug-in for a C++ IDE, while plug-ins for other programming languages such as RPG
and COBOL are in preparation. In this book, however, we will concentrate on Java development with
Eclipse.

Eclipse is more than a pure development environment. With its SWT and JFace libraries it provides an
alternative to Sun’s Java libraries, AWT and Swing. SWT and JFace allow the creation of Java applica-
tions that closely match native applications (i.e., applications written in C or C++) in both “look and
feel” and in responsiveness. In contrast, applications implemented on the basis of Swing often lack
responsiveness and sometimes differ—despite the possibility to switch skins—from the “look and feel”
of a native application. Such applications are notoriously hard to sell, because end users expect applica-
tions that fulfill the standards of the host platform. SWT and JFace could therefore be a breakthrough for
Java applications on the desktop. No wonder, therefore, that there is a heated debate for and against
SWT/JFace in the respective discussion forums (for example, www.javalobby.com) and that the
SWT was voted as the “most innovative Java component.”

Finally, Eclipse provides a large framework for implementing Java applications. Besides the GUI libraries
SWT and JFace, we find higher-level components such as editors, viewers, resource management, task
and problem management, a help system, and various assistants and wizards. Eclipse uses all these

01_020059_ffirs.qxd 10/8/04 10:55 AM Page ix

x

Introduction

components to implement features such as the Java IDE or the workbench, but they can also be used
for your own applications. In particular, the Rich Client Platform that was introduced with Eclipse 3
provides a generic framework for a wide class of applications. The Eclipse license model allows users
to embed these components into their own applications, to modify them, and to deploy them as part of
their own applications—all without paying a cent in license fees. The complete Eclipse code is available
as source code, can be browsed online, and can be used within you own projects.

The Eclipse Culture
Of course, Eclipse was not just “invented”: it has a history. The author of this book, who has used Visual
Age for Java for years, can detect many of the Visual Age construction elements within Eclipse. In fact,
the same company that stood behind the development of Visual Age is also responsible for the develop-
ment of Eclipse. This company is OTI (www.oti.com). As long ago as 1988, OTI developed a collabora-
tive development environment for Smalltalk called ENVY, which was later licensed to IBM under the
name Visual Age. What followed was the development of Visual Age for Java, but this was still imple-
mented in Smalltalk. Now, OTI has started the next generation of development tools with Eclipse. Of
course, we find many of the design elements of Visual Age in Eclipse. The difference is, however, that
Eclipse is implemented in Java and that it features a much more open architecture than Visual Age.

Eclipse was licensed by IBM and than donated to the Open Source community. This was not done without
self-interest: Eclipse basically is nothing more than the community edition of IBM’s WebSphere Studio
Application Developer (WSAD). The core platform and the core plug-ins are all the same. The main differ-
ence is that Eclipse 3.0 consists of about 90 plug-ins, while WSAD features about 500–700 plug-ins, thus
offering greatly extended functionality, such as plug-ins for developing web and database applications.

About This Book
It is practically impossible to write a single book about Eclipse. The sheer complexity of Eclipse would
require quite a few books. I have tried to emphasize those topics where Eclipse makes significant contri-
butions to the Java world. In particular, these are the new GUI libraries (SWT and JFace) and the use of
Eclipse as a platform and framework for desktop applications. What had to be excluded from this book
are WebSphere-specific topics such as J2EE and servlet development. Developing desktop applications is
currently one of the strong points of Eclipse.

This book is not an introduction to Java programming. We assume that readers have a good knowledge
of Java and of object-oriented programming concepts. Most of the examples used in this book are not
trivial. Two examples come from the multimedia area. Here, readers have the possibility of “getting their
feet wet” with cutting-edge Java technology such as speech processing and MP3 (all in pure Java!). In the
third example, we do something useful and implement a spell checker plug-in for Eclipse. I am sick and
tired of bad orthography in Java comments! The last example is a board game implemented on the basis
of the Rich Client Platform, just to burn some of the programmer’s spare time gained by productivity
enhancements of the Eclipse IDE.

This book, therefore, addresses Java programmers—from the student to the professional—who want to
implement their own desktop applications with the help (or on the basis) of Eclipse. You will learn all
the techniques that are required to create applications of professional quality.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page x

xi

Introduction

How This Book Is Organized
The novice to Eclipse—or even an experienced Java programmer—is at first overwhelmed by the sheer
number of functions. But the functions visible to the user are only the tip of the iceberg. If we start to
explore the inner workings of Eclipse, its API, we can get lost easily. Currently the Eclipse download has
a size of 83 MB.

Faced with this huge amount of information, this book uses a pragmatic approach. Following the motto
that “perception works from the outside to the inside,” I first investigate how Eclipse presents itself to
the end user. The benefit is twofold: first, each programmer is an end user of the Eclipse Java IDE;
second, the various components of the Eclipse workbench, such as editors, views, menus, dialogs, and
much more, can also be used in personal applications. Experienced programmers, however, may find an
introduction into the Java IDE trivial and superfluous. Nevertheless, it is useful to get well acquainted
with the Eclipse user interface, because many of the concepts and details can be later utilized when
designing you own applications.

In Chapters 1 through 7 of this book I first introduce practical work with Eclipse, in particular with the
Java development environment. Eclipse presents itself as a very powerful Java IDE that continues the
positive traditions of Visual Age for Java but also introduces new concepts such as code completion,
strong refactoring facilities, assistants that make intelligent proposals for fixing program errors, and a
local history that allows a return to previous code versions.

In these chapters I also discuss the organization of the workbench, the resources of the Eclipse
workspace such as projects, folders, and files, how these resources are related to the native file system,
and the tools for navigation. I explain what perspectives are and how they can be used effectively. The
Eclipse Java debugger and the integration of JUnit into Eclipse are discussed, and a short introduction
about Eclipse’s support for working in a team is given.

The examples used in this part are still all based on AWT and Swing.

However, this will quickly change in the second part of the book, Chapters 8 through 10. Here, I intro-
duce the secrets of the SWT and JFace libraries. For SWT, event processing is discussed, along with the
various GUI elements such as text fields, tables, buttons, and trees; the various layout options; graphics
operations and how Java2D can coexist with the SWT; and printer output. I also explain the specialties of
thread and resource management in the context of the SWT and the integration of SWT widgets with
Swing facilities.

In the case of the JFace library, I present the higher user interface levels such as windows, dialogs,
viewers, actions, menus, text processing, wizards, and preferences. As an example, an MP3 player that
can be deployed independently of the Eclipse platform is implemented completely with SWT and JFace.
An interesting detail in this example is how the SWT library is used in a multithreaded application.

In Chapters 11 through 16 I explain how to develop your own products on the basis of the Eclipse plat-
form: either as a plug-in to Eclipse or as a stand-alone application under the Rich Client Platform. Since
Eclipse consists more or less only of plug-ins, I first introduce the plug-in architecture of Eclipse. The
requirements for a minimal platform are discussed, and I show how workspace resources are used in
Eclipse and how plug-ins are declared via a manifest. Then the various components of the Eclipse work-
bench such as editors, views, actions, dialogs, forms, wizards, preferences, perspectives, and the help

01_020059_ffirs.qxd 10/8/04 10:55 AM Page xi

xii

Introduction

system are introduced. All these components are available to the application programmer as building
blocks, a fact that can speed up application development considerably.

Then, I show how your own products can be packaged for deployment. Eclipse offers integrated support
for all tasks here, too: from the creation of a feature, to the creation of nation language fragment and the
definition of an update site, to the automated installation of updates. As an example, a universal and
fully functional plug-in for spell checking on Eclipse platforms is implemented.

Finally, I discuss the Rich Client Platform (RCP) that was introduced with Eclipse 3 and serves as a
generic platform for a wide range of applications. The board game Hex is implemented as an example of
such an RCP application.

In Appendix A some more interesting third-party plug-ins are listed. In Appendix B I discuss the migra-
tion to another version of the Eclipse platform. Appendix C contains download addresses for the third-
party software and the source code used in the examples.

Acknowledgements
Books are always teamwork, even if only the author’s name appears below the title. This is also the case
with this book, and here is the place to acknowledge the contribution of all the other team members.

Special thanks go to the publisher John Wiley & Sons and Wrox, in particular to Gaynor Redvers-Mutton
who acted as the publishing editor. Thanks go also to the publisher of the original German edition,
dpunkt verlag, and the responsible editor there, René Schönfeldt.

Thanks also to Tim Ryan’s group who handled the production of this book, especially Linda
Recktenwald for copyediting, Gina Rexrode for composition, and Nathan Clement for his technical
illustrations.

Many important tips that found their way into this book came from the (anonymous) reviewers but also
from developers and employees of OTI who had looked at the first manuscript version. Many thanks!
And of course, without the development of Eclipse this book would not have been written, and Eclipse
is indeed a tool that I wouldn’t want to miss. Thanks again!

Berthold Daum
June 2004

berthold.daum@bdaum.de

01_020059_ffirs.qxd 10/8/04 10:55 AM Page xii

Contents

Introduction ix

Chapter 1: Introduction to Eclipse 1

Installing Eclipse 1
The First Application: Hello World 5

Perspectives 5
Projects 7
Create a New Class 7
Launch 9

The Most Important Preferences for Java Development 10
Workbench Preferences 11
Installed JREs 12
Compiler Preferences 14
Formatting Code 15
Templates 16

Tasks and Problems 18
Problems, Problems 19
General Tasks 21
Bookmarks 22

The Scrapbook 22
Summary 24

Chapter 2: Effective Programming with Eclipse 25

Little Helpers 25
System Information 25
Help and Hover 26
Java Information Views 27
Automatic Code Completion 28
The Correction Assistant 33
Convenience Functions of the Java Editor 35

Source Code Navigation 36
Refactoring Code 38

Modifying Types 38
Refactoring Code 39

Undo and Redo 42

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xiii

xiv

Contents

Local History 43
Comparing Resources 43
Replacing with an Older Version 43
Restore Deleted Resource 43

Summary 44

Chapter 3: The Art of (Visual) Composition 45

Installation 45
Invocation 46
Preferences 46
Composition 46
Beans and Bean Properties 48

Generic Beans 48
Properties 48

Layouts 49
Event Processing 49
Summary 50

Chapter 4: Organizing Your Code 51

The Workbench 51
Resources 52

Resource Types 52
Where Resources Are Stored 52
Synchronizing Resources 53
Navigation 53

Associations 54
Packages 55

Folders and Packages 55
Navigation 56
Hierarchy 56

The Outline View 57
Representation 58
Context Functions 59

Searching 60
The Search Function 60
Find and Replace 62
Marking Name Occurrences 63

Arranging Editors and Views 63
Docked Windows 63
Stacked Windows 64
Desktop Windows 64
FastView 64

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xiv

xv

Contents

Opening and Closing Windows 65
Maximizing Windows 65
Minimizing Views 65

Managing Perspectives 65
Defining New Perspectives 65
Configuring Perspectives 66

Importing Files 67
Project Properties 69
The Java Browsing Perspective 71
Summary 72

Chapter 5: Project One: Duke Speaks 73

Setting Up the Project 73
A Short Excursion into Speech Synthesis 74
Extending the FreeTTS System 75

Animation Events 75
The Animator 77
Embedding into FreeTTS 81
Connection with the Java Audio System 83

The User Interface 84
The Animated Face 85
The Control Panel 87
The Model 87
The Presentation 91
The Complete Application 106
Exporting the application 109

Bibliography 110
Summary 110

Chapter 6: Project Development 113

Debugging 113
The Debug Configuration 113
The Debug Perspective 114
Controlling Program Execution 115
Managing Breakpoints 117
The Java Console 118
Remote Debugging 119

JUnit 120
Setting Up JUnit 120
Creating a Test Suite 122
Running a Test Suite 124

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xv

xvi

Contents

Documentation 125
Try It Out: Javadoc Options 126
Try It Out: Command-Line Options 126

Summary 128

Chapter 7: Advanced Topics of Project Development 129

Developing in a Team 129
Setting Up a Repository 130
Projects in the Repository 132
Version Management 133
Working in a Team 133
Other Functions 135

External Tools 135
Refresh 135
Environment 135
Associations 135

Summary 136

Chapter 8: The SWT Library 137

SWT Function Group Overview 138
SWT—Pros and Cons 139

Advantages of SWT 140
Disadvantages of SWT 140

The SWT Package 141
Events 141

Listeners 141
Adapters 142
Events 142
Overview of Listeners, Adapters, and Events 143

Widgets 145
The Widget Class 146
The Control Class 146
Visual Overview 146
Displays, Shells, and Monitors 146
Dialogs 152
Composites, Groups, and Canvas 155
Buttons 156
Sliders and Scales 158
ProgressBar 159
Scrollable and ScrollBar 159

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xvi

xvii

Contents

Text Fields and Labels 159
Tables, Lists, and Combos 161
Trees 166
Sashes 167
Tabbed Folders 168
Toolbars 169
Moveable Tool Groups (CoolBar) 170
Menus 170
Custom Widgets 174
The Browser Widget 177

Layouts 177
Visual Overview 178
The FillLayout Class 178
The RowLayout Class 179
The GridLayout Class 180
The FormLayout Class 182
The StackLayout class 184

Graphics 185
The Graphics Context 185
Colors 186
Fonts 187
Images 189
The Cursor 190

Widgets That Swing 191
Embedded Contents 192
Events 192

Output to a Printer 196
Data Transfer 198

The Clipboard 198
Drag and Drop 199

Resource Management 200
Windows32 Support (OLE) 201
SWT on the Pocket PC 202
Accessibility 202
Summary 203

Chapter 9: JFace 205

Resource Management 205
The FontRegistry Class 205
The ImageRegistry Class 206
The JFaceColors Class 206
The JFaceResources Class 206

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xvii

xviii

Contents

Dialogs and Windows 206
Some Dialog Subclasses 207
Implementing Your Own Dialog Classes 210
Making Dialogs Persistent 213

Viewers 214
The Viewer Event Model 215
The Viewer Hierarchy 215
Cell Editors 217
Data Transfer 218

Text Processing 218
Text Processing Base Classes 218
The ProjectionViewer 226
Comfortable Text Fields and Combos 226

Actions and Menus 226
The IAction Interface 226
The Managers 227

Wizards 228
The Wizard Class 228
The WizardPage Class 229
The WizardSelectionPage Class 230
The WizardDialog Class 230

Preferences 230
The PreferenceStore and PreferenceConverter Classes 231
The PreferencePage Class 232
Field Editors 232
Preference Page Trees 233

Summary 235

Chapter 10: Project Two: Jukebox 237

Design Goals and How to Achieve Them 237
Installing the Project 238
The Player Module 241

Layout 241
Threads 242
The Player.java Class 243
BasicPlayerListener 260

The Playlist Domain Model 261
The Interface 261
Implementing IPlayList 268
Accessing Features 270
Managing Entries 271

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xviii

xix

Contents

Content Provider 273
Playlist Switch 273
Selections 274

The Description Window 275
The DescriptionWindow Class 276

The Playlist Viewer 278
The PlaylistWindow Class 278
The PlaylistViewer Class 281
Nested Grid Layout 289
Toolbar 290
File-Selection Dialogs 292
Menu 293

The PlaylistLabelProvider Class 295
Returning a Warning Icon 296
Cell Text 297

The FileCellEditor Class 299
The Description Editor 300

The DescriptionCellEditor Class 300
The DescriptionEditorDialog Class 302

Code Scanner 303
Content Assistant 304
SourceViewer Configuration 307
SourceViewer 308

Deploying the Jukebox 311
Summary 311

Chapter 11: Developing Plug-ins for the Eclipse Platform 313

The Architecture of the Eclipse Platform 314
Extension Points 314
OSGi 314
A Minimal Platform 315
Rich Client Platform vs. IDE 315
Resource Management 315
User Interface 316
Help System 316
Team Support 316
Other Plug-in Groups 317
Architecture Summary 317

The Core Classes of the Eclipse Platform 318
The Platform Class 318
The Plugin Class 318

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xix

xx

Contents

The Preferences Class 319
Path Specifications 319
Monitoring Long-Running Processes 320

The Eclipse Workspace 320
Resources 320
Markers 324
Reacting to Resource Changes 325
Managing Long-Running Processes 326

Configuring Plug-ins 327
The Plug-in Development Perspective 327
The Plug-in Manifest 329
The Most Important SDK Extension Points 332
The Schema Editor 341

Components of the Eclipse User Interface 344
Forms 344
The Eclipse Workbench 350
The Architecture of the Eclipse Workbench 351
Event Processing in the Eclipse Workbench 352
Editors 355
Views 362
Actions 367
Dialogs 372
Workbench Wizards 374
Preferences and Property Pages 377
Defining Perspectives 377
The Help System 379
Cheat Sheets 383

Summary 385

Chapter 12: Developing Your Own Eclipse-Based Products 387

Embedded Ant 388
Configuration 388
Editing Ant Scripts 389

Plug-ins and Fragments 390
Features 391

Creating and Editing Features 391
Deployment 393

Deploying a Feature 393
Deploying Complete Products 394
Customizing Products 394
Populating the Workspace 396
Creating Update Sites 398

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xx

xxi

Contents

Installing from an Update Site 399
Adding an Update Site 400
Installing Features 400
Updating Features 400
Managing the Configuration 400
Install Handlers 401

Internationalizing Products 401
Text Constants in Programs 402
Text Constants in Manifest Files 403
Help Texts and Cheat Sheets 404
Deploying National Language Resource Bundles 405

Patches 405
Summary 405

Chapter 13: Project Three: A Spell Checker as an Eclipse Plug-in 407

The Spell Checker Core Classes 408
The Engine 408
Overview 409

Setting Up the Project 410
The Plug-in Configuration 412

The Manifest plugin.xml 413
The Schema documentTokenizer.exsd 417
Imported Files 419

The Plugin Class 419
Dictionary URL 421
Initializing Preferences 422
The Manager 423

The Check Spelling Action 424
The SpellCheckingTarget Class 425
Factory Method 426
Selections 427
Document Management 428
Text Replacement 429
Disposal 430
The CheckSpellingActionDelegate Class 431

The Correction Window 439
The SpellCorrectionView Class 439
View Actions 449
Managing Images 450

Coordinating Core Classes with GUI Classes 452
The Manager 453
Selecting the Plug-in 454

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxi

xxii

Contents

Running the Engine 457
Managing Engines 458
Creating Engines 459
Processing Bad Words 462
Operations 462

Analyzing Documents 463
Configuring the Spell Checker 463

Preferences 463
Domain Model 464
The GUI 466
Reading from the PreferenceStore 471

The Help System 473
The Help Table of Contents 473
Context-Sensitive Help 473
Active Help 474
Running the Help Action 476

A Plug-in for Java Properties 477
Setting Up the Project 477
The Manifest 478
Tokenizer Extension 478
Manifest 479
The Plugin Class 480
The Preferences 481
The Preference Page 482
The Java-Properties Tokenizer 483
The Help System 483

Internationalizing the Spell Checker 484
Text Constants in Java Code 484
Text Constants in Manifest Files 487
Creating a Language Fragment 487

Deploying the Spell Checker 490
Defining the Spell Checker Feature 490
Configuring Ant Scripts 492
Defining the Language Feature 495
Defining the Update Site 497
Installation 498

Summary 499

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxii

xxiii

Contents

Chapter 14: The Rich Client Platform 501

Definition and Motivation 501
Plug-ins and the RCP 502
Creating an Application 503

The IPlatformRunnable Interface 503
The WorkbenchAdvisor Class 503

Testing a Rich Client Application 507
Deploying a Rich Client Application 507
Advanced Product Customization 508
The Global Welcome Screen 508
Summary 509

Chapter 15: Project 4: The Hex Game as a Rich Client Application 511

Overview 511
Setting Up the Project 512
The Manifest plugin.xml 512

Required Eclipse Plug-ins 514
Declaring the Application 514
Defining a Perspective 515
Defining a View 515
Product Customization 515
Linking the Welcome Screen 515
Adding Help 516
The Completed Manifest 516

The RcpApplication Class 517
The RcpWorkbenchAdvisor Class 518
The RcpPerspective Class 519
The IGame and IStatusListener Interfaces 520

The IStatusListener Interface 520
The IGame Interface 520

The HexView Class 521
The Game Engine 527
The Welcome Screen 531
Test 534
Deployment 534
Summary 535

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxiii

xxiv

Contents

Chapter 16: Conclusions and Outlook 537

Programming Style 537
Executable Prototypes 538
Automated Tests 538
Refinements 538
Embrace Change 540
Save Energy 541

Java 1.5 541
Summary 542

Appendix A: Useful Plug-ins for Eclipse 545

Appendix B: Migrating Projects to a New Eclipse Version 551

Projects 551
Plug-ins 552
Migration to Eclipse 3 552

Appendix C: Important Downloads 555

Project One: Duke Speaks 555
Project Two: Jukebox 555
Project Three: A Spell Checker as an Eclipse Plug-In 555
Book Web Site 556

Appendix D: Bibliography 557

Index 559

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxiv

Introduction to Eclipse

In this chapter you install and configure Eclipse. I then use the classical HelloWorld example to
show how to effectively create Java programs under Eclipse. I first discuss the most important
workbench preferences and then introduce various utilities for code creation.

Installing Eclipse
Installing Eclipse is very easy. In most cases, the only thing to do is to unpack the downloaded ZIP
file onto a disk drive with sufficient free space. What do you need to run Eclipse? The following
list shows what is required:

❑ A suitable platform. Eclipse 3.0 runs on a wide variety of platforms: Windows, Linux,
Solaris, QNX, AIX, HP-UX, and Mac OS X. However, in this book I mostly refer to the
Windows platform and occasionally give hints for the Linux platform.

❑ Sufficient disk space. 300 MB should be enough.

❑ Sufficient RAM. 256 MB should be fine.

❑ Java SDK 1.4. If this SDK is not installed on your machine, you can download it from
www.javasoft.com and install it by following the instructions given on this site. You
should specify the bin subdirectory of the SDK in your PATH environment variable so
that you can call the Java Virtual Machine (JVM) by issuing the command java from the
command prompt.

❑ Eclipse SDK 3.0 for your platform.

❑ The Eclipse example files (eclipse-examples-3.0) for your platform.

11

03_020059_ch01.qxd 10/8/04 10:47 AM Page 1

To install Eclipse, follow these steps:

1. Unpack the Eclipse SDK into the target directory. For example, on Windows that could be the
root directory C:\. In effect, the Eclipse libraries will be contained in directory C:\eclipse.
Under Linux you could use the /opt/ directory so that the Eclipse files would be stored under
/opt/eclipse/.

2. Immediately afterwards, unpack the Eclipse example files into the same root directory. By doing
so, the example files are automatically placed into the just-created eclipse subdirectory.

3. That’s all. Under Windows you can now invoke Eclipse by clicking the icon with the darkened
sun (in the eclipse subdirectory). Under Linux you would issue the shell command
/eclipse under the directory /opt/eclipse/.

Eclipse then prompts you with the Workspace Launcher. Here you can select the location of the
Eclipse workspace. This workspace will later contain all of your Eclipse projects. Usually the
\workspace\ folder is located in the Eclipse root directory \eclipse\. However, it makes
more sense to install the workspace in a location separate from the Eclipse installation. This
makes later upgrades to new Eclipse version easier (see also Appendix A). In addition, it
becomes easier to back up the workspace.

For example, you may want to specify ...\Own Files\eclipse-workspace under
Windows and /root/eclipse-workspace under Linux. The Eclipse Workspace Launcher is
shown in Figure 1.1. Note that later when running Eclipse you can easily switch to a different
workspace by invoking the function File > Open workspace.

2

Chapter 1

Figure 1.1

Important: When backing up the Eclipse workspace you should always create
complete backups—never incremental backups. Eclipse treats the archive
attribute of files in a somewhat unconventional way, which can lead to a corrupt
workspace when restoring a workspace from an incremental backup. This is a
known bug in Eclipse that has not been fixed with the release of Eclipse 3.0.0.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 2

4. After a short while you should see the Welcome screen. Here you have the choice of various
information sources such as help pages, tutorials, sample programs, and others:

❑ In the Overview section you will find relevant chapters from the various user guides in
the Eclipse help system.

❑ In the Tutorials section you can learn how to create a simple Java program, a simple SWT
application, and an Eclipse plug-in, and you will learn how to create and deploy an
Eclipse feature. These tutorials come in form of Cheat Sheets that can be followed in a step-
by-step fashion.

❑ The Samples section contains ready-to-run example programs. These include samples for
using the SWT and the Eclipse workbench. If you select such an example program, it will
automatically be downloaded from www.eclipse.org (provided that you have established
a connection to the Internet) and installed into the Eclipse workbench. Depending on your
interests and requirements, it may be worthwhile to take a close look at the code of such
an example program.

❑ In the What’s New section you will find a compilation of the new features contained in
Eclipse 3 and also a migration guide for converting the Eclipse 2 application into Eclipse 3
(see also Appendix B). Furthermore, there is a link to the Eclipse Community page and a
link to the Eclipse Update site, where you can update your Eclipse installation online.

However, for the moment you continue the startup process by pressing the Workbench button.
You should then see the Eclipse Welcome screen, as displayed in Figure 1.2. You can return at any
time to this screen by invoking the function Help > Welcome. Figure 1.3 shows Eclipse running.

3

Introduction to Eclipse

Figure 1.2

03_020059_ch01.qxd 10/8/04 10:47 AM Page 3

Figure 1.3

5. It is a good idea to create a desktop shortcut for Eclipse. Under Windows simply pull the Eclipse
icon onto the desktop by pressing the right mouse button. From the context menu select Create
Shortcut Here. Now you can add additional command-line options to this shortcut, for example,
the -vm option discussed below. To do so, right-click the shortcut and select Properties from the
context menu.

To learn which command-line options are available for Eclipse, check the Eclipse help system by
choosing Help > Help Contents. Then select Workbench User Guide, expand the Tasks item, and
choose Running Eclipse.

Under Linux you can similarly create a desktop shortcut under KDE or Gnome and add the
required command-line options.

A further list of command line options is found at Help > Help Contents > Platform Plug-in
Developer Guide > Reference > Other reference information > Runtime options. This section
lists all command line parameters and the corresponding System Property keys. (For
example, the key osgi.instance.data is equivalent to the command line parameter -data.)
These keys can be used to configure Eclipse via the configuration file \eclipse\
configuration\config.ini. Modifying this file allows you starting Eclipse in different
configurations without having to use command line parameters.

4

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 4

6. One of the most important command-line options deals with the selection of the Java Virtual
Machine (JVM) under which the Eclipse platform is executed. If you don’t want to use the stan-
dard JVM (the one executed when invoking the java command), you can specify a different
JVM by using the command-line option -vm.

When the Eclipse loader is invoked it uses a three-stage strategy to determine the JVM under
which the platform is executed. If a JVM is explicitly specified with the command-line
option -vm, then this VM is used. Otherwise, the loader will look for a specific Java Runtime
Environment (JRE) that was deployed with the Eclipse platform. Such a JRE must be located in
the directory \eclipse\jre\. If such a JRE does not exist (as in our case), then the location of
the VM is derived from the PATH environment variable.

By the way, this strategy affects only the JVM under which the platform is executed. Which JVM
and which SDK are used for Java development is specified separately in the Eclipse workbench.

The command-line option -vmargs can be used to specify parameters for the Java Virtual
Machine. For example:

eclipse.exe -vm C:\java13\bin\javaw -vmargs -Xmx256M

Here Eclipse is started with a specific JVM and sets the JVM heap to 256 MB. With very large
projects this can help to prevent instabilities of the workbench.

Another important command-line parameter is the parameter-data for specifying the location
of the workspace. In this case, the Workspace Launcher dialog discussed previously is skipped.
This parameter allows you to create different Eclipse desktop shortcuts for different
workspaces.

The First Application: Hello World
Until now you haven’t seen much of a Java development environment. Eclipse—which is advertised as a
platform for everything and nothing in particular—shows, in fact, nothing in particular when invoked
for the first time. You are now going to change this radically.

Perspectives
To see something “particular” in Eclipse, you first must open an Eclipse perspective. Perspectives consist
of a combination of windows and tools best suited for specific tasks. Perspectives are added to the
Eclipse workbench by various Eclipse plug-ins. This is, for example, the case with the user interface of
the Java IDE, which is nothing more than a large plug-in for the Eclipse workbench. To start developing
Java programs, you therefore must first open the Java perspective. To do so, click the Open Perspective
icon, as shown in Figure 1.4.

5

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 5

Figure 1.4

Use the Open Perspective icon to open new perspectives. By the way, by clicking the perspective bar
with the right mouse button and invoking the function Dock On, you can change the position of the per-
spective bar. If you were used to Eclipse 2.1, you may want to dock the perspective bar at the left border
of the Eclipse workbench.

From the list that appears, select Java. You should then see the screen shown in Figure 1.5.

6

Chapter 1

Figure 1.5

03_020059_ch01.qxd 10/8/04 10:47 AM Page 6

The Java perspective shows the windows (Package Explorer, Hierarchy), menu items, and toolbar icons
that are typical for Java development. On the left you see a new icon denoting the Java perspective.
Above this icon is the icon for the Resource perspective that was active before you opened the Java per-
spective. You can quickly switch between different perspectives by clicking these icons.

Projects
Now it’s time to say Hello to the world and to create your first program. To do so, first create a new Java
project. On the toolbar click the Create a Java Project icon, as shown in Figure 1.6. By clicking the icons of
this group you can create new Java projects, packages, classes, interfaces, and JUnit Test Cases.

7

Introduction to Eclipse

Figure 1.6

In the dialog that appears, name the project with HelloWorld. The Package Explorer now shows an
entry for the new project.

Create a New Class
In the next step click the C icon on the toolbar (Create a Java Class). In the following dialog make sure that

❑ The Source Folder is specified as HelloWorld.

❑ The name of the new class is specified as HelloWorld.

❑ public is selected as Modifier.

❑ java.lang.Object is specified as Superclass.

❑ The option to public static void main() is checked.

The Create a New Class Wizard (Figure 1.7) is able to generate some class code. The wizard can generate
stubs for the inherited methods, especially if a super class and interfaces are specified.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 7

Figure 1.7

After you click the Finish button, the Eclipse workbench looks a bit more like a workbench in use
(Figure 1.8).

The Package Explorer shows the contents of the new project, including the libraries of the Java runtime
environment. At any time you can open the classes belonging to these libraries and look at their source
code. The center window holds the Java source editor, which currently contains the pregenerated code
for the HelloWorld class. At the right-hand side you can see the Outline window showing the current
class with its methods. You quickly navigate to any method or variable in the source editor by clicking it
in the Outline View.

Now you complete the pregenerated code. You change the main() method in the following way:

public static void main(String[] args) {
System.out.println("Hello World");
}

8

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 8

Figure 1.8

By doing this you have finished the programming work for your first project. Save the new class
HelloWorld to disk by clicking the floppy disk icon on the toolbar. (Alternatively, you can use the
keyboard shortcut Ctrl+S.) This will also compile this class. The program is now ready for execution.

Launch
The Run icon is positioned on the right side of the bug icon. Here, you activate the drop-down menu
by clicking the arrow at the right of the Run icon. From this drop-down menu select Run As > Java
Application to start program execution. Now, a new tag with the label Console should appear in the
Tasks View area. With a click on that tag you can open the Console View (see Figure 1.9), which should
display the text “Hello World.” Done!

During this first execution, Eclipse creates a new Run Configuration named HelloWorld. A list of all
available Run Configurations is found under the arrow on the right side of the Run icon. The Run icon
itself is always associated with the Run Configuration that was executed last. To execute the program
again, simply click the Run icon.

The console window opens automatically when a program writes to System.out or System.err.

9

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 9

10

Chapter 1

Figure 1.9

The Most Important Preferences for Java
Development

Before you continue in your programming efforts, you should first explore your working environment.
The Window > Preferences menu gives you access to all Eclipse preferences (see Figure 1.10).

On the left of the Preferences dialog you can select from several preference categories. On the right-hand
side of the dialog the details of the selected preference category are shown. All settings made here can be
stored into an external file by clicking the Export button or loaded from an external file by clicking the
Import button.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 10

Figure 1.10

At first sight, the sheer mass of preferences shown in this dialog may be overwhelming, because each
plug-in may contribute its own set of preference categories to this dialog. In this chapter, I will discuss
only those preferences that are most relevant in the context of this book. You should take the time to step
systematically through all preference categories to get an overview of the possibilities. Some of the cate-
gories have subcategories. To expand a category, click the + sign in front of the category name.

Some of the preference settings will make sense only during the discussion of the corresponding Eclipse
function. In such cases I will postpone the discussion of the preference settings to the discussion of the
corresponding workbench function.

Workbench Preferences
If you previously have worked with Emacs, it may make sense to switch the Key Bindings in Eclipse so
you can continue to use the familiar Emacs shortcuts. To do so, expand the Workbench category, select
the subcategory Keys, and click the Keyboard Shortcuts tag. In the drop-down list named Active
Configuration you can choose between Emacs and Default. You can even define your own keyboard
shortcuts. First, go to the Command group and select a command via the Category and Name fields. The
existing keyboard shortcut assignments appear in the Assignments list. A keyboard shortcut can consist
of a single key combination or a series of key combinations. Edit the sequence of key combinations by
placing the cursor into the Name field of the Key Sequence group and pressing the key combination to

11

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 11

be added to the sequence. Use the Backspace key to delete entries. To add a new key sequence, don’t
select an entry in the Assignments list; simply enter the key sequences in the described way, and then
press the Add button.

On the Advanced page of the Key Bindings preferences you can enable an assistant that will help you
with completing multistroke keyboard shortcuts.

Installed JREs
You probably don’t always want to create Java applications that require a Java 1.3 or Java 1.4 platform.
In some cases you may need to run on Java 1.2 platforms. Within the preference category Java, in the
subcategory Installed JREs, you can list all Java Runtime Environments that are installed on the host
computer (see Figure 1.11).

12

Chapter 1

Figure 1.11

In this preference category you can declare all the Java Runtime Environments (SDK or JRE) that are
installed on the host computer for Eclipse. Among the JREs listed here, Checkmark One is the default
JRE. This JRE will be assigned to all new Java projects. You will learn later how this can be changed in
the project settings and how different JREs can be used in different Launch Configurations.

To add a new JRE, just click the Add button (alternatively you can click the Search button to scan a
whole directory for a JRE or SDK). Then complete the following dialog (see Figure 1.12).

03_020059_ch01.qxd 10/8/04 10:47 AM Page 12

13

Introduction to Eclipse

Figure 1.12

A new JRE is added to the Eclipse workbench. I have provided the name and location of the JRE home
directory. The location of the corresponding Javadoc is preset by Eclipse and points to the JavaSoft Web
site. If the documentation is available locally, you should modify this entry accordingly. The entry
Default VM Arguments may specify VM command-line parameters to be used with this VM.

For further customization you could uncheck the Use Default System Libraries item. This would allow
you to add further JAR libraries. If any of the JARs does not contain source code, you can attach external
source code by pressing Attach Source.

If you want to add a version 1.1 JRE (this is necessary when you want to run your application on a
Microsoft VM), you must also change the JRE type to the value Standard 1.1.x VM.

Of course, it is possible to execute an application on a JVM that is different from the JVM under which
the application was developed. For example, if you developed an application under Java SDK 1.1.8 and
want to test how the application performs under a version 1.3.1 JVM, you must change the runtime
environment before executing the program. You can do this by choosing the appropriate JVM in the
Eclipse Launch Configurator. You can open the Launch Configurator by invoking the menu function
Run > Run.

For the remainder of this book I use the Java 1.4 SDK.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 13

Compiler Preferences
Now take a closer look at the compiler preferences. In the Preferences dialog select the category Java and
the subcategory Compiler. Note that all adjustments made here affect the whole workbench. On project
level (see the “Project Properties” section in Chapter 4), however, you have the possibility of overriding
the global settings made here under Preferences.

Warnings and Errors
On the right-hand side of the Java > Compiler category you see a tabbed notebook. The Style, Advanced,
Unused Code, and Javadoc pages show which compiler events create errors or warnings and which
compiler events should be ignored (see Figure 1.13).

14

Chapter 1

Figure 1.13

Because a lot of third-party code is used in the examples, you need to reset the settings for unused
imports, never-read local variables, and never-read parameters on the Unused Code page to Ignore.
Otherwise, you could face an overwhelming flood of error messages. But if you develop your own
applications, it makes sense to set these settings to Warning because these settings help you to detect

03_020059_ch01.qxd 10/8/04 10:47 AM Page 14

