
Professional Java™ Native Interfaces 
with SWT/JFace

Jackwind Li Guojie

01_094591 ffirs.qxd  10/21/04  2:33 PM  Page i


C1.jpg



01_094591 ffirs.qxd  10/21/04  2:33 PM  Page i



Professional Java™ Native Interfaces 
with SWT/JFace

Jackwind Li Guojie

01_094591 ffirs.qxd  10/21/04  2:33 PM  Page i



Professional Java™ Native Interfaces with SWT/JFace
Copyright © 2005 by John Wiley & Sons, Limited. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WAR-
RANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE
FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUB-
LISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR REC-
OMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates. Java is a trademark of Sun Microsystems, Inc. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

2004018715

ISBN: 0-470-09459-1

Printed in the United States of America

10   9   8   7   6   5   4   3   2   1

01_094591 ffirs.qxd  10/21/04  2:33 PM  Page ii



About the Author
Jack Li Guojie is an independent Java developer who has been building various types of Java applica-
tions since 1998. His areas of interest and experience include artificial intelligence, user interfacing, Web
applications, and enterprise system architecture. He has contributed articles to many leading software
journals.

I thank John Wiley & Sons, the publisher, for its trust in me and investment in this book. In particular,
many thanks to Gaynor Redvers-Mutton, my acquisitions editor, who encouraged me to write this book.
The book could never have been completed without my development editors, Emilie Herman and
Kenyon Brown, who corrected my English and reshaped the manuscript into a readable form. I also
thank Roy Miller, the technical reviewer, for his invaluable comments.

01_094591 ffirs.qxd  10/21/04  2:33 PM  Page iii



Credits
Acquisitions Editor
Gaynor Redvers-Mutton

Development Editor
Emilie Herman

Technical Editor
Roy Miller

Copy Editor
Nancy Rapoport

Editorial Manager
Kathryn A. Malm

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Bill Ramsey

Graphics and Production Specialists
Beth Brooks
Kelly Emkow
Carrie Foster
Lauren Goddard
Jennifer Heleine

Quality Control Technicians
Susan Moritz
Brian H. Walls

Proofreader
Susan Sims

Indexer
Joan Griffitts

01_094591 ffirs.qxd  10/21/04  2:33 PM  Page iv



Contents

About the Author iii
Introduction xv

Part I: Fundamentals 1

Chapter 1: Overview of Java UI Toolkits and SWT/JFace 3

Evolution of Java GUI Frameworks 3
Abstract Window Toolkit 4
Swing 5
SWT and JFace 8

SWT/JFace Advantages 11
Full Support for Native Features 11
Speed 12
Portability 13
Easy Programming 13
Flexibility 14
Maturity 18

Summary 18

Chapter 2: SWT/JFace Mechanisms 19

The Implementation of SWT 19
Resource Management with SWT/JFace 28

Operating System Resources 28
Rules of Operating System Resource Management 29
Managing Fonts and Images with JFace 36

Model-View-Controller Pattern 41
The MVC Architecture 42
Benefits of MVC 43
Costs of MVC 43
UI Delegation 44

JFace and MVC 44
JFace Viewers 44
JFace Text 45

Summary 45

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page v



vi

Contents

Chapter 3: Jump Start with SWT/JFace 47

Preparation 47
Downloading and Installing SWT/JFace 47
Configuring Your IDEs 48

Your First SWT Program 51
Coding Your First SWT Program: Hello World 51
Running Your First SWT Program 53
Creating a Bigger Application — Temperature Converter 55
Rewriting the Temperature Converter with JFace 58

SWT/JFace Software Deployment with Java Web Start 60
Introduction to Java Web Start 60
Identifying Files to be Deployed 61
Packaging and Signing Files 61
Writing the JNLP Script 63
Uploading and Running 64

Summary 66

Chapter 4: SWT Event Handling, Threading, and Displays 67

SWT Event Handling Fundamentals 67
Native Event Handling Mechanism 67
SWT Event Handling Basics 68
Using Displays 68
SWT Event Handling with Displays 69

Multithreaded UI Programming 71
Multithreading with the UI Thread and Non-UI threads 71
SWT Time-Consuming Operation UI Pattern 74
Thread-Safe UI calls 74

The Event Model 77
Events, Listeners, and the Listener Notification Process 78
Untyped Events and Untyped Event Listeners 81
Typed Events and Typed Event Listeners  84

Summary 87

Chapter 5: Basic SWT Widgets 89

Overview of SWT/JFace Widgets 89
SWT/JFace UI Component Hierarchy 89
The Widget Class 90
The Control Class 93
The Composite Class 98

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page vi



vii

Contents

Shells 103
Styles 103
Shell States 104
Creating Shells 104
Shell Events 107
Miscellaneous 108

Buttons and Labels 111
Buttons 112
Labels 115

Summary 117

Chapter 6: Layouts 119

Introduction to Layouts 119
General Terms 119
Setting Layouts 120
Layout Data Objects 121
Laying Out Children of a Composite 121

Using FillLayouts 122
Using RowLayout 124

Properties of RowLayouts 124
Using RowData Objects 126

Using GridLayouts 127
Properties of GridLayouts 127
Using GridData Objects 128
A Sample GUI Using GridLayouts 133

Using FormLayouts 138
FormData Objects and FormAttachment Objects 138

Using StackLayouts 144
Creating Your Own Layouts 145
Summary 150

Part II: Design Basics 151

Chapter 7: Combos and Lists 153

Using Combos 153
Styles 153
Building Combos and Capturing Item Selections 154
Accessing Items in Combos 156
Creating a Combo with Sorted List 158
About the CCombo Class 159

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page vii



viii

Contents

Using Lists 159
Single and Multi Selection 159
Building Lists and Capturing Item Selections 160
Accessing Items in Lists 163

Using ListViewers 165
Creating Domain-Specific Model Objects 165
Creating a ListViewer 166
Setting the Content Provider and the Content 167
Setting the Label Provider 168
Capturing Events and Getting Selections 168
Adding Filters 171
Setting a Sorter 172
Updating/Refreshing the Viewer 172

Summary 175

Chapter 8: Text Controls 177

Using Texts 177
Styles 177
Text Basics 178
Text Operations 181
Text Selections 183

Using StyledTexts 184
Setting Text Styles with StyleRanges 184
Setting Line Backgrounds 187
Using LineStyleListeners and LineBackgroundListeners 188

Summary 191

Chapter 9: Menus, Toolbars, Cool Bars, and Actions 193

Using Menus and Menu Items 193
Using Menus 193
Using MenuItems 196
Creating a Text Editor 199

Using ToolBars and ToolItems 202
Using ToolBars 202
Using ToolItems 203
Adding a Toolbar for the Text Editor 207

Using CoolBars and CoolItems 210
Creating a CoolBar with CoolItems 210
Saving and Loading the Display State of a CoolBar 212

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page viii



ix

Contents

Using Actions and ContributionManagers 216
Creating Actions 216
Creating Menus with MenuManagers 219
Creating Toolbars with ToolBarManagers 220

Summary 221

Chapter 10: Tables 223

Using Tables 223
Creating a Table 223
Defining Table Columns 224
Adding Data into a Table 225
Handling Selections 229
Using TableEditors 230
Sorting a Table by Column 233

Using TableViewers 235
Creating Domain-Specific Model Objects 236
Creating a TableViewer 237
Setting the Content Provider 238
Setting the Label Provider 238
Setting Cell Editors 239
Column-Wise Sorting Using Sorters 242
Adding a Filter 243

Summary 244

Chapter 11: Trees 245

Using Trees 245
Creating a Tree 245
Using TreeItems 246
Handling Events 249
Using TreeEditors 251

Using TreeViewer 253
Creating a TreeViewer 254
Setting the Content Provider 254
Setting the Label Provider 255
Setting the Sorter 256
Adding a Filter 256
Getting Selections 257

Summary 259

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page ix



x

Contents

Chapter 12: Dialogs 261

Dialog Basics 261
Using ColorDialogs and FontDialogs 262

ColorDialogs 263
FontDialogs 263
Using ColorDialogs and FontDialogs 263

Using DirectoryDialogs and FileDialogs 266
DirectoryDialogs 266
FileDialogs 266
Using DirectoryDialogs and FileDialogs 268

Using MessageBoxes 270
Creating Your Own Dialogs 272
Summary 274

Part III: Dynamic Controls 275

Chapter 13: Scales, Sliders, and Progress Bars 277

Using Scales 277
Using Sliders 280
Using ProgressBars 282
Summary 286

Chapter 14: Other Important SWT Components 287

Using Groups 287
Using Sashes and SashForms 290

Using Sashes 290
Using SashForms 291

Using TabFolders and TabItems 294
Basic Usages 294
Accessing and Selecting TabItems 296
Customizing TabItems 297

Using Browsers 298
Navigation Methods 298
Events 299
A Simple Web Browser 301

Summary 305

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page x



xi

Contents

Chapter 15: SWT Graphics and Image Handling 307

Drawing with Graphics Contexts 307
Getting a Graphics Context 308
Using Canvas 310
Drawing Lines, Arcs, and Shapes 311
Filling Shapes 313
Drawing and Copying Images 314
Drawing Text 316
Advanced Techniques 318

Image Handling 321
Image Basics 321
ImageData and PaletteData 322
Transparency and Alpha Blending 325
Image Scaling 327
Displaying Animation 327

Summary 329

Chapter 16: Drag and Drop and the Clipboard 331

Using Drag and Drop 331
Creating Drag Sources 332
Creating Drop Targets 335
The Bookmark Organizer 338

Using the Clipboard 347
Putting Data on the Clipboard 347
Getting Data from the Clipboard 348

Summary 349

Chapter 17: Printing 351

Printing Fundamentals 351
Selecting the Target Printer 353
Basic Printing 355

The Image Viewer Application 356
Setting the Page Margins 357
Printing the Image 360
Providing the Print Preview 362

Text Printing and Pagination 366
Summary 371

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page xi



xii

Contents

Chapter 18: JFace Windows and Dialogs 373

JFace Windows 373
org.eclipse.jface.window.Window 373
Application Windows 374
Running Time-Consuming Operations with Application Windows 378
Multiple Windows Management with WindowManagers 381

JFace Dialogs 382
Using MessageDialogs 382
Using InputDialogs 384
Using ProgressMonitorDialogs 385

Summary 387

Part IV: Application Development 389

Chapter 19: JFace Wizards 391

JFace Wizard Basics 391
Creating a JFace Wizard 393

Adding Wizard Pages with addPages() 396
Finish Processing with performFinish() 396
Cancel Processing with performCancel() 396
Accessing Wizard Pages 396

Creating Wizard Pages 397
Running a Wizard 401
Loading and Saving Dialog Settings 402
Summary 405

Chapter 20: Creating a Text Editor with JFace Text 407

Overview of the JFace Text Framework 407
JFace Text Package Organization 407
Models, Views, and Controllers in JFace Text Framework 408

Creating a Basic Custom Editor 412
Syntax Highlighting 415
Providing Content Assistance 418
Running the Editor 423
Summary 425

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page xii



xiii

Contents

Chapter 21: Eclipse Forms 427

Introduction to Eclipse Forms 427
Creating a Basic Form 428
Customizing Forms 431

Using Custom Form Controls 432
Using Hyperlinks 432
Using FormTexts 435
Using ExpandableComposites 438
Using Sections 440

Using Form Layout Managers 441
Using TableWrapLayout 441
Using ColumnLayouts 442

Summary 443

Chapter 22: Programming OLE in Windows 445

Introduction 445
OleFrame 446
OleClientSite, OleControlSite 446

Embedding a Microsoft Word OLE Document into an SWT Application 447
Creating the OLE Container 447
Creating an OLE Site 448
Activating the OLE Object 450
Deactivating the OLE Object 451
Saving Changes 452
Executing Common Commands 453

OLE Automation 454
Listing OLE Automation Properties and Methods 454
Getting and Setting Property Values 459
Invoking Methods 460

Summary 461

Chapter 23: Drawing Diagrams with Draw2D 463

Overview 463
Creating Simple UML Diagrams with Draw2D 465
Adding Connections 472
Capturing Events 473
Summary 474

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page xiii



xiv

Contents

Chapter 24: Sample Application 477

Introduction 477
Building the Skeleton 479

Creating the Application Window 479
Creating Actions  480
Creating the Menu Bar 484
Construct the Toolbar 485
Creating Application Window Contents 486

Implementing Table Viewers 489
Adding Drag-and-Drop Support 490
Summary 493

Index 495

02_094591 ftoc.qxd  10/21/04  2:34 PM  Page xiv



Introduction

Eclipse is an open source universal tool platform, dedicated to providing a robust, full-featured industry
platform for the development of highly integrated tools. With millions of downloads, Eclipse becomes
more and more popular. One of the most important common facilities provided by the Eclipse framework
is the portable native widget user interface called the Standard Widget Toolkit (SWT), which provides a
set of OS-independent APIs for widgets and graphics. SWT is analogous to AWT and Swing except SWT
uses a rich set of native widgets. Built on SWT, JFace is a user interface toolkit handling many common
UI programming tasks. JFace is designed to work with SWT without hiding it. Some of the advantages
SWT/JFace offers over Swing include support for native features, fast execution speed, and flexible pro-
gramming models. 

This book teaches you how to build practical user interfaces with SWT/JFace. After introducing each
widget, I present a great deal of Java source code to show you how to use the widget effectively. You can
use the sample code as the basis to develop real-world applications quickly. Additionally, many tech-
niques and tips are presented to help you save time. Finally, the last chapter shows you how to build an
FTP client by combining everything covered in the book. 

The comprehensive coverage of the SWT/JFace framework also makes this book an ideal reference.

Who Should Read This Book
This book is targeted primarily at Java user interface developers, Eclipse enthusiasts, and technical man-
agers. The first few chapters help nontechnical people gain insight into the SWT/JFace framework. The
later chapters contain a lot of technical details and practical examples that Java developers should find
of great use. 

In order to understand the code samples in this book, you need to have a good knowledge of the Java
programming language. Background on user interface development is an advantage but not a necessity. 

Those who have some experience with SWT/JFace programming can skip the first three chapters and
jump right to Chapter 4. Others should read from start to finish. 

What This Book Covers
This book covers the latest SWT/JFace version 3.0, which was released in June 2004. 

03_094591 flast.qxd  10/21/04  2:34 PM  Page xv



xvi

Introduction

How This Book Is Organized
This book is organized into 24 chapters. The first few chapters introduce the SWT/JFace framework and
cover some SWT/JFace fundamentals such as event handling, layout, and the like. The next few chapters
discuss each SWT widget individually and give practical advice on the usage of each one. After the
introduction of all the SWT widgets, topics such as JFace dialogs and wizards are covered. Finally, the
book covers special topics such as OLE support and Draw2D and concludes with the development of an
FTP client application. 

Note that while introducing some SWT widgets, I bring in some related JFace model-view-controller
(MVC)–based components. For example, when discussing the SWT table widget, I cover the JFace table
viewer. In this way, you learn two different approaches to achieve the same result—you can either use
the traditional approach by manipulating the table widget directly, or you can take the MVC approach
with the table viewer. You can compare the two approaches in order to choose the best one for you.

Part I: Fundamentals
Part I introduces you to the fundamentals of SWT/JFace.

Chapter 1 offers you a tour of Java GUI frameworks. Toolkits such as AWT, Swing, and SWT/JFace are
discussed and compared. The chapter covers the features of SWT/JFace and compares them with those
from other toolkits.

Chapter 2 explains some of the mechanisms used by SWT/JFace. First, the chapter introduces the imple-
mentation of SWT. The rest of the chapter is about resource management in SWT; here you can find useful
resource management techniques and practical tips. The last part explains how the model-view-controller
(MVC) design fits in JFace.

Chapter 3 covers setting up your IDEs to develop applications with SWT/JFace, writing your first SWT
programs, using JFace to simplify UI programming, and deploying your applications to multiple plat-
forms using Java Web Start.

Chapter 4 introduces SWT event handling and the threading mechanism. The Display class, which
plays the most important role in SWT event handling, is introduced, too.

Chapter 5 first provides a tour of the hierarchy of the SWT widgets. Several typical widget types are 
discussed. After that, you learn about three kinds of basic SWT widgets—Shells, Buttons, and Labels.
Additionally, this chapter covers focus traversal.

Chapter 6 shows you how to use layouts to manage the position and size of children in composites. The
chapter introduces you to four standard layouts and one custom layout provided in SWT: FillLayout,
RowLayout, GridLayout, FormLayout, and StackLayout. At the end of this chapter, you learn how to
create your own layouts.

Part II: Design Basics
Part II introduces you to the basics of designing layouts in SWT/JFace.

03_094591 flast.qxd  10/21/04  2:34 PM  Page xvi



xvii

Introduction

Chapter 7 introduces two kinds of SWT controls: Combos and Lists. Both combos and lists allow the
user to choose items from a list of items. Additionally, ListViewer, an MVC viewer based on the List
control, is introduced.

Chapter 8 introduces two kinds of SWT text controls: Text and StyledText.

Chapter 9 teaches you how to use menus, toolbars, and cool bars in SWT. Additionally, you learn how to
use the JFace action framework to simplify the task of creating menus and toolbars.

Chapter 10 shows you how to use the SWT Table control to display, navigate, and edit data. Additionally,
the JFace TableViewer is introduced to help you simplify these tasks by taking advantage of MVC 
programming.

Chapter 11 shows you how to use the SWT Tree control to display and edit a hierarchy of items. Event
handling of trees is also introduced. Additionally, you see how to use TreeViewers and the MVC
approach to program with trees.

Chapter 12 covers UI objects that can be used to acquire particular types of data input from the user. In this
chapter, you learn how to use each of the SWT dialogs: ColorDialog, DirectoryDialog, FileDialog,
FontDialog, and MessageBox. Additionally, this chapter guides you to create your own dialogs.

Part III: Dynamic Controls
Part III introduces you to adding dynamic controls in SWT/JFace.

Chapter 13 teaches you how to use controls that can be used to present numerical values. The controls
include Scale, Slider, and ProgressBar. 

Chapter 14 introduces several miscellaneous SWT components: Group, Sash, SashForm, TabFolder,
and Browser.

Chapter 15 discusses topics concerning graphics and image handling. The first part of this chapter
teaches you how to perform various drawing operations with graphics context—drawing lines, arcs,
shapes, images, and text and filling shapes, and so forth. SWT image handling is introduced in the sec-
ond part. You learn how an image is represented in SWT. Additionally, the chapter introduces practical
image manipulation techniques.

Chapter 16 introduces various ways to transfer data within an application and between applications 
easily. I show you how to enable your applications to supply data and to accept data in the drag-and-
drop process. Finally, you learn how to use the clipboard to exchange data within an application or
between different applications.

Chapter 17 shows you how to add the printing functionality to your existing programs. This chapter
first introduces you to the basic printing mechanism. A real-world example is then used to guide you
step by step to code for printing and print preview. Finally, you learn about multiple page printing and
pagination.

Chapter 18 shows you how to use the JFace windows framework (org.eclipse.jface.window) to
simplify windows creation and management tasks. Additionally, this chapter covers JFace dialogs. 

03_094591 flast.qxd  10/21/04  2:34 PM  Page xvii



xviii

Introduction

Part IV: Application Development
Part IV takes you through the steps to create a sample application in SWT/JFace.

Chapter 19 introduces you to the JFace wizard framework with a sample application.

Chapter 20 gives you a brief overview of the JFace text framework. Then it shows you how to create a
basic custom text editor with JFace text. The custom text editor is then improved by adding the following
add-ons: content assist and syntax highlighting.

Chapter 21 provides a framework for creating flat, web-like user interfaces. This chapter shows you how
to use the Eclipse Forms frame. You learn how to use a toolkit to create basic forms or scrollable forms.
Eclipse Form custom widgets are then introduced, such as hyperlinks, form texts, sections, and so on. 

Chapter 22 teaches you how to embed OLE documents and ActiveX controls in SWT widgets on Windows
platforms. As an example, a Microsoft Word document is embedded in an SWT application. The chapter
walks you through the steps to embed the OLE document: creating the OLE container, creating an OLE
site for the OLE document, activating the OLE object, and deactivating the OLE object. 

Chapter 23 introduces you to a lightweight rendering framework—Draw2D. With Draw2D, you can cre-
ate complex figures easily. This chapter shows you how to create simple UML diagrams with Draw2D.
The sample application displays the selected class in a UML diagram. By combining small figures, you
can create manageable complex figures without tedious code. 

Chapter 24 guides you through the development of a simple FTP client application using SWT/JFace. 
By combining knowledge acquired in previous chapters, you can create complex practical applications.
With the FTP client sample application, you learn how to use application windows, actions, menu bars,
and toolbars. Furthermore, you learn how to make main UI components resizable by using sash forms
properly. You can use drag and drop to improve the user interface and make it more accessible to the
user.

What You Need to Use This Book
In order to run the sample code, you need to download and install Eclipse version 3.0, which is available
online at www.eclipse.org/.

Conventions
To help you get the most from the book and keep track of what’s happening, I’ve used a number of 
conventions throughout.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_094591 flast.qxd  10/21/04  2:34 PM  Page xviii



xix

Introduction

As for styles in the text:

❑ I highlight important words when I introduce them.

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show file names, URLs, and code within the text like so: persistence.properties.

❑ I present code in two different ways:

In code examples I highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book. 

When you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Updates (Errata)
I’ve made every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error, such as a spelling mistake or faulty piece of code, 
I would be very grateful for your feedback. By sending in errata you may save another reader hours 
of frustration and at the same time you will be helping to provide even higher quality information. 

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send the error you have found. I’ll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the
book.

03_094591 flast.qxd  10/21/04  2:34 PM  Page xix



xx

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of your choos-
ing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fel-
low readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

When you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P forum, be sure to read the P2P FAQs for answers
to questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

03_094591 flast.qxd  10/21/04  2:34 PM  Page xx



Part I: Fundamentals

Chapter 1: Overview of Java UI Toolkits and SWT/JFace

Chapter 2: SWT/JFace Mechanisms

Chapter 3: Jump Start with SWT/JFace

Chapter 4: SWT Event Handling, Threading, and Displays

Chapter 5: Basic SWT Widgets

Chapter 6: Layouts

04_094591 pt01.qxd  10/21/04  2:35 PM  Page 1



04_094591 pt01.qxd  10/21/04  2:35 PM  Page 2



Overview of Java UI Toolkits
and SWT/JFace

This chapter outlines the three main Java user interface (UI) toolkits: AWT, Swing, and JFace.
First I provide a brief introduction to all three, and then I compare them, highlighting some of
the advantages SWT/JFace offers. SWT/JFace allows you to access native features easily, and pro-
grams based on SWT/JFace are considerably faster than those based on Swing in terms of execu-
tion speed. SWT/JFace is designed to be very flexible, so you can program using either the
traditional approach or the model-view-controller approach. After reading this chapter, you
should have a general overview of SWT/JFace. The chapters that follow introduce various aspects
of SWT/JFace in detail.

Evolution of Java GUI Frameworks
This section covers the following Java graphical user interface (GUI) frameworks:

❑ Abstract Window Toolkit (AWT): The first and the simplest windowing framework. 

❑ Swing: Built on AWT, Swing offers peerless components.

❑ Standard Widget Toolkit (SWT) and JFace: SWT is a native widget UI toolkit that provides
a set of OS-independent APIs for widgets and graphics. JFace is a UI toolkit implementation
using SWT to handle many common UI programming tasks.

This section outlines the evolution of the Java GUI framework and highlights the key features
we’ll compare and contrast in the next section.

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 3



Abstract Window Toolkit
The first version of Java, released by Sun Microsystems in 1995, enabled you to create programs on one
platform and deliver the products to other Java-supported systems without worrying about the local
environment — ”Write Once, Run Anywhere.” Most early Java programs were fancy animation applets
running in Web browsers. The underlying windowing system supporting those applets was the Abstract
Window Toolkit (AWT). 

AWT has a very simple architecture. Components, graphics primitives, and events are simply perched
on top of similar elements from the underlying native toolkit. A layer of impedance matching sits between
the AWT and various underlying native toolkits (such as X11, Macintosh, and Microsoft Windows) to
ensure the portability of AWT. 

AWT 1.0 uses a callback delegation event model. Events are propagated or delegated from an event
“source” to an event “listener.” The interested objects may deal with the event, and the super-event 
handler is not required. The event model in AWT 1.1 was reimplemented from the callback delegation
event model to an event subscription model. In AWT 1.1, the interested objects must register themselves
with the components to receive notification on certain events. When the events are fired, event object are
passed to registered event listeners. 

AWT was slightly enhanced in later releases of Java. However, even the latest version of AWT fails to
delivery a rich set of GUI components. Following is a list of components provided by AWT:

❑ Button

❑ Canvas

❑ Checkbox

❑ Choice

❑ Container

❑ Panel

❑ ScrollPane

❑ Window

❑ Label

❑ List

❑ Scrollbar

❑ TextComponent

❑ TextArea

❑ TextField

To give you a more complete overview of the AWT user interface, I’ve created a simple GUI program.
This tiny program allows the user to upload a photo to a server, or anywhere else. Figure 1-1 shows the
user interface of the photo uploader implemented using Abstract Window Toolkit.

4

Chapter 1

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 4



Figure 1-1

Click the Browse button to bring up the file selection dialog (see Figure 1-2). The name of the selected
file is inserted into the text after the Photo label. The upload process starts when the user clicks the
Upload button. The program exits when uploading is complete. 

Figure 1-2

If you are familiar with Microsoft Windows systems, you may notice that the file selection dialog in
Figure 1-2 is exactly the same as those used by native Windows programs. The Abstract Window Toolkit
passes the call for file selection to the underlying native toolkit, i.e., Windows toolkit, and as a result, a
native Windows file selection dialog pops up.

The Abstract Window Toolkit is sufficient for developing small user interfaces and decorations for Java
applets, but it’s not suitable for creating full-fledged user interfaces. Sun Microsystems recognized this
as well and in 1997, JavaSoft announced Java Foundation Classes (JFC). JFCs consist of five major parts:
AWT, Swing, Accessibility, Java 2D, and Drag and Drop. Swing helps developers to create full-scale Java
user interfaces. 

Swing
Swing is a pure Java UI toolkit built on top of the core Abstract Window Toolkit (AWT) libraries. However,
the components available in Swing are significantly different from those in AWT in terms of underlying
implementation. The high-level components in Swing are lightweight and peerless, i.e. they do not depend
on native peers to render themselves. Most AWT components have their counterparts in Swing with the
prefix “J.” Swing has twice the number of components of AWT. Advanced components such as trees and
tables are included. The event-handling mechanism of Swing is almost the same as that of AWT 1.1,
although Swing defines many more events. Swing has been included in every version of Java since Java 1.2.

5

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 5



The main Swing packages are as follows:

❑ javax.swing: Contains core Swing components.

❑ javax.swing.border: Provides a set of class and interfaces for drawing various borders for
Swing components.

❑ javax.swing.event: Contains event classes and corresponding event listeners for events fired by
Swing components, in addition to those events in the java.awt.event package. 

❑ javax.swing.plaf: Provides Swing’s pluggable look-and-feel support. 

❑ javax.swing.table: Provides classes and interfaces for dealing with JTable, which is Swing’s tab-
ular view for constructing user interfaces for tabular data structures. 

❑ javax.swing.text: Provides classes and interfaces that deal with editable and noneditable text
components, such as text fields and text areas. Some of the features provided by this package
include selection, highlighting, editing, style, and key mapping. 

❑ javax.swing.tree: Provides classes for dealing with JTree. 

❑ javax.swing.undo: Provides support for undo and redo features. 

In addition to the lightweight high-level components, Swing introduced many other features over AWT.
Pluggable look-and-feel is one of the most exciting of the bunch. Swing can emulate several look-and-
feels, and you can switch the look-and-feels at runtime. If you do not like any of them , you can even 
create your own. Other features include tooltip support, keyboard event binding, and additional 
debugging support.

The photo uploader program can be rewritten using Swing. Figure 1-3 shows the user interface of the
Swing photo uploader with Windows look-and-feel; Figure 1-4 shows the user interface with Java metal
look-and-feel.

Figure 1-3

Figure 1-4

The Swing file selection dialog user interfaces for Windows look-and-feel and Metal look-and-feel are
shown in Figures 1-5 and 1-6, respectively. The Swing file selection dialog with Windows look-and-feel
looks similar to the AWT (i.e. the native dialog); however, they are quite different. Swing simply emulates

6

Chapter 1

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 6



the Windows native file dialog. If you look carefully, you’ll find that some features of Windows native file
dialogs are missing in the Swing file dialog. In Windows native file dialogs, you can view the files using
different modes: list, details, thumbnails, and so on. Additionally, more operations are available in the
popup menu when you right-click. Both of these features are not available to Swing file selection dialogs.

Figure 1-5

Figure 1-6

Swing fails to support native features of the underlying system. Another obstacle to widespread usage is
that programming with Swing is very complex.

Swing is so powerful that you can use it to create full-scale enterprise Java user interface programs. So
why do we see so few Swing-based GUI programs? James Gosling, creator of the Java language, said
during a keynote presentation at a Mac OS X conference that there is a “perception that Java is dead on
the desktop.” Complexity of building Swing GUIs, lack of native features, and slow running speed are
some of obstacles keeping Swing from succeeding on desktops. 

7

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 7



Is any other Java GUI toolkit available that can create full-featured user interface programs? The answer
is yes. Standard Widget Toolkit (SWT), along with JFace, provides a complete toolkit for developing
portable native user interfaces easily.

SWT and JFace
Eclipse is an open source universal tool platform dedicated to providing a robust, full-featured, industry
platform for the development of highly integrated tools. IBM, Object Technology International (OTI), and
several other companies launched the Eclipse project in 2001. Today, the Eclipse Board of Stewards
includes companies such as Borland, Fujitsu, HP, Hitachi, IBM, Oracle, Red Hat, SAP, and Sybase. With
more than 3 million downloads, Eclipse has attracted a huge number of developers in over 100 countries. 

The Eclipse platform defines a set of frameworks and common services that are required by most tool
builders as common facilities. One of the most important common facilities is the portable native widget
user interface. The Standard Widget Toolkit (SWT) provides portable native user interface support, as
well as a set of OS-independent APIs for widgets and graphics. 

Built on SWT, JFace is a pure Java UI framework handling many common UI programming tasks. The
following subsections introduce SWT and JFace in detail. 

Figure 1-7 shows the Eclipse platform’s native user interface — in this case, Windows. SWT is integrated
tightly with the underlying native window system. 

Figure 1-7

8

Chapter 1

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 8



Standard Widget Toolkit
SWT is analogous to AWT and Swing in Java except that SWT uses a rich set of native widgets. AWT 
widgets are implemented directly with native widgets, so to be portable it has to take the least common
denominator of all kinds of window systems. For example, while Windows supports a tree widget, Motif
does not. As a result, AWT cannot have the tree widget. Swing tackles this problem by emulating almost
all kinds of widgets. However, this emulation strategy has some serious drawbacks. First, the emulated
widgets lag behind the look and feel of the native widgets, and user interaction with the emulated wid-
gets is quite different. Second, although Swing has been improved, Swing user interfaces are still sluggish. 

SWT employs a slightly different strategy. It defines a set of common APIs available across supported
window systems. For each native window system, the SWT implementation utilizes native widgets
wherever possible. If no native widget is available, the SWT implementation emulates it. As mentioned
previously, Windows has a tree widget so SWT simply uses the native tree widget on Windows systems.
For Motif, because it does not have a tree widget, the SWT implementation provides a proper emulated
tree widget. In this way, SWT maintains a consistent programming model on all platforms and takes full
advantage of any underlying native window systems. 

The user interface of the photo uploader, rewritten using SWT, and the file selection dialog are shown in
Figures 1-8 and 1-9, respectively. 

Figure 1-8

Figure 1-9

9

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:35 PM  Page 9



SWT is tightly integrated with the underlying native window system. Chapter 2 discusses the imple-
mentation of SWT and its advantages. Although SWT does not support pluggable look-and-feel (who
needs Windows or Metal look-and-feels on a Mac, anyway?), it provides a number of other invaluable
features: native UI interactions (such as drag and drop) and access to OS-specific components (such as
Windows ActiveX controls like Microsoft Word, Acrobat Reader, and so on). 

SWT enables developers to create native user interfaces with Java. However, most programmers with
experience developing user interfaces on Windows, Linux, or any of the other platforms, know that
developing a GUI is a very complicated and time-consuming process. Creating a native user interface
with Java is no exception. Fortunately, Eclipse provides a UI toolkit named JFace to simplify the native
user interface programming process. 

JFace
JFace is a UI toolkit implemented using SWT to handle many common user interface programming tasks.
It is window system–independent in bots, its APIs, and implementation. JFace is designed to work with
SWT without hiding it (see Figure 1-10).

Figure 1-10

JFace offers the following components:

❑ Image and font registries: The image and font registries help the developer to manage OS
resources. 

❑ Dialogs and wizards

❑ Progress reporting for long-running operations

❑ Action mechanism: The action mechanism separates the user commands from their exact
whereabouts in the user interface. An action represents a user command that can be executed by
the user via buttons, menu items, or toolbar items. Each action defines its own essential UI
properties, such as label, icon, tooltip, and so on, which can be used to construct appropriate
widgets to present the action. 

❑ Viewers and editors: Viewers and editors are model-based adapters for some SWT widgets.
Common behaviors and high-level semantics are provided for those SWT widgets. 

Your Java UI programs

SWT

JFace

Win32
Native
window
systems

Solaris Linux Mac . . .

10

Chapter 1

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 10



SWT/JFace Advantages
Compared with AWT and Swing, SWT/JFace offers many advantages, as described in the subsections
that follow.

Full Support for Native Features
SWT/JFace is tightly integrated with the underlying native window system. For example, you can create
Windows user interface programs with SWT on Windows, and they look and behave the same as those
developed using Visual C++. Native features are available to SWT. This is a great advantage for the user. 

Let’s take the photo uploader as an example. When the user hits the Browse button, a file selection dia-
log pops up for the user to select the photo to be uploaded. In most of the cases, the user has quite a
number of pictures. File names may help the user to identify the proper photo. However, file names are
not intuitive enough to the user, especially if these photos are just exported from a digital camera. The
best way to assist the user in choosing the proper photo is to provide a thumbnail preview. 

The file chooser in Swing does not provide the picture preview function. Sun’s Swing tutorial offers a
way to do this: extending the file chooser with an accessory component to display a thumbnail of the
selected file. Figure 1-11 shows a custom file chooser implemented using Swing. 

Figure 1-11

The Windows file chooser (refer to Figure 1-9) invoked from SWT offers more features than the custom
Swing file chooser. In the custom Swing file chooser, the user has to click each file to view its corre-
sponding thumbnail. However, the Windows file chooser displays all the thumbnails to the user (even
photos in subfolders!) so he or she can easily find the proper file. Behind the scenes, Swing cannot dis-
play bitmap files (BMP) even though they’re so popular on Windows and OS/2. On the other hand,
SWT/JFace handles almost any kind of native image formats very well. 

While the custom Swing file chooser may ultimately look even better than the Windows file chooser, it
still looks strange to the user. The screen fonts in Figures 1-8 were smoothed with clear type method,
except those from Swing. This means that the user selected clear type method to smooth the screen fonts’
edges using the display panel of the native OS; however, Swing is unable to access this preference setting.

11

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 11



Such a small defect may not seem important to the developer, but to the user it is frustrating — especially
when these small defects start to add up. Naturally, this leads to the loss of valuable customers. You can
always hear such stories from the sales or marketing guys. This could be one of most important reasons
why “Java is dead on the desktop.”

Many components in Swing — including the file chooser — need improvement. You could fix them one
by one and create a complete toolkit, but it is not necessary. With SWT/JFace, you do not have to create
your own UI toolkit and you can still have total control of native features. If you are not satisfied with
any aspect of SWT/JFace, you can always modify the source code provided. 

Speed
Most UI programs using SWT are more responsive than those using Swing. The following table provides
an informal comparison of speeds of Swing and SWT. 

Swing SWT

Time used from the click of the a. 2.39s b. 2.53s c. 2.46s a. 0.63s b. 0.58s c. 0.68s
Browse button to the display Avg. 2.46s Avg. 0.63s
of a file selection dialog 

Time used from the display of a. 1.48s b. 1.40s c. 1.44s [Fully loaded immediately. 
the selection dialog to the Avg. 1.44s Approximate 0 sec.]
dialog fully loaded

Total time used 3.90s 0.63s

Setup of the experiment: The photo uploader implemented with Swing was executed three times (a, b, c). For
each run, the time was documented using a stopwatch from the click of the Browse button to the display of a file
selection dialog and from the display of the selection dialog to the dialog fully loading. The average total time
taken is computed. This process is repeated for photo uploader implemented with SWT. 

Testing environment: Windows XP Professional; Sun Java 1.4.1 JRE; Mobile Intel Pentium 1.7 GHz CPU, 512MB
memory. 

The results from the experiment may not be entirely accurate, but we can make some generalizations.
SWT runs significantly faster than Swing. It takes Swing up to six times as long to fully load the file
selection dialog. 

GUI design is an art as well as a science, so this comparison tells only part of the story. Trying out SWT
and Swing applications reveals another part of the story: SWT is clearly superior to Swing in terms of
visual perception. 

SWT is designed to be very efficient. Unlike AWT (which uses a separate peer layer), SWT is a thin layer
on top of the native window systems. To further reduce the overhead and potential incompatibilities,
SWT attempts to avoid sugar-coating the limitations of the underlying window system. For example,
SWT does not attempt to hide the existence of limitations on cross-threaded access to widgets. 

12

Chapter 1

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 12



A sluggish user interface has always been one of the top complaints about Swing. One of the primary
problems was that Swing did not leverage much hardware acceleration. Over the past few years, this has
improved, and a certain level of graphics acceleration was added with JDK 1.4. While it may be techni-
cally faster with this release, the perceived speed is still disappointing (especially to anyone not using
high-end workstations).

Our experiment also shows that Swing is still slow compared with SWT. If a product has to satisfy the
diverse execution environments (machines with different CUP power capabilities), SWT is the most suit-
able toolkit candidate. 

Portability
SWT provides a set of common programming APIs that developers can use to create portable applica-
tions on all of the SWT-supported operating systems. Following is a list of SWT (v2.1)–supported OSs: 

❑ Windows 98/ME/2000/XP/CE

❑ Linux (x86/Motif; x86/GTK2)

❑ Solaris 8 (SPARC/Motif)

❑ QNX (x86/Photon)

❑ AIX (PPC/Motif)

❑ HP-UX (HP9000/Motif)

❑ Mac OS X (Mac/Carbon)

Easy Programming
Some people bad-mouth SWT because the developer needs to take care of garbage collection on operat-
ing system resources, rather than the UI toolkit itself. It is true that SWT requires developers to track and
dispose of these resources, but programming these kinds of tasks — and programming in SWT/JFace in
general — is very straightforward. You could get started with SWT/JFace very quickly, although pro-
gramming experience on a native user interface is an advantage. 

The two simple rules developers should follow to develop UI programs with SWT are as follows:

❑ If you created it, you must dispose of it.

❑ Disposing of the parent disposes of the children (labels, text fields, and buttons). 

Chapter 2 covers the resource management topic in detail. Here, I use code snippets to show you how to
apply the preceding rules. These rules are very easy to adhere to, using the following steps:

1. In the photo uploader program, create a shell (window) first:

Display display = new Display();
Shell shell = new Shell(display);

13

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 13



2. Next, create labels, text fields, and buttons with the shell as their parent:

Label labelUser = new Label(shell, SWT.NULL);
Label labelPhoto = new Label(shell, SWT.NULL);
Text textUser = new Text(shell, SWT.SINGLE | SWT.BORDER);
Text textPhoto = new Text(shell, SWT.SINGLE | SWT.BORDER);
Button buttonBrowsePhoto = new Button(shell, SWT.PUSH);
Button buttonUpload = new Button(shell, SWT.PUSH);

3. Click the Upload button and execute the following code:

uploadPhoto(textUser.getText(), textPhoto.getText());
shell.dispose();

This disposes of the shell. As I said in the preceding text (the first rule), the shell is created and it must be
disposed of. This rule does not apply to labels, text fields, and buttons; they are created, but they are
never disposed of explicitly. However, when the shell is disposed of (the second rule in the preceding
text) all of its children are disposed of, too. 

Some may complain that the shell still has to be disposed of explicitly, but this process is necessary with
almost all UI toolkits — including Swing. Chapter 2 covers programming in greater detail. 

Flexibility
SWT/JFace is designed to be very flexible. With SWT/JFace, you can use either of the following methods
for programming:

❑ The traditional approach: The application model data must be transformed and copied from
corresponding data structures to native UI components. 

❑ The model-view-controller (MVC) approach: The MVC pattern is a classic design pattern. It
separates the application object (model) from the way it is represented to the user (view) and
from the way in which the user controls it (controller). Most MVC classes can be found in JFace.

Both approaches have advantages and disadvantages. The traditional approach is simple and easy to
learn. The MVC approach requires much more time for developers to master, but it is more maintainable
and extensible. In Swing, only the MVC approach is allowed. 

Having both approaches available in SWT/JFace shortens the learning curve. Programming in the tradi-
tional approach is easy to learn, and the basic knowledge acquired from the traditional approach helps
the developer understand the mechanisms behind the MVC approach.

Figure 1-12 shows a sample application displaying nesting of categories. 

14

Chapter 1

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 14



Figure 1-12

Creating the Application Model Data
The application data can be modeled as following:

/**
* Represents a category of items. 
*
*/
class Category {

private String name;
private Vector subCategories;
private Category parent;

public Category(String name, Category parent) {
this.name = name;
this.parent = parent;
if(parent != null)

parent.addSubCategory(this);
}

public Vector getSubCategories() {
return subCategories;

}

private void addSubCategory(Category subcategory) {
if(subCategories == null)

subCategories = new Vector();
if(! subCategories.contains(subcategory))

subCategories.add(subcategory);
}

public String getName() {
return name;

}

public Category getParent() {
return parent;

}
}

15

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 15



The category represents a category of items. It may have subcategories. Category data can then be con-
structed as follows:

Vector categories = new Vector();

Category category = new Category(“Java libraries”, null);
categories.add(category);

category = new Category(“UI Toolkits”, category);
new Category(“AWT”, category);
new Category(“Swing”, category);
new Category(“SWT/JFace”, category);

category = new Category(“Java IDEs”, null);
categories.add(category);

new Category(“Eclipse”, category);
new Category(“JBuilder”, category);

A vector named “categories” contains a list of top-level categories (categories that have no parent category). 

The application model data is ready. The category display function, using both the traditional and MVC
approaches, is presented in the subsection that follows.

Building the Tree Up with the Traditional Approach
The following code uses the traditional method:

final Tree tree = new Tree(shell, SWT.BORDER);

/**
* Builds up the tree with traditional approach. 
*
*/

public void traditional() {
for(int i=0; categories != null && i < categories.size(); i++) {

Category category = (Category)categories.elementAt(i);
addCategory(null, category);

}
}

/**
* Adds a category to the tree (recursively).
* @param parentItem
* @param category
*/

private void addCategory(TreeItem parentItem, Category category) {
TreeItem item = null;
if(parentItem == null) 

item = new TreeItem(tree, SWT.NONE);
else

item = new TreeItem(parentItem, SWT.NONE);

16

Chapter 1

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 16



item.setText(category.getName());

Vector subs = category.getSubCategories();
for(int i=0; subs != null && i < subs.size(); i++)

addCategory(item, (Category)subs.elementAt(i));
}

The implementation of the traditional method is straightforward. For each of the top-level categories, a
tree item is created directly under the root of the tree. For other categories, tree items are created under
tree items representing their parent categories. 

Building the Tree Up with the MVC Approach
Following is the code for building the tree up using the MVC approach:

final Tree tree = new Tree(shell, SWT.BORDER);

/**
* Builds up the tree with the MVC approach. 
*
*/

public void MVC() {

TreeViewer treeViewer = new TreeViewer(tree);

treeViewer.setContentProvider(new ITreeContentProvider() {
public Object[] getChildren(Object parentElement) {

Vector subcats = ((Category)parentElement).getSubCategories();
return subcats == null ? new Object[0] : subcats.toArray();

}

public Object getParent(Object element) {
return ((Category)element).getParent();

}

public boolean hasChildren(Object element) {
return ((Category)element).getSubCategories() != null;

}

public Object[] getElements(Object inputElement) {
if(inputElement != null && inputElement instanceof Vector) {

return ((Vector)inputElement).toArray();
}
return new Object[0];

}

public void dispose() {
// 

}

public void inputChanged(Viewer viewer, Object oldInput,
Object newInput) {

// 

17

Overview of Java UI Toolkits and SWT/JFace

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 17



}
});

treeViewer.setLabelProvider(new LabelProvider() {
public String getText(Object element) {

return ((Category)element).getName();
}

});

treeViewer.setInput(categories);

}

The MVC code is a little tedious, especially those two inner classes. Basically, the registered content
provider ITreeContentProvider starts to provide content to the tree when the setInput method is
called. Because the content provided comprises raw objects, the tree needs to consult the label provider
LabelProvider about the text and image representation of those objects. 

In this simple application, the traditional approach seems to be the preferred way. It is very straight-
forward. However, the MVC approach will shine if the application needs to be extended to support
more features, such as category sorting. 

If the requirement is not particularly complex and future changes are not likely to be big, then the tradi-
tional approach provides a fast path to your mission. On the other hand, if you are developing a large,
complex system, the MVC approach could help you to create more scalable and maintainable software. 

More on MVC is presented in Chapter 2. 

Maturity
Ever since the first version of SWT was released as part of the Eclipse platform in 2001, companies have
built their commercial software with SWT/JFace as the UI toolkit. These companies include:

❑ C++/Fortran compilers, Intel

❑ WebSphere Application Studio, IBM

❑ XDE Professional, Rational Software (now under IBM)

❑ ColdFusion MX, Macromedia

❑ UML modeling tool, Embarcadero

Summary
This chapter surveyed several major Java UI toolkits. Built on the Abstract Window Toolkit (AWT),
Swing is a powerful UI toolkit with peerless components. Standard Widget Toolkit is a portable native
UI toolkit, and the JFace framework simplifies programming with SWT by handling many common UI
programming tasks. Compared to AWT and Swing, SWT/JFace offers many advantages such as full 
support of native features, fast execution speed, and flexibility of programming styles.

18

Chapter 1

05_094591 ch01.qxd  10/21/04  2:36 PM  Page 18


