
Rapid Mobile
Enterprise
Development
for Symbian OS
An Introduction to OPL Application Design and
Programming

Ewan Spence

With
Phil Spencer and Rick Andrews

Reviewed by

Phil Spencer

Managing editor

Phil Northam

Assistant editor
William Carnegie

Innodata
0470015039.jpg

Rapid Mobile
Enterprise
Development
for Symbian OS

TITLES PUBLISHED BY SYMBIAN PRESS

• Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

• Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

• Programming for the Series 60 Platform and Symbian OS
Digia
0470 849487 550pp 2002 Paperback

• Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

• Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

• Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

• PC Connectivity Applications for Symbian OS
Ian McDowall
0470 090537 480pp 2004 Paperback

Rapid Mobile
Enterprise
Development
for Symbian OS
An Introduction to OPL Application Design and
Programming

Ewan Spence

With
Phil Spencer and Rick Andrews

Reviewed by

Phil Spencer

Managing editor

Phil Northam

Assistant editor
William Carnegie

Copyright  2005 by John Wiley & Sons, Ltd
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Spence, Ewan.
Rapid mobile enterprise development for Symbian OS : an introduction to OPL

application design and programming / Ewan Spence, with Phil Spencer and Rick
Andrews.

p. cm.
Includes bibliographical references.
ISBN-13 978-0-470-01485-1 (alk. paper)
ISBN-10 0-470-01485-7 (alk. paper)

1. Cellular telephone systems–Computer programs. 2. Operating systems (Computers)
3. OPL (Computer program language) I. Spencer, Phil. II. Andrews, Rick. III.
Title.

TK6570.M6S66 2005
005.26′8 – dc22

2004027113

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01485-1
ISBN-10 0-470-01485-7

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

http://www.wiley.com

Contents

Foreword ix

About This Book xi

Author Biography xvii

Author Acknowledgments xix

Symbian Press Acknowledgments xxi

PART 1 1

1 Programming Principles 3
1.1 The Language of Computers 3
1.2 Speaking the Language 5
1.3 Learning the Vocabulary 9
1.4 Summary 17

2 Introducing the Tools of OPL 19
2.1 Parts of OPL 19
2.2 Organizing your Projects 21
2.3 Gathering Tools 22
2.4 How we Program 26
2.5 Summary 30

3 Event Core 33
3.1 Event Core? What is it Good for? 33

vi CONTENTS

3.2 Planning the Event Core, Init: 36
3.3 Other Procedures 49
3.4 Summary 59

4 A Conversion Program: Event Core
in Practice 61
4.1 First Steps with Event Core 61
4.2 Summary 77

5 Using Graphics in an Othello Game 79
5.1 Using Graphics in OPL 79
5.2 Designing Othello 84
5.3 Representing the Board 85
5.4 Reading the Player’s Move 87
5.5 The Computer’s Move – Doing A.I. 94
5.6 Putting it Together – the Main Game Loop 97
5.7 Summary 99

6 Databases and a Notepad Program 101
6.1 What is a Database? 101
6.2 Our First OPL Database 102
6.3 Summary 112

7 Publishing your OPL Application 113
7.1 Types of Application 113
7.2 How Distribution Affects your Application Design 114
7.3 How to Make your Application Available 116
7.4 Promotion – Tell Everyone it’s Available 119
7.5 Summary 120

8 Creating Applications and Installers 121
8.1 Creating an OPL Application 121
8.2 Symbian Installation System – SIS Files 123
8.3 Summary 128

9 Where Now With OPL? 129
9.1 RMRBank, by Al Richey (RMR Software) 129
9.2 Fairway, by Steve Litchfield 130
9.3 EpocSync, by Malcolm Bryant 130
9.4 Final Summary. . . Moving Forwards Yourself 131

CONTENTS vii

Part 2 Introduction to Part 2: Command
Listing 133

Appendix 1 OPL Command List 135

Appendix 2 Const.oph Listing 263

Appendix 3 Symbian Developer Network 279

Appendix 4 Specifications of Symbian OS Phones 287

Index 313

Foreword

Howard Price, Senior System Architect, System Management
Group, Symbian

I have had the pleasure of being involved in the development of the
OPL language since its earliest days, when Psion first provided OPL
for the Organizer II, a device that had two lines of LCD text available.
OPL programs were then mainly used to query and write to the built-in
database system, with some mathematical, date, and string manipulation
functions. Even then OPL was very popular with third-party developers,
such as Marks & Spencer, which used OPL Organizer II programs at its
checkout counters. In my opinion OPL was a key factor in Psion’s success
in the PDA market.

I wrote the Series 3/Series 3a OPL, adding support for modules,
powerful graphics capability, GUI menus and dialogs, and direct access to
the EPOC OS functions. By then over 90% of third-party applications were
written in OPL, despite strong efforts by Psion to encourage developers
to use their object-oriented C. OPL was the language of choice both
for commercial applications and for shareware, including a lot of games
software. A large and very active OPL developer community grew,
with authors working from home or on the train to develop many
shareware programs.

For the Series 5, I led the five-person OPL development team where
we also added, among other things, the OPX framework. An OPX is a
C++ DLL containing OPL extension functions that an OPL application
can call as easily as calling OPL procedures. OPXs can also call-back to
the OPL application. With OPXs, an OPL application can be as powerful
and perform as well as a C++ application.

In 2002 Symbian decided to release OPL to the Open Source commu-
nity, where the opl-dev project on sourceforge started in April 2003.

x FOREWORD

Why is OPL so popular? Well, here are a few reasons.

• From the beginning OPL, in all its device-specific incarnations, has
been carefully designed to enable an OPL application to be fully
integrated into the application architecture, to the extent that a user
would be very hard-pressed to tell whether an application has been
written in OPL or C/C++.

• OPL is a simple, intuitive but powerful language and can be learnt
very quickly.

• Over the years the OPL development community has developed a
large set of incredible OPL applications, showing just what can be
done and encouraging others to try.

• The OPL development community provides OPX libraries for use by
other developers.

• The OPL SDK and many other useful resources are freely available
from the opl-dev project on sourceforge.

• Applications written in OPL are multi-platform – they will run as
expected with very little change on any Symbian OS device. Device-
specific features are generally provided in OPXs.

• Applications can be developed on the PC, or on a communicator/PDA
that has a keyboard.

With the increasing efforts of the Open Source OPL community, and
Ewan in particular, OPL is getting more attention than ever and I am sure
OPL has a bright future, and with it I would predict that OPL will once
again account for a majority of Symbian OS applications.

About This Book

In this introduction, you will learn:

• what OPL is

• the history of OPL

• what you can do with OPL

• how the rest of the book is structured.

What is OPL?

The shortest answer is that OPL stands for ‘Open Programming Language’
and it is a way of programming your Symbian OS Smartphone to make it
do what you want!

If you’ve downloaded an application into your phone (for example,
from the Internet) then you’ve already started to realize that your phone
can do more than what it did, out of the box. There are thousands of
applications out there that you can put on your phone. OPL will help
you program your own applications that do exactly what you want them
to. These applications could be for yourself and your own enjoyment
or needs; they could be to help you and your colleagues at work solve
a specific business problem; or you could look to putting them on the
Internet and selling your software to other users.

Any programming language supported by Symbian OS can offer this to
you, so why choose OPL? The first thing is that OPL itself is free. It doesn’t
cost you to download and use the tools needed. It is also Open Source.
This means that a competent Symbian OS C++ programmer can look at
the code that makes OPL work and see if they can improve it, add to it,
and help maintain it. . . all to the benefit of OPL and the programmers
who use it.

xii ABOUT THIS BOOK

But the main thing about OPL is that it is very easy to learn, and it
takes very little time to program a new application.

The History of OPL
OPL first made its appearance on the Psion Organizer II in 1984. Before
OPL, all programs for Psion’s machines had to be written in a very
tricky, complex form of code called ‘Assembler’ using a PC development
kit, requiring the developer to have a good, in-depth knowledge of
programming.

By this time, the BASIC programming language was available for most
home computers, making computer programming accessible to anyone
who owned a computer. OPL was based on BASIC, but tailored for
the Psion Organizer II. Users were able to write simple programs even
if they didn’t have the in-depth knowledge that Assembler program-
ming required.

OPL was originally designed as a database language to access or create
databases shared with the Psion Organizer II’s built-in Data application,
but it has evolved with each new hardware device, always aiming
to maintain good backward compatibility with previous versions. This
helped developers to port existing OPL applications to a new device with
the minimum of effort, while at the same time giving OPL applications
the ability to have the same look and feel as the built-in applications. A
key requirement for OPL was to make it possible to develop applications
fully on the device itself.

The power of OPL has arisen from its extensibility. OPL has supported
language extensions from the beginning, via 6301 Assembler procedures
on the Psion Organizer II, and now via C++ OPX procedures on phones
running Symbian OS.

On the Psion Organizer II, the OPL Runtime was written in 6301
Assembler. The main functionality included loops, conditionals, one-
dimensional menus, database keywords, error handling, arithmetic oper-
ators, mathematical functions, language extensions written in Assembler,
and procedure files in a flat filing system. At this time, most of the
applications were written for the corporate environment.

In the late 1980s, Psion launched the MC series of (laptop sized)
devices. OPL was ported over to the 8086 CPU and had broadly the
same functionality as the Organizer – without menus, but with dynami-
cally loadable modules, keywords to call OS services, and input/output
keywords (both synchronous and asynchronous forms).

The Psion HC was again built around the 8086 chip, but made greater
use of graphical elements. In addition to the keywords added for the
MC series, there were graphics keywords, the ability to call procedures
by indirection, the concept of OPL applications that looked like built-in
applications, event handling (for handling messages from the operating
system such as switch files, close, etc.), and command line support.

ABOUT THIS BOOK xiii

The Psion Series 3 (with the advent of the ‘SIBO’ operating system)
was released in 1991, and along with it came the first OPL Software
Development Kit (SDK), giving many utilities and macros for nearly
full access to the SIBO operating system services. Series 3 OPL added
menus, dialogs, and the expression evaluator (used by the Calculator
application).

When the Psion Series 3a came out a few years later, OPL was again
upgraded and remained almost unchanged for the rest of the SIBO range
(Psion Series 3a, 3c, 3mx, Siena, and the Workabout range). It added
allocator keywords, a cache with least recently used procedures flushed
when necessary (for up to seven times speed improvement), and digital
sound support.

In 1997, OPL was ported to C++ for Symbian OS, adding pen event
handling, cascaded menus, popup menus, language extensions (using
OPXs), constants, and header files. Other enhancements included toolbar
support and extremely powerful access to the new Symbian OS DBMS
database implementation. The first Symbian OS OPL SDK was released
shortly afterwards, allowing developers to develop OPL applications on
a PC with the addition of a number of tools.

Symbian OS v5 in 1999 added improved color support and file
recognition thanks to MIME support, amongst many other minor improve-
ments.

When Symbian OS v6 debuted, powering the Nokia 9210 Commu-
nicator, the OPL Runtime was no longer included in the ROM of the
machine, and it appeared that OPL would not be part of the Smart-
phone revolution. Luckily, OPL appeared as a downloadable component
on the Symbian website, so OPL authors could move onto the new
platforms.

OPL is now available over three major Symbian OS platforms, the
Communicator range (sometimes called Series 80), Series 60, and UIQ. It
has become an Open Source project, which means anyone can download
the code that is used to create the runtime, the tools, and the developer
environment. It is also free to use, there are no licensing costs involved
to use OPL – it is truly a totally free development option.

Who is This Book For?
If you’ve programmed, at any level and in any language, then you’ll find
this book is an excellent primer for the OPL language, and you should be
able to understand OPL in under a week. You should be able to start at
Chapter 3, which details the tools and utilities available for OPL.

This book is primarily aimed at non-professional programmers, the IT
Manager in a company that needs an application for their staff, the ‘power
user’ who wants to do more with his phone, and anyone interested in
starting programming Symbian OS phones, but wary of spending months
learning the ins and outs of Symbian OS C++.

xiv ABOUT THIS BOOK

How the Book is Structured

Part 1

• Chapter 1: Programming Principles
Here we look at how a computer is made up, the parts of a computer
and what they do, how programming languages work, and some of
the core structures of the OPL language.

• Chapter 2: Introducing the Tools of OPL
Here we install the relevant SDKs, and point out the tools that are
provided, and those you need to download to help you get started
in OPL.

• Chapter 3: Event Core
Event Core will be your first full program for OPL – in this chapter we
look at the design and coding process in great detail, explaining at
every step of the way what we are doing and why it is important. If
you’re new to programming, this will probably be the hardest chapter
to comprehend, as it steps through every stage of OPL development.
Once you understand this chapter, programming in OPL should be an
easy experience.

• Chapter 4: A Conversion Program: Event Core in Practice
Event Core is a building block for the rest of your OPL programs,
but how do you expand Event Core into a new program? Here we
take the core and build a real-life program; a conversion program for
measurements, weights, and lengths.

• Chapter 5: Using Graphics in an Othello Game
While it is possible to create a program using just menus and dialog
boxes, you will want to be able to display graphics for many appli-
cations, respond to pen taps on the screen, and present a ‘nice’ user
interface on screen. By writing an Othello program, we cover all these
areas, and take a brief look at how Computer Artificial Intelligence
(‘A.I.’) works, and how to apply this to your own games programming.

• Chapter 6: Database and a Notepad Program
The final example program in the book looks at using databases to
store information for your program, so it is available whenever you
run your program.

• Chapter 7: Publishing your OPL Application
In this chapter, we look at how to go about putting your programs on
the Internet, and offer some advice if you decide to try and sell your
programs online, including what you should do and where you can
go to achieve this.

ABOUT THIS BOOK xv

• Chapter 8: Creating Applications and Installers
While developing these first programs, the files have been moved by
hand onto the phone. This is not something you can ask an end-user
to do when releasing your programs. This chapter looks at making an
OPL program into a full Symbian OS application, and using Symbian
OS SIS files to allow for easy installation.

• Chapter 9: Where Now For OPL?
Finally we see what OPL can do in the real world, by looking at three
OPL authors and what they’ve achieved. Al Richey, Steve Litchfield,
and Malcolm Bryant all have well-respected OPL applications that
they have released on the Internet.

Part 2

Part 2 contains all the reference material for OPL that you will need as
you program in OPL.

• Command Listing
An alphabetical list of all the standard OPL commands, their syntax,
and how to use them. Includes code examples where appropriate.

• Const.oph Listing
The library of constants (names that replace long numbers or strings
to help make your code easier to read – these are explained in detail
later) is listed in its entirety.

Author Biography

Ewan Spence studied Computing and Artificial Intelligence at Edinburgh
University before discovering his first Psion PDA. Since then he has
actively followed the development of mobile computing technology,
and become one of the leading authorities on the OPL language of
Symbian OS.

He has produced software in OPL since 1994, including the ever-
popular and addictive ‘Vexed’ game for Symbian OS mobile phones.
Since providing support for and fostering a vibrant Open Source and
Freeware community for programmers through the FreEPOC Software
House, Ewan has continued to help the wider Symbian community
through the All About Symbian family of websites. He strongly believes
that programming computers should be something that is easy, accessible,
and simple to understand for every user. It shouldn’t require a university
degree and months of studying.

He currently lives in Edinburgh with his wife, Vikki, his two daughters,
Eilidh and Mairi, and Crow, the puppet.

Author Acknowledgments

A huge amount of thanks have to go to Rick Andrews and Phil Spencer for
keeping OPL alive. More thanks go to Ian Weston, Phil Northam, Edward
Kay, David Mery, Colin Turfus, Martin de Jode, Lars Persson, and Peter
Wikström for believing in OPL, and suggesting that an ‘Introduction’ book
would be ‘‘a rather good idea’’.

Thanks should also be directed to Rafe Blandford, Jim Hughes, Rus-
sell Beattie, Matt Croydon, Monty, Mobibot, Robin Talboom, Jordan
Holt, Andy Langdon, Hayden Smith, Craig Setera, Matthew Langham,
Frank Koehntopp, and everyone else involved in All About Symbian and
Mobitopia who’ve had to put up with my promotion of OPL (and my
spelling) for several years.

Steve Litchfield, Al Richey, Jon Read, Martin Harnevie, Andy Harsent,
Martin Dehler, Domi Hugo, as well as Malcolm Bryant, Adrian Pemsel,
Martin Guthrie, and all the other guys at FreEPOC must be mentioned
for not only being better programmers than me, but for letting me look at
their source code and learn from it.

And a series of special mentions go to. . . Rael Dornfest, for providing
a shot in the arm that showed me OPL was actually going somewhere.
Jerry Sadowitz, for being the second greatest card magician alive. Suw
Charman and Jeannie Cool, just for being around. Kenton Douglas,
for an inordinate amount of time off work. Danny O’Brien and Dave
Green, because they get thanked in everything and I don’t want to break
the chain. Janne Jalkanen, for the Go lesson and the subsequent alpha
application in OPL. Hector and Russell, the Kiltmakers. And finally Ed,
Frankie, and the Hawkins brothers, for the music that this book was
(mostly) written to.

I know I’ve probably missed a bundle of people involved in OPL, but
thanks go to them as well. Get in touch with me and if there’s a second
edition, I’ll add you in!

xx AUTHOR ACKNOWLEDGMENTS

But the biggest thanks of all go to Vikki, Eilidh, and Mairi. For being
with me in my life, spending time with me, and putting up with everything
I had to do to write this book – and everything else. . . I can never thank
them enough.

Symbian Press Acknowledgments

Symbian Press would like to thank Ewan for his steadfast dedication
to the cause of OPL. Thanks too must go to young Phil Spencer for
being a veritable cornucopia of information in times of need. Eternal
gratitude to Phil n’ Freddie for their master class in publishing, no one
can underestimate the value of a few choice words, even when spoken
through the froth of a pint.

Cover concept by Jonathan Tastard.

About the Cover

The mobile phone has traditionally connected the mouth to the ear – at
Symbian’s Exposium 2003, Symbian introduced the concept of Symbian
OS, enabling a new generation of connected communications devices
by connecting the mouth to the ear to the eye. To realize this vision, the
mobile phone industry is working together through Symbian to develop
the latest technologies, support open industry standards, and ensure
interoperability between advanced mobile phones as networks evolve
from 2.5G to 3G and beyond. . .

Symbian licenses, develops, and supports Symbian OS, the platform for
next-generation data-enabled mobile phones. Symbian is headquartered
in London, with offices worldwide. For more information see the Symbian
website, http://www.symbian.com/. ‘Symbian’, ‘Symbian OS’, and other
associated Symbian marks are all trademarks of Symbian Software Ltd.
Symbian acknowledges the trademark rights of all third parties referred to
in this material.

 Copyright Symbian Software Ltd 2004. All rights reserved. No part of
this material may be reproduced without the express written permission
of Symbian Software Ltd.

Part 1

1
Programming Principles

In this chapter you will learn:

• the essential parts of a mobile computer and how they relate to
each other

• why there are many languages to program a computer with, and why
they are all different

• the main elements of computer coding; so-called ‘variables’, the
DO...UNTIL loop, the WHILE...ENDWH loop, and the IF...ENDIF
structure.

1.1 The Language of Computers

To program your Symbian OS Smartphone the first thing to remember is
that it is a computer. Sure, it may be a lot smaller than the one on your
desk, and it has a phone built in to it – and it may or may not have a full
QWERTY keyboard – but nonetheless it is a computer. And to program a
computer, you need to speak its language.

1.1.1 Storing Information

A computer is a digital machine, which has a language that consists of
two characters, 1 and 0. That’s it. These represent the two electrical states
that each tiny portion of the computer can have (on or off). This is called
a bit, and it is the smallest structure in the language of a computer. A
memory chip can hold millions and millions of these states, and like any
language, collections of these pieces (individual ‘letters’ if you will) can
be grouped together to make more complex ‘words’.

If you have a collection of 8 bits (eight 1s, eight 0s or a mix of them)
then this is called a byte. A byte can represent any number from zero
(00000000) to 255 (11111111). Why does this equal 255 and not eleven
million, one hundred and eleven thousand, one hundred and eleven!?

4 PROGRAMMING PRINCIPLES

Well, that is a subtle complexity of the way this special ‘binary’ language
is interpreted by computers. If you don’t want to know, please feel free
to skip this bit – it’s in no way essential to your understanding of OPL. If
you’re just a little curious then there are various excellent sources on the
Internet which explain the binary system in detail – for example, search
for ‘binary numeral system’ on www.wikipedia.org/ to learn more.

When counting bytes, it starts to get unwieldy when you get to around
a thousand bytes; which is where the kilobyte comes in. A kilobyte
is 1024 bytes, and is commonly written as 1 K (or 1 Kb). And when
we get to a thousand kilobytes, we have another term: 1024 kilobytes
equals one megabyte, written as 1 Mb. You’ll probably be aware that
your Smartphone has a certain number of megabytes of memory. This is
where that number comes from. So if you have 4 Mb of memory, you
can store thirty three and a half million ones and zeros. These bits, bytes
and kilobytes represent information – not readable to you as a user, but
basically all the phone itself understands.

1.1.2 Processing Information
What can we do with this information? Well, we can’t do much with it.
But the phone can – it can take this information from its memory and
then process it somehow. This happens in the Central Processing Unit
(CPU), more commonly just called the ‘processor’.

The CPU reads information from the memory and follows the instruc-
tions that it finds there. We said above that a group of bits makes up
a ‘word’. The length of this word (8 bits, 16 bits, 32 bits or more) is an
indicator of how complex a CPU is. Home computers of the 1980s were
based around CPUs that could read 8-bit words. Nowadays, desktop
computers are generally 32-bit or 64-bit. Your Symbian OS Smartphone
is 32-bit, so each word is made up of 32 bits.

Inside the CPU there is a ‘dictionary’ of all the unique words that the
CPU understands, and what it should do when it reads in one of these
words from memory. This is the essence of a computer program; a list of
things to do.

1.1.3 Talking to the Users
It’s all well and good having the processor reading information from
memory, but how do we know what’s happening? Or tell it what infor-
mation to read? This is where inputs and outputs (I/O) come into play.
I/Os are how computers are told what to do (input) and how they report
back on what they have done (output).

The most common form of input is a keyboard; but inputs can also
include things like touchscreen display, a microphone, a light sensor, in
fact anything that passes information into the computer. Information from
the Internet is regarded as an input as it is passed into the computer.

SPEAKING THE LANGUAGE 5

Talking to the Internet is also an output, as your computer needs to
give information to the Internet (e.g., downloading a web page). What is
displayed on the screen is an output, as is a speaker, a buzzer, a flash on
a digital camera. . .anything that comes out of the computer.

Memory can be regarded as something that does I/O operations
to the processor: it passes stored information to the processor (input)
and takes the responses or results from the processor and stores that
information (output).

1.1.4 Keeping a Note of Things

Memory on a computer is not like the memory you and I have. Just
because something is put in memory does not mean it stays there for ever.
A computer’s memory is like a temporary workspace. The processor will
copy a program into memory from a storage device. Some commands
may ask the processor to read information from storage for the program
to use (for example, a list of phone numbers). Any changes to information
will need to be made to the equivalent information in storage if it is to be
kept permanently.

And yes, a storage device is an I/O device, but it’s an important one,
so gets recognized in its own right.

1.1.5 Putting it All Together
In abstract form, your computer looks like the model in Figure 1.1.

The Life of a Program

When a user runs a program, they start it off with an input (maybe typing a
command or selecting an icon). The Central Processing Unit, (commonly
known as the processor or CPU) recognizes this command from its
dictionary and reads the program itself in from the storage device, copying
it into memory where it can be accessed directly by the processor. The
processor can only read from memory directly, hence this intermediate
step is almost always required. The processor reads these commands from
the memory one at a time, looking each one up in its dictionary. Some
of these commands may be to output information (such as the result of a
calculation). When there are no more words to read in from the memory,
the program is finished and the processor waits for more input.

1.2 Speaking the Language

Now we know how a program works, how do we write our first program?
Well, when computers first came about, everybody programmed directly
in binary. That is, they actually wrote down and manually inputted all the

6 PROGRAMMING PRINCIPLES

Memory

Central
Processing Unit

OutputsInputs

Storage

Figure 1.1 Abstract computer model

ones and zeros themselves, by looking up what they wanted to do in a
human dictionary of commands (similar to the one inside the processor).
This is called, naturally, machine code, because it is the code of the
machine itself. If you work at this level, then you are said to be working
at a low level – the lowest of all, in fact – hence the term Very Low Level
Programming.

1.2.1 Assembly Language

After a short period of time, one programmer came up with a smart idea.
Instead of writing down each word of 1s and 0s, he wrote down the
list of commands so that one command matched one computer word.
So 10101010 could also be written as load hl. These were called
mnemonics, and while still arcane and hard to understand, they did
mean that it was much easier to read and write computer code.

But the processor could still only recognize 1s and 0s. So a program
was written that read in this list of mnemonics, looked up the database,
and outputted 1s and 0s that could be read by the processor. This
program could take something that was easy for users to read, and
assemble something that was easy for computers to read. Hence, these
mnemonic words became known as Assembly Language. No longer did

SPEAKING THE LANGUAGE 7

everyone have to work at a very low level; they could now work at ‘just’
a low level.

This is the principle of writing source code, and then translating it into
something that is readable by the computer (called object code) before
storing or running it. It still required a lot of knowledge about how the
processor worked, and while still very hard to program in, it made life a
lot easier.

1.2.2 Climbing up to Higher Languages
Nowadays, there are a lot of languages out there, some of them work at
a low level, like Assembly, but most people prefer to work in languages
that are easier to read and offer other advantages.

Symbian OS offers developers many choices of development language
including native C++, Java, Mobile Visual Basic (‘Crossfire’ from Symbian
Partner AppForge) and, of course, OPL. The two most widely used
languages are currently C++ and Java (specifically the Personal Java or
MIDP implementation).

A simple diagram (Figure 1.2) illustrates the move from lower-level
languages to higher-level ones.

Low Level High Level

Machine
Code

Assembler
C++ Apple

Script
OPLJava

English

Figure 1.2 Transition from lower-level to higher-level languages

C++ – The Halfway House

You hear that C++ is a very powerful language. This means that it can
do a lot of I/O operations, and as a programmer you have to be able to
specify exactly what has to happen. This means you have a large amount
of control over what you can make the processor do, but you also have
to understand the effects of everything.

A good C++ programmer needs to know almost everything about
every subject that we might encounter – controlling the screen, commu-
nications devices, memory access, etc. C++ itself also offers advantages
to programmers in terms of ‘code re-use’ to save them re-implementing
lots of code in multiple programs. This is a classic trade-off in program-
ming – very often, the more power a language offers you, the steeper the
learning curve.

Java J2ME (MIDP)

One of Java’s strengths is that once you have written one program, it
should be able to run on any computer that contains Java. Why is this a

8 PROGRAMMING PRINCIPLES

strength? Because most different types of computer have a different list of
instructions in the processor. This is why programs written in C++ and
other low-level languages that run on one computer (e.g. an Apple Mac)
will not run on another computer (e.g. Windows-based PC). The ‘price’
you pay for this is more limited access to some system functionality
compared to C++.

BASIC

One of the earliest ‘high-level’ languages was BASIC. Commands in
BASIC were very close to readable English, and meant that the learning
curve associated with the low-level languages was not present. Many of
the personal computers available at the start of the home computer boom
in the early 1980s shipped with BASIC installed on them, and this led
to a huge cottage industry of curious programmers programming their
machines to do whatever they needed them to do.

1.2.3 Compiled Languages

We’ve already seen that the principle of source code being compiled to
machine code is present in Assembly Language and C++, but higher-level
languages (such as Java) work slightly differently. The source code for
these languages is compiled into an intermediate form, and this code is
the object code.

The object c is read in by another program. This program can take
the instructions in the object code, and interpret these into the correct
commands that need to be sent into the processor. This program can be
called an interpreter, or a runtime.

Runtimes are usually device-specific, but are written in such a way that
the object code can be read by any runtime, no matter what computer the
runtime is running on. This is the principle of write once, run anywhere.
Many high-level languages have this capability to some extent.

1.2.4 The Trade-Off

So why doesn’t everyone just use the highest-level language possible?
Two considerations: speed and access to functionality.

Compiled high-level languages are much slower than lower-level
languages such as C++. Each command in the object code has to be
looked up and translated into an instruction by the runtime as you go
through your program. In lower-level languages, the code is already in the
form the processor can understand, so there is no overhead to ‘translate’
or ‘interpret’ it.

In order to ensure the object code is universal, it must conform to
some kind of standard – thus you might not have access to all of the

LEARNING THE VOCABULARY 9

functionality that is available to lower-level programming (for example,
the Bluetooth I/O device) if the current standard does not specify this. If
your runtime does allow you to access these features, it may be much
slower than accessing it from a low-level language.

1.2.5 Where does OPL Fit in?
OPL, in a similar way to Java, is an interpreted language that needs a
special ‘OPL Runtime’. This runtime can be packaged with every OPL
application or downloaded separately from the Internet (we’ll show you
where when we gather all our tools in the next chapter). If the runtime
is included in the actual package, the file size will be much larger, so it
is common to provide a download reference in your documentation on
where to download the runtime.

The OPL Runtime is written in C++, to make sure the speed penalty of
using a high-level language is minimized. OPL can be extended to access
the device functionality through a feature called OPXs. An OPX is an
‘OPL eXtension’, and is a small piece of C++ code that can be loaded into
your phone. OPL can then call this extension with a simple line of code.

1.3 Learning the Vocabulary

Now we’ve had a look deep inside your phone, at how it works and
the basics of what a program is, we can start looking at OPL and how
it works.

Like any language, OPL has a grammar that you need to follow to be
understood. You have words (commands) that have to be followed by
certain things to make them work. These make up lines of code (sentences)
and these lines of code can be grouped to make procedures (paragraphs).

From now on, we’re only going to concern ourselves with how the
computer reacts to the OPL code you write. Remember that once it
is compiled, the runtime will do the work required to allow it to talk
correctly to the processor, and OPL developers never need to concern
themselves with this.

1.3.1 Procedures
When an OPL program is run, the first procedure (here called PROC
Main:, though commonly the first procedure is named after the program)
is opened. The lines are then read and processed in the order they are
listed, until the ENDP (end of procedure) command is reached, at which
point the program stops itself.

Within a procedure, you can call another procedure. Do this simply
by typing the name of the procedure you want to run next. All procedure
names must have a colon after them (:) in both the PROC command and
when calling that PROC from inside the code.

10 PROGRAMMING PRINCIPLES

PROC Main:
SetupApp:
DoSomethingNice:
SaveStatus:

ENDP
PROC SetupApp:

rem Do something interesting here
ENDP
etc...

In this example, PROC Main: is opened, it calls three other procedures
in order, then reaches ENDP and the program closes. Note that each
procedure must start with PROC <a name>: and end with ENDP on
separate lines. When the end of the first procedure is reached, your OPL
program stops. The only way to run other procedures is to call them in
this way.

Procedure names cannot have spaces in them, so you’ll see that each
new word is signified by a capital letter. While OPL is not case-sensitive,
this is the recommended style for writing code. If you follow this style, it
makes it easier for you (and other programmers) to read your code.

1.3.2 The Remark Statement
Speaking of making code easier, you’ll see in the example above that we
have a line with a new command.

rem Do something interesting here

rem stands for remark, and it’s a powerful statement for anyone reading
the code. You see, the rem statement does absolutely nothing. The
interpreter ignores anything after the rem statement on the same line, so
you can use it to add notes, thoughts, and descriptions throughout your
code. For example, a procedure may have something like this at the start:

PROC WhereIsTheCursor:
rem This routine calculates the cursor position
rem FooX%% represents the temporary x co-ordinate
rem FooY%% represents the temporary y co-ordinate

etc...

Not only are these rem statements useful when you come back to the
code in six months’ time and can’t remember what something is for, they
are also useful if other people are going to read your code.

1.3.3 Variables
A variable is something you want your program to remember for a
certain amount of time – either throughout the entire time the program

