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Preface 

Coding theory is a fascinating field combining elegant mathematical theo-
ries with constructions of a major practical impact. 

This book is devoted to constructions of 

(1) error-correcting codes, 

(2) secrecy codes, and 

(3) codes used in data compression. 

The stress is on the first direction: we introduce a number of important 
classes of error-detecting and error-correcting codes, and we present their 
decoding methods. Some of these constructions require a deep background 
in modern algebra, and we carefully provide such background. Secret codes 
are treated only briefly; we mainly explain the role of error-correcting codes 
in modern cryptography. Data compression and other topics related to 
information theory are briefly discussed in the first part of the book. 

The material is presented in a way making it possible to appreciate both 
the beauty of the theory and the scope of practical applications. We use 
the definition-theorem-proof style usual in mathematical texts (since the 
reader can thus skip a proof to keep continuity of the text and return to it 
later), but formalism is avoided as much as possible. 

The book evolved from a series of lectures I held at the Czech Technical 
University in Prague in 1985-1990. They were based primarily on the 
following excellent textbooks which the reader may use for further reading: 
Information Theory and Coding, Abramson (1963),* Theory and Practise 
of Error Control Codes, Blahut (1983), The Theory of Error-Correcting 
Codes, MacWilliams and Sloane (1981), and An Introduction to Cryptology, 
van Tilborg (1988). 

Jiff Adamek 

*A name followed by a year in parentheses refers to the list of references at the end 
of the book. 
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Introduction 

Data transmision and data storage suffer from errors created by noise. Tech-
niques for combatting noise have been used for a long time. They range 
from simple ones, e.g., adding a parity check symbol to every byte, to mod-
ern complex error-correcting techniques described in this book. The basic 
idea of error correction by a block code (i.e., a code in which all code words 
have the same length) is simple: code words must be "wide apart" from 
each other. That is, two distinct code words have a large Hamming dis-
tance, which means the number of symbols in which the words differ. Then 
the code corrects errors as follows: the word received is corrected to the 
nearest code word (in the sense of the Hamming distance). If the number of 
errors created by noise is smaller than one-half of the minimum Hamming 
distance of code words, then the correction is well done. Thus, the theory 
of error-correcting block codes is concerned with a construction of "good" 
codes with large Hamming distances. "Good" means that (1) the num-
ber of code words is as high as possible (to keep the redundancy low) and 
(2) an efficient technique for error correction is known (to make the search 
for the nearest code word fast). 

Besides block codes, there is another class of error-correcting codes, 
called convolutional codes, in which memory plays a role: the message is 
again divided into blocks, but each block sent depends on a certain number 
of preceding blocks. The theory of convolutional codes is less rich than 
that of block codes: whereas good convolutional codes have been found 
by computer search, good block codes result from the algebraic theory 
presented in this book. However, the importance of convolutional codes in 
practical applications is ever increasing. 

The theory of error-correcting codes is closely related to the theory of 
information, and the first part of this book is devoted to the foundations 
of information theory. Both of these theories were initiated by the pio-
neering paper of Claude Shannon (1948) in which he introduced entropy 
as a measure of information contained in an average symbol of a message. 
Shannon proved, inter alia, that entropy gives a precise estimate of how 

1 



2 INTRODUCTION 

much can be achieved by data compression. Combined with the famous 
HufTmann construction of the shortest code, this result of Shannon leads 
to a simple technique of data compression, presented in Chapters 2 and 3. 
(However, data compression is restricted to the case of information sources 
without memory.) The fourth chapter discusses the Fundamental Theorem 
of Shannon, which states that for every channel there exist error-correcting 
codes which remove noise while keeping the redundancy within the channel 
capacity. This result is purely theoretical: no algorithm for finding such 
codes has ever been found. The theory of error-correcting codes today has 
a lesser goal, viz., constructing codes with a reasonable redundancy and a 
fast decoder. 

Constructions of efficient error-correcting and error-detecting codes with 
fast decoders are presented in the second part of the book. Some of the 
constructions require a deeper background in modern algebra and geometry, 
and we provide a thorough presentation of the relevant topics. The most 
important classes of error-correcting codes are the following: 

Hamming codes (Chapter 5), perfect codes for single errors; 

Reed-Muller codes (Chapter 9), multiple-error-correcting codes with a par-
ticularly efficient and easily implemented decoder; 

Golay code (Chapter 10), the unique perfect code for triple errors; 

BCH codes (Chapters 12 and 13), strong multiple-error-correcting codes 
with a fast decoder; 

Convolutional codes (Chapter 14), multiple-error-correcting codes with 
memory. 

The last part of the book is a short introduction to modern cryptogra-
phy, stressing the role which error-correcting codes play here. Some of the 
well-known secret codes used in cryptography are based on constructions of 
error-correcting codes (e.g. the cryptosystem of McEliece, see 15.3). How-
ever, the main relation between cryptography and error-correcting codes is 
that, since noise is fatal for decryption, secret codes are usually combined 
with error-correcting codes. Furthermore, since encryption is costly, secret 
codes are usually combined with data compression. 

The book is organized in chapters numbered consecutively throughout 
the three parts. Each chapter is divided into sections, and cross-references 
are always related to the number of section. For example, Theorem 3.2 
means (the only) theorem in Section 3.2 of Chapter 3. 



Part I 

Coding and Information 
Theory 
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Chapter 1 

Coding and Decoding 

We are often faced with the task of converting a message, i.e., a sequence of 
symbols from a finite set (called a source alphabet), into a binary message, 
i.e., a sequence of O's and l's. The most common method is to translate each 
source symbol into a binary word. [ Word means precisely a finite sequence; 
we often write a\ai.. .an instead of the more precise (αχ,αι,..., a„). Thus, 
00101 is an example of a binary word.] Then the message is encoded symbol 
by symbol: we simply concatenate the words corresponding to the first, 
second, etc., symbol of the source message. The question of how to encode 
the source symbols is very important. There are two major criteria: we 
want to compress data, i.e., we want the resulting binary message to be as 
concise as possible, and we want to protect information against noise. These 
two requirements are rather contradictory, since by compressing data in the 
presence of noise, we are apt to increase, rather than decrease, the loss of 
information. In the present part, we therefore disregard noise: assuming 
that no errors occur, we try to find a concise code. 

In the present chapter we introduce the important class of instantaneous 
codes, i.e., codes which can be decoded letter by letter, and we show how 
to construct such codes. The construction of the shortest code will be 
presented in Chapter 2. 

1.1 Coding 

Definition. Given finite sets A (source alphabet) and Β (code alphabet), 
a coding is a rule assigning to each source symbol exactly one word in the 
code alphabet, i.e., a function from A to the set of all words in B. We speak 
about binary coding if the code alphabet Β has two symbols. 

5 



6 CHAPTER 1. CODING AND DECODING 

Source Symbol Code Word 

1 11000 
2 10100 
3 01100 
4 10010 
5 01010 
6 00110 
7 10001 
8 01001 
9 00101 
0 00011 

Decoding 01247 

Figure 1: 2-out-of-5 code 

Example of Binary Coding. Observe that among binary words of 
length 5, the number of those having two l's is (*) = 10. This can be 
used to the 2-out-of-5 code of decimal digits, see Figure 1. 

The message "173" has the following code: 110001000101100. Observe 
that no space is left between the code words since "space" is a code symbol 
too. Thus, for example, the famous Morse code has code alphabet Β = 
{ · , — , space}. 

How do we decode the 2-out-of-5 code? Of course, the first five binary 
digits correspond to the first decimal one, and after decoding them, we 
proceed to the second group of five binary digits, etc. A helpful mnemonic 
rule: use 01247 as a "weight" of the five columns, and add the weights of 
all l's in your words. Examples: 11000 ι—• 0 + 1 = 1 and 011001—• 1 + 2 = 
3. Unfortunately, 0 is an exception. 

Remark. Given a coding (i.e., a function Κ from A = { α ϊ , . . . , a „ } to the 
set of all words in B), the words K(a\) K(a„) are called code words, 
and the set of all code words is called a code. When the concrete symbol 
in A is not important, "code" and "coding" are usually identified. 

1.2 Unique Decoding 
Definition. For each coding Κ (of source symbols), we define the coding 
of source messages as the rule Km, which to each word x j x 2 . . . a r m in the 
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source alphabet assigns the word K*(xiXn .. x m ) = K(xi)K(x2) • • .K(xm) 
obtained by concatenation of the code words K(xi), i = 1, ... ,m. 

The coding Κ is said to be uniquely decodable provided that arbitrary 
two distinct source messages have distinct codes. In other words, provided 
that K* is one-to-one. 

For example, the 2-out-of-5 code is uniquely decodable. The assignment 
of a binary word to "173" is a sample of coding source messages. 

In contrast, the following coding 

αι—>00 6 ι—• 10 c i—.101 d>—.110 e 1001 

is not uniquely decodable: try to decode 10110. 
We now introduce two important types of uniquely decodable codes. 

1.3 Block Codes and Instantaneous Codes 
We now introduce two important types of codes: instantaneous codes, 
which are codes of variable word lengths decodable symbol per symbol, 
and block codes, which are the special case of instantaneous codes with 
constant word length: 

Definition. ( 1 ) A coding using only pairwise distinct code words of a cer-
tain length η is called a block coding of length n. 

( 2 ) A coding is called instantaneous provided that no code word is a 
prefix of another code word; i.e., if a source symbol has a code 6χ62 · · bn 

then no other source symbol has a code 6162 · b„bn+1.. .bm. 

R e m a r k . Block codes (e.g., the 2-out-of-5 code above) are very convenient 
for decoding since we know in advance which code symbols correspond to 
the first (second, third, etc.) source symbol. And they are certainly efficient 
whenever all source symbols appear with equal frequency. However, if the 
frequencies of various source symbols differ substantially, then block codes 
become clumsy, and it is preferable to use instantaneous codes of variable 
lengths of words. 

Examples 

(1) The famous Morse code is exhibited in Figure 2. This is an instan-
taneous code with the code alphabet { · , — , space}. Since "space" 
is only used at the end of each code word, the decoding procedure is 
simple: we always look for the first "space". There is an obvious reason 
for not using a block code: the frequency of, say, "E" in the English 
language is much higher than that of "F". 
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A · — Ν 
Β 0 
C — Ρ 
D Q 
Ε R 
F S 
G Τ 
Η υ 
I ν 
J · w 

Κ χ 
L Υ 
Μ ζ 

Figure 2: Morse code 

(2) An important example of a block code is the octal code: 

0 000 4 100 
1 001 5 101 
2 010 6 110 
3 011 7 111 

(3) Suppose that we are to find a binary coding for the alphabet { 0 , 1 , 2 , 3 } , 
and we observe that 0 appears much more often in source messages than 
any other symbols. Then the following coding seems reasonable: 

0,—•Ο li—»01 2i—•Oil 3·—• 111. 

We can decode quite easily: count the number of l's among the last 
three symbols of the encoded message. If the number is i, then the last 
source symbol is t. However, the above coding is not instantaneous. 
Indeed, when receiving a long message 

011111111111 

we will not know whether the first source symbol is 0, 1, or 2 until the 
message stops. 
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1.4 Some Important Block Codes 

Long binary codes are difficult to handle. It is thus often suitable to group 
the binary symbols: we get shorter codes in more complex alphabets. For 
example, by forming groups of three symbols, we obtain the octal code, 
see 1.3. Representation by the octal code is usually indicated by the sub-
script 8. Example: 

( 0 1 ) 8 = 000001. 

By forming groups of four binary symbols, we obtain the hexadecimal code 
in Figure 3. 

Binary Hexadecimal Binary Hexadecimal 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 A 
0011 3 1011 Β 
0100 4 1100 C 
0101 5 1101 D 
0110 6 1110 Ε 
0111 7 1111 F 

Figure 3: Hexadecimal code 

A very important code used for a standard binary representation of 
alphabetic and numeric symbols is the ASCII code* (Figure 4) . It has 
2 7 = 128 source symbols encoded into binary words of length 8: the first 
seven symbols carry the information, and the eighth one is set in such a way 
that the parity is even (i.e., each code word contains an even number of l's). 
The role of this eighth symbol is to enable detection of single errors—we 
explain this in detail in Chapter 5. For example, the letter A has code 

A <—• 1000JM0, 

inform, check 
symbols symbol 

which in Figure 4 is represented by its seven information bits: l(01)s = 
1000001. 

'American Standard Code for Information Interchange 
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Source Code Source Code Source Code Source Code 

Symbol Symbol Symbol Symbol 

@ 1(00) 8 

> 1(40)8 NUL 0(00)e SP 0 (40 ) e 

A 1(01) 8 
a 1(41)8 SOH 0(01) 8 ! 0 (41) 8 

Β 1(02) 8 
b 1(42)8 STX 0(02) 8 

0(42) 8 

C 1(03)8 c 1(43)8 ETX 0(03) 8 # 0(43) 8 

D 1(04)8 d 1(44)8 EOT 0(04) 8 $ 0 (44) 8 

Ε 1(05)8 e 1(45)8 ENQ 0(05) 8 % 0(45) 8 

F 1(06)β f 1(46)8 ACK 0(06) 8 k 0(46) 8 

G 1(07) 8 g 1(47)8 BEL 0(07)8 I 0(47) 8 

Η 1(10)8 h 1(50)8 BS 0(10 )8 ( 0(50) 8 

I 1(11)β i 1(51)8 HT 0(l l)e ) 0(51) 8 

i 1(12)8 J l(52)e LF 0(12 )8 * 0(52) 8 

Κ 1(13)8 k 1(53)8 VT 0(13 )8 + 0(53) 8 

L 1(14)8 1 1(54)8 FF 0(14) 8 1 0(54 )8 

Μ 1(15)8 m 1(55)8 CR 0(15) 8 - 0(55) 8 

Ν 1(16)8 η 1(56)8 SO 0(16 )8 0(56) 8 

0 1(17)8 0 1(57)8 SI 0(17 )8 / 0(57) 8 

Ρ 1(20)8 Ρ 1(60)8 DLE 0(20 )8 0 0 (60) 8 

Q 1(21)8 q 1(61)8 DC1 0(21 )8 1 0(61 )8 

R 1(22)8 r 1(62) 8 DC2 0(22)e 2 0(62) 8 

S 1(23)8 s 1(63)8 DC3 0(23 )8 3 0(63) 8 

Τ 1(24)8 t 1(64)8 DC4 0(24) 8 4 0(64) 8 

υ 1(25)8 u 1(65)8 NAK 0(25) 8 5 0 (65) 8 

ν 1(26)8 V 1(66)8 SYN 0(26 )8 6 0(66) 8 

w 1(27)8 w 1(67)8 ETB 0(27 )8 7 0(67 )8 

χ 1(30)8 X 1(70) 8 
CAN 0(30) 8 

8 0(70 )8 

Υ 1(31)8 y 1(71) 8 
EM 0(31 )8 9 0(71 )8 

ζ 1(32)8 ζ 1(72)8 SUB 0(32) 8 0(72 )8 

[ 1(33)8 { 1(73)8 ESC 0(33) 8 t 0(73) 8 

\ 1(34)8 1 1(74)8 FS 0(34 )8 < 0(74) 8 

] 1(35)8 } 1(75)8 GS 0(35) 8 = 0(75) 8 

1(36)8 • 1(76)8 RS 0(36 )8 > 0(76) 8 

- 1(37)8 DEL 1(77)8 US 0(37 )8 ? 0(77) 8 

Figure 4: ASCII code (7 information bits) 
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Let us finally mention an "everyday" code we meet in most textbooks. 
It is called the international standard book number, ISBN, and it is a block 
code of length 10. (Various hyphens are often inserted between the symbols, 
but we can ignore them here since they are used just for optical orientation.) 
The code alphabet has 11 symbols: 0, 1, . . . , 9 and X (read: ten). For 
example, the book of Lin and Costello (1983) has 

ISBN 0 13-283796-X. 

The first number 0 denotes the country (USA), 13 denotes the publisher 
(Prentice-Η all), and the next six digits are assigned by the publisher as 
an identification number of the book. The last symbol is a check symbol 
(analogously as in the ASCII code above). It is set in such a way that for 
each ISBN code word 010203 . . . 09010 , the sum 

10 

^ i a i i _ i = 10oi + 9a 2 + 8 a 3 + h 2a 9 + a 1 0 

• = 1 

be divisible by 11. For example, in the ISBN above: 

1 0 x 0 + 9 x 1 + 8 x 3 + 7 x 2 + 6 x 8 + 

5 x 3 + 4 x 7 + 3 x 9 + 2 x 6 + 1 x 1 0 = 132 = 1 1 x 1 2 . 

Some publishers have a three-digit identification (e.g., Wiley-Intersci-
ence has 471) and then they assign a five-digit number to each publication. 

1.5 Construction of Instantaneous Codes 

Suppose you want to construct a binary instantaneous code of the source 
alphabet { α ι , . . . , ο „ } . It is sufficient to specify the lengths d\ d„ of 
the expected code words. In fact, we can certainly assume that di < 0*2 < 
·•• < d„. Then we choose an arbitrary binary word K(ai) of length d%. 
Next we choose a binary word / ί ( α 2 ) of length d 2 , but we avoid all those 
which have the prefix Κ(αχ). This is possible: the number of all binary 
words of length d2 is 2 d j . The number of those having the prefix K(ai) is 
2dl~dl (because you can choose the 0*2 — di digits remaining after the prefix 
K(ai) arbitrarily). Since 2d* > 2d7~dl + 1, we have at least one choice of 
K(a2). 

Next, we want to choose a word of length 0*3 which has neither prefix 
K(a\) nor K(o.2). Thus, from the 2d* possible words, we must avoid all 
the 2d3-dl words with the prefix Λ'(αι) and all the 2d*~d3 words with the 
prefix K(a2). This is possible if (and only if) 
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Dividing the last inequality by 2 d > , we obtain 

1 > 2~dl + 2~dl + 2~di. 

Analogously, we can see that the following inequality 

1 > 2~dl + 2~d3 + · ·• + 2 _ d -

makes it possible to fulfil our task. It turns out that this inequality is both 
necessary and sufficient for a construction of instantaneous codes. 

Example. We want to find an instantaneous code with the same lengths 
of code words as that in Example 1.3(3) above. This is possible since 

1 > 2" 1 + 2 - 2 + 2 - 3 + 2 - 3 . 

Here is such a code: 

0 ι—• 0 I . — - 10 2 . — 110 3 H - . 1 1 1 . 

1.6 Kraft's Inequality 

Theorem. Given a source alphabet of η symbols and a code alphabet of 
k symbols, then an instantaneous code with given lengths d%, d-ι, ... , dn of 
code words exists, whenever the following Kraft's inequality 

k~dl + k~i3 + • • • + k-d" < 1 

is fulfilled. 

P R O O F . We can assume that the source alphabet {αχ, a j , . . . , a„} is pre-
sented in the order imposed by the lengths of the expected code words; i.e., 
d\ < di < · · < dn. We define instantaneous coding Κ by the following 
induction: 

(1) Choose an arbitrary word K(a.\) of length d\. 

(2) Suppose K(ai), K(a^), K(a,-i) have been chosen. Then 
choose an arbitrary word K(a,) of length d, with no prefix among K(ai), 
... , K(a,-i). This is possible: the number of words with the prefix K(ai) 
is kd,~di, and thus we have a choice of 
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words. From Kraft's inequality, we get 

and multiplying by kdi, we conclude 

j - l 

kd--S"kd--d' > 1. 
i=l 

• 

1.7 McMillan's Theorem 
McMillan's Theorem. Every uniquely decodable coding satisfies Kraft's 
inequality. 

R e m a r k . We see that Kraft's inequality is not only sufficient, but also 
necessary for the construction of an instantaneous code. However, McMil-
lan's Theorem says much more: instantaneous codes are just as efficient 
as uniquely decodable codes. More precisely, for every uniquely decod-
able code there exists an instantaneous code with the same lengths of code 
words. 

P R O O F . Let AT be a uniquely decodable coding. Denote by d< the length 
of the code word K(ai), i = 1, 2 , . . . , n. Observe that for each number 
j = 1, 2, 3 , . . . , we can form exactly k> words of length j in the (i-symbol) 
code alphabet. By unique decodability, the number of source messages 
aj ,a , - a . . . a j r whose code has length j cannot exceed lb'. The length of the 
code is d,, + dj 3 + • • · + dj r . Thus, we observe that the number of all sums 
of the form 

d<, + d > 3 + · · · + ύ 

is smaller or equal to W. 
It is our task to prove that the number 

+ dir = j (1.7.1) 

η 

is smaller or equal to 1. For this, we will verify that the numbers £ are 
bounded for all r = 1, 2, 3, . . . . In fact, each number c > 1 clearly fulfils 
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limr_oo y = oo, and, therefore, the theorem will then be proved. Let us 
compute the powers of c: 

\ = 1 ' \ ' = 1 ' i,j = l 

and, in general, 

c r = £ *-<*,+*.,+•••+*,.). ( 1 7 2 ) 

<i,. . , i , = l 

We can reorder the last sum by collecting all the summands ib -', where j 
satisfies (1.7.1). The largest possible j is j = d + d + r d = rd, where 
d = m&x(di,..., </„). As observed above, the number of all summands k~* 
in sum (1.7.2) is smaller or equal to JbJ. Thus, 

rd rd 

cr < Σ V · 1 = rd. 

Consequently, < d, which proves that c < 1. D 

Exercises 

1A What is the smallest length of a block code with the same source 
alphabet {A, B, ..., Z) and the same code alphabet { · , — , space} as 
the Morse code? 

1 01 A . 1010 
2 . Oil Β . . 001 
3 . 10 C . 101 
4 . 1000 D . 0001 
5 . . 1100 Ε . 1101 
6 . . 0111 F .. 1011 

Figure 5 Figure 6 
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I B Is the code in Figure 5 uniquely decodable? Is it instantaneous? Can 
you find an instantaneous code with the same lengths of code words? 

1C Is the code in Figure 6 uniquely decodable? If not, exhibit two source 
messages with the same code. 

I D Is the code in Figure 7 uniquely decodable? 

0 .. . AA 
1 .. . AABAB 
2 . ABBBBB 

ABABA 3 .. 
. ABBBBB 

ABABA A . . 001 A . 00 
4 . . . ABBAA Β . 1001 Β . 10 
5 . . BABBA C . . 0010 c . 011 
6 . BBBAB D . 1110 D . 101 
7 . AAAABB Ε 1010 Ε . 111 
8 . AAAABA F . o n i o F 110 
9 . AAAAAB G . . 0101 G . 010 

Figure 7 Figure 8 

I E Can you decide unique decodability of the two codes in Figure 8 by 
using Kraft's inequality? 

I F Construct a binary instantaneous code for the following source al-
phabet with the prescribed lengths of code words: 

Symbol 
Length 

A B C D E F G H I J K L 
2 4 7 7 3 4 7 7 3 4 7 7 

1G Construct a ternary (three code symbols) instantaneous code for the 
following source alphabet with the prescribed lengths of code words: 

Symbol 
Length 

1 2 3 4 5 6 7 8 9 0 
1 3 3 3 3 2 2 2 2 2 
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1H How many code symbols are needed if the following source alphabet 
is to be encoded into an instantaneous code with the prescribed lengths of 
code words: 

A B C D E F G H I J K L M N O P 
1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 

I I Prove that for each instantaneous code for which Kraft's inequality 
is not an equality, it is possible to add a new source symbol and extend 
the given code to an instantaneous code (with the same code alphabet). 
Demonstrate this on the code found in Exercise 1.6. 

Notes 

Coding theory and information theory have their origin in the fundamental 
work of Claude E. Shannon (1948), reprinted in Slepian (1974), although 
many of the ideas were understood and used before. The small interesting 
book of Richard N. Hamming (1980), one of the founders of coding theory, 
provides further historical remarks. 

Kraft's inequality was formulated by Kraft (1949). The source of McMil-
lan's Theorem is McMillan (1956), the present proof is from Karush (1961). 



Chapter 2 

Huffman Codes 

We have mentioned that if the frequencies of source symbols vary, then 
instantaneous codes can be preferable to block codes: the most frequent 
symbols will be encoded into the shortest code words. We now make these 
considerations more precise. If the frequencies of source symbols are known 
exactly (i.e., if the probability distribution of source symbols in messages 
has been determined), we want to find the most efficient coding. 

2.1 Information Source 
Definition. An information source is a source alphabet together with a 
probability distribution; i.e., a set {(ii,... ,an) together with numbers 
Ρ(αι),..., P (a„) satisfying £ J L , P ( a ; ) = 1 and 0 < P(a . ) < 1. 

More precisely, we should speak about a discrete, zero-memory infor-
mation source: discrete because we have discrete source symbols, and zero-
memory because we assume that the source symbols appear independently. 
In other words, the probabilities Ρ(α,) fully describe the statistics of the 
source messages, and the probability of a message di,a%3 • • • o, r can be com-
puted from the probabilities of the individual symbols: 

P(aitah ... air) = P(ah) P ( a < a ) . . . P ( a < r ) . 

2.2 Huffman Codes 

Let AT be a coding of an information source. That is, for each source 
symbol α<, we have a code word Λ"(α,) and we know the probability P(aj) 
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