
FOUNDATIONS
OF CODING

Theory and Applications
of Error-Correcting Codes
with an Introduction to
Cryptography and Information Theory

Jifi Adamek
Czech Technical University in Prague

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
Chichester · New York · Brisbane · Toronto · Singapore

dcd-wg
C-1.jpg

This page intentionally left blank

s
OF CODING

This page intentionally left blank

FOUNDATIONS
OF CODING

Theory and Applications
of Error-Correcting Codes
with an Introduction to
Cryptography and Information Theory

Jifi Adamek
Czech Technical University in Prague

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
Chichester · New York · Brisbane · Toronto · Singapore

A NOTE TO THE READER
This book has been electronically reproduced from
digital information stored at John Wiley & Sons, Inc.
We are pleased that the use of this new technology
will enable us to keep works of enduring scholarly
value in print as long as there is a reasonable demand
for them. The content of this book is identical to
previous printings.

In recognition of the importance of preserving what has been
written, it is a policy of John Wiley & Sons, Inc., to have books
of enduring value published in the United States printed on
acid-free paper, and we exert our best efforts to that end.

Copyright © 1991 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Ad&mek, Jiff, ing.

Foundations of coding: theory and applications of error-
correcting codes, with an introduction to cryptography and
information theory / Jif ί Adamek.

p. cm.

"A Wiley-Interscience publication''
Includes bibliographical references and index.

ISBN 0-471-62187-0
1. Coding theory. I. Title.

QA268A36 1991
003'.54-dc20 90-20905

CIP
Rev.

10 9 8 7 6 5 4

To Honza, Kuba, Jirka, and Ondfej

This page intentionally left blank

Preface

Coding theory is a fascinating field combining elegant mathematical theo-
ries with constructions of a major practical impact.

This book is devoted to constructions of

(1) error-correcting codes,

(2) secrecy codes, and

(3) codes used in data compression.

The stress is on the first direction: we introduce a number of important
classes of error-detecting and error-correcting codes, and we present their
decoding methods. Some of these constructions require a deep background
in modern algebra, and we carefully provide such background. Secret codes
are treated only briefly; we mainly explain the role of error-correcting codes
in modern cryptography. Data compression and other topics related to
information theory are briefly discussed in the first part of the book.

The material is presented in a way making it possible to appreciate both
the beauty of the theory and the scope of practical applications. We use
the definition-theorem-proof style usual in mathematical texts (since the
reader can thus skip a proof to keep continuity of the text and return to it
later), but formalism is avoided as much as possible.

The book evolved from a series of lectures I held at the Czech Technical
University in Prague in 1985-1990. They were based primarily on the
following excellent textbooks which the reader may use for further reading:
Information Theory and Coding, Abramson (1963),* Theory and Practise
of Error Control Codes, Blahut (1983), The Theory of Error-Correcting
Codes, MacWilliams and Sloane (1981), and An Introduction to Cryptology,
van Tilborg (1988).

Jiff Adamek

*A name followed by a year in parentheses refers to the list of references at the end
of the book.

vii

This page intentionally left blank

Contents

Introduct ion 1

Part I Coding and Information Theory 3

1 Coding and Decoding 5
1.1 Coding 5
1.2 Unique Decoding 6
1.3 Block Codes and Instantaneous Codes 7
1.4 Some Important Block Codes 9
1.5 Construction of Instantaneous Codes 11
1.6 Kraft's Inequality 12
1.7 McMillan's Theorem 13
Exercises 14
Notes 16

2 Huffman Codes 17
2.1 Information Source 17
2.2 Huffman Codes 17
2.3 Construction of Binary Huffman Codes 18
2.4 Example 21
2.5 Construction of General Huffman Codes 22
Exercises 24
Notes 24

3 Data Compression and Entropy 25
3.1 An Example of Data Compression 25
3.2 The Idea of Entropy 26
3.3 The Definition of Entropy 28
3.4 An Example 29

ix

x CONTENTS

3.5 Maximum and Minimum Entropy 30
3.6 Extensions of a Source 32
3.7 Entropy and Average Length 33
3.8 Shannon's Noiseless Coding Theorem 34
3.9 Concluding Remarks 36
Exercises 36
Notes 38

4 Reliable Communication Through Unreliable Channels 39

4.1 Binary Symmetric Channels 40
4.2 Information Rate 42
4.3 An Example of Increased Reliability 44
4.4 Hamming Distance 46

4.5 Detection of Errors 48
4.6 Correction of Errors 49
4.7 Channel Capacity 50
4.8 Shannon's Fundamental Theorem 56

Exercises 58
Notes 60

Part II Error-Correcting Codes 61

5 Binary Linear Codes 63
5.1 Binary Addition and Multiplication 63
5.2 Codes Described by Equations 64

5.3 Binary Linear Codes 65
5.4 Parity Check Matrix 67
5.5 Hamming Codes—Perfect Codes for Single Errors 69
5.6 The Probability of Undetected Errors 75

Exercises 77
Notes 78

6 Groups and Standard Arrays 79

6.1 Commutative Groups 79
6.2 Subgroups and Cosets 81
6.3 Decoding by Standard Arrays 84
Exercises 87
Notes 89

CONTENTS xi

7 Linear Algebra 9 1
7.1 Fields and Rings 91
7.2 The Fields Z p 93
7.3 Linear Spaces 95
7.4 Finite-Dimensional Spaces 98
7.5 Matrices 101
7.6 Operations on Matrices · 105
7.7 Orthogonal Complement 108
Exercises I l l
Notes 114

8 Linear Codes 1 1 5
8.1 Generator Matrix 115
8.2 Parity Check Matrix 119
8.3 Syndrome 121
8.4 Detection and Correction of Errors 122
8.5 Extended Codes and Other Modifications 125
8.6 Simultaneous Correction and Detection of Errors 128
8.7 Mac Williams Identity 130
Exercises 133
Notes 135

9 Reed-Muller Codes: Weak Codes with Easy Decoding 137
9.1 Boolean Functions 138
9.2 Boolean Polynomials 140
9.3 Reed-Muller Codes 144
9.4 Geometric Interpretation: Three-Dimensional Case 147
9.5 Geometric Interpretation: General Case 151
9.6 Decoding Reed-Muller Codes 154
Exercises 159
Notes 160

10 Cyclic Codes 161
10.1 Generator Polynomial 161
10.2 Encoding Cyclic Codes 167
10.3 Parity Check Polynomial 171
10.4 Decoding Cyclic Codes 175
10.5 Error-Trapping Decoding 180
10.6 Golay Code: A Perfect Code for Triple Errors 182
10.7 Burst Errors 185
10.8 Fire Codes: High-Rate Codes for Burst Errors 188

xii CONTENTS

Exercises 192
Notes l 9 4

11 Polynomials and Finite Fields 197
11.1 Zeros of Polynomials 197
11.2 Algebraic Extensions of a Field 201
11.3 Galois Fields 206
11.4 Primitive Elements 207
11.5 The Characteristic of a Field 211
11.6 Minimal Polynomial 213
11.7 Order 216
11.8 The Structure of Finite Fields 219
11.9 Existence of Galois Fields 221
Exercises 223
Notes 227

12 B C H Codes: Strong Codes Correcting Multiple Errors 229
12.1 Hamming Codes as Cyclic Codes 230
12.2 Double-Error-Correcting BCH Codes 232
12.3 BCH Codes 239
12.4 Reed-Solomon Codes and Derived Burst-Error-Correcting

Codes 245
12.5 Generalized Reed-Muller Codes 246
12.6 Goppa Codes: Asymptotically Good Codes 248
Exercises 255
Notes 256

13 Fast Decoding of B C H Codes 257
13.1 Error Location and Error Evaluation 258
13.2 Euclidean Algorithm 260
13.3 The Decoding Algorithm 263
Exercises 266
Notes 267

14 Convolutional Codes 269
14.1 Linear Codes and Convolutional Codes 269
14.2 Generator Polynomials and Generator Matrices 274
14.3 Maximum-Likelihood Decoding of Convolutional Codes . . 279
14.4 The Viterbi Decoding Algorithm 283
Exercises 288
Notes 290

xiii

Part III Cryptography 291

15 Cryptography 2 9 3
15.1 A Noisy Wiretap 294
15.2 Secret-Key Encryption 296
15.3 Public-Key Encryption 303
15.4 Encryption Based on Large Prime Numbers 305
15.5 Encryption Based on Knapsack Problems 307
15.6 Data Encryption Standard 309
Exercises 316
Notes 317

Appendixes 319

A Galois Fields 321

Β B C H Codes and Reed-Muller Codes 3 2 5

Bibliography 327

List of Symbols 331

Index 333

This page intentionally left blank

FOUNDATIONS
OF CODING

This page intentionally left blank

Introduction

Data transmision and data storage suffer from errors created by noise. Tech-
niques for combatting noise have been used for a long time. They range
from simple ones, e.g., adding a parity check symbol to every byte, to mod-
ern complex error-correcting techniques described in this book. The basic
idea of error correction by a block code (i.e., a code in which all code words
have the same length) is simple: code words must be "wide apart" from
each other. That is, two distinct code words have a large Hamming dis-
tance, which means the number of symbols in which the words differ. Then
the code corrects errors as follows: the word received is corrected to the
nearest code word (in the sense of the Hamming distance). If the number of
errors created by noise is smaller than one-half of the minimum Hamming
distance of code words, then the correction is well done. Thus, the theory
of error-correcting block codes is concerned with a construction of "good"
codes with large Hamming distances. "Good" means that (1) the num-
ber of code words is as high as possible (to keep the redundancy low) and
(2) an efficient technique for error correction is known (to make the search
for the nearest code word fast).

Besides block codes, there is another class of error-correcting codes,
called convolutional codes, in which memory plays a role: the message is
again divided into blocks, but each block sent depends on a certain number
of preceding blocks. The theory of convolutional codes is less rich than
that of block codes: whereas good convolutional codes have been found
by computer search, good block codes result from the algebraic theory
presented in this book. However, the importance of convolutional codes in
practical applications is ever increasing.

The theory of error-correcting codes is closely related to the theory of
information, and the first part of this book is devoted to the foundations
of information theory. Both of these theories were initiated by the pio-
neering paper of Claude Shannon (1948) in which he introduced entropy
as a measure of information contained in an average symbol of a message.
Shannon proved, inter alia, that entropy gives a precise estimate of how

1

2 INTRODUCTION

much can be achieved by data compression. Combined with the famous
HufTmann construction of the shortest code, this result of Shannon leads
to a simple technique of data compression, presented in Chapters 2 and 3.
(However, data compression is restricted to the case of information sources
without memory.) The fourth chapter discusses the Fundamental Theorem
of Shannon, which states that for every channel there exist error-correcting
codes which remove noise while keeping the redundancy within the channel
capacity. This result is purely theoretical: no algorithm for finding such
codes has ever been found. The theory of error-correcting codes today has
a lesser goal, viz., constructing codes with a reasonable redundancy and a
fast decoder.

Constructions of efficient error-correcting and error-detecting codes with
fast decoders are presented in the second part of the book. Some of the
constructions require a deeper background in modern algebra and geometry,
and we provide a thorough presentation of the relevant topics. The most
important classes of error-correcting codes are the following:

Hamming codes (Chapter 5), perfect codes for single errors;

Reed-Muller codes (Chapter 9), multiple-error-correcting codes with a par-
ticularly efficient and easily implemented decoder;

Golay code (Chapter 10), the unique perfect code for triple errors;

BCH codes (Chapters 12 and 13), strong multiple-error-correcting codes
with a fast decoder;

Convolutional codes (Chapter 14), multiple-error-correcting codes with
memory.

The last part of the book is a short introduction to modern cryptogra-
phy, stressing the role which error-correcting codes play here. Some of the
well-known secret codes used in cryptography are based on constructions of
error-correcting codes (e.g. the cryptosystem of McEliece, see 15.3). How-
ever, the main relation between cryptography and error-correcting codes is
that, since noise is fatal for decryption, secret codes are usually combined
with error-correcting codes. Furthermore, since encryption is costly, secret
codes are usually combined with data compression.

The book is organized in chapters numbered consecutively throughout
the three parts. Each chapter is divided into sections, and cross-references
are always related to the number of section. For example, Theorem 3.2
means (the only) theorem in Section 3.2 of Chapter 3.

Part I

Coding and Information
Theory

This page intentionally left blank

Chapter 1

Coding and Decoding

We are often faced with the task of converting a message, i.e., a sequence of
symbols from a finite set (called a source alphabet), into a binary message,
i.e., a sequence of O's and l's. The most common method is to translate each
source symbol into a binary word. [Word means precisely a finite sequence;
we often write a\ai.. .an instead of the more precise (αχ,αι,..., a„). Thus,
00101 is an example of a binary word.] Then the message is encoded symbol
by symbol: we simply concatenate the words corresponding to the first,
second, etc., symbol of the source message. The question of how to encode
the source symbols is very important. There are two major criteria: we
want to compress data, i.e., we want the resulting binary message to be as
concise as possible, and we want to protect information against noise. These
two requirements are rather contradictory, since by compressing data in the
presence of noise, we are apt to increase, rather than decrease, the loss of
information. In the present part, we therefore disregard noise: assuming
that no errors occur, we try to find a concise code.

In the present chapter we introduce the important class of instantaneous
codes, i.e., codes which can be decoded letter by letter, and we show how
to construct such codes. The construction of the shortest code will be
presented in Chapter 2.

1.1 Coding

Definition. Given finite sets A (source alphabet) and Β (code alphabet),
a coding is a rule assigning to each source symbol exactly one word in the
code alphabet, i.e., a function from A to the set of all words in B. We speak
about binary coding if the code alphabet Β has two symbols.

5

6 CHAPTER 1. CODING AND DECODING

Source Symbol Code Word

1 11000
2 10100
3 01100
4 10010
5 01010
6 00110
7 10001
8 01001
9 00101
0 00011

Decoding 01247

Figure 1: 2-out-of-5 code

Example of Binary Coding. Observe that among binary words of
length 5, the number of those having two l's is (*) = 10. This can be
used to the 2-out-of-5 code of decimal digits, see Figure 1.

The message "173" has the following code: 110001000101100. Observe
that no space is left between the code words since "space" is a code symbol
too. Thus, for example, the famous Morse code has code alphabet Β =
{ · , — , space}.

How do we decode the 2-out-of-5 code? Of course, the first five binary
digits correspond to the first decimal one, and after decoding them, we
proceed to the second group of five binary digits, etc. A helpful mnemonic
rule: use 01247 as a "weight" of the five columns, and add the weights of
all l's in your words. Examples: 11000 ι—• 0 + 1 = 1 and 011001—• 1 + 2 =
3. Unfortunately, 0 is an exception.

Remark. Given a coding (i.e., a function Κ from A = { α ϊ , . . . , a „ } to the
set of all words in B), the words K(a\) K(a„) are called code words,
and the set of all code words is called a code. When the concrete symbol
in A is not important, "code" and "coding" are usually identified.

1.2 Unique Decoding
Definition. For each coding Κ (of source symbols), we define the coding
of source messages as the rule Km, which to each word x j x 2 . . . a r m in the

1.3. BLOCK CODES AND INSTANTANEOUS CODES 7

source alphabet assigns the word K*(xiXn .. x m) = K(xi)K(x2) • • .K(xm)
obtained by concatenation of the code words K(xi), i = 1, ... ,m.

The coding Κ is said to be uniquely decodable provided that arbitrary
two distinct source messages have distinct codes. In other words, provided
that K* is one-to-one.

For example, the 2-out-of-5 code is uniquely decodable. The assignment
of a binary word to "173" is a sample of coding source messages.

In contrast, the following coding

αι—>00 6 ι—• 10 c i—.101 d>—.110 e 1001

is not uniquely decodable: try to decode 10110.
We now introduce two important types of uniquely decodable codes.

1.3 Block Codes and Instantaneous Codes
We now introduce two important types of codes: instantaneous codes,
which are codes of variable word lengths decodable symbol per symbol,
and block codes, which are the special case of instantaneous codes with
constant word length:

Definition. (1) A coding using only pairwise distinct code words of a cer-
tain length η is called a block coding of length n.

(2) A coding is called instantaneous provided that no code word is a
prefix of another code word; i.e., if a source symbol has a code 6χ62 · · bn

then no other source symbol has a code 6162 · b„bn+1.. .bm.

R e m a r k . Block codes (e.g., the 2-out-of-5 code above) are very convenient
for decoding since we know in advance which code symbols correspond to
the first (second, third, etc.) source symbol. And they are certainly efficient
whenever all source symbols appear with equal frequency. However, if the
frequencies of various source symbols differ substantially, then block codes
become clumsy, and it is preferable to use instantaneous codes of variable
lengths of words.

Examples

(1) The famous Morse code is exhibited in Figure 2. This is an instan-
taneous code with the code alphabet { · , — , space}. Since "space"
is only used at the end of each code word, the decoding procedure is
simple: we always look for the first "space". There is an obvious reason
for not using a block code: the frequency of, say, "E" in the English
language is much higher than that of "F".

8 CHAPTER 1. CODING AND DECODING

A · — Ν
Β 0
C — Ρ
D Q
Ε R
F S
G Τ
Η υ
I ν
J · w

Κ χ
L Υ
Μ ζ

Figure 2: Morse code

(2) An important example of a block code is the octal code:

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111

(3) Suppose that we are to find a binary coding for the alphabet { 0 , 1 , 2 , 3 } ,
and we observe that 0 appears much more often in source messages than
any other symbols. Then the following coding seems reasonable:

0,—•Ο li—»01 2i—•Oil 3·—• 111.

We can decode quite easily: count the number of l's among the last
three symbols of the encoded message. If the number is i, then the last
source symbol is t. However, the above coding is not instantaneous.
Indeed, when receiving a long message

011111111111

we will not know whether the first source symbol is 0, 1, or 2 until the
message stops.

1.4. SOME IMPORTANT BLOCK CODES 9

1.4 Some Important Block Codes

Long binary codes are difficult to handle. It is thus often suitable to group
the binary symbols: we get shorter codes in more complex alphabets. For
example, by forming groups of three symbols, we obtain the octal code,
see 1.3. Representation by the octal code is usually indicated by the sub-
script 8. Example:

(0 1) 8 = 000001.

By forming groups of four binary symbols, we obtain the hexadecimal code
in Figure 3.

Binary Hexadecimal Binary Hexadecimal

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 Β
0100 4 1100 C
0101 5 1101 D
0110 6 1110 Ε
0111 7 1111 F

Figure 3: Hexadecimal code

A very important code used for a standard binary representation of
alphabetic and numeric symbols is the ASCII code* (Figure 4) . It has
2 7 = 128 source symbols encoded into binary words of length 8: the first
seven symbols carry the information, and the eighth one is set in such a way
that the parity is even (i.e., each code word contains an even number of l's).
The role of this eighth symbol is to enable detection of single errors—we
explain this in detail in Chapter 5. For example, the letter A has code

A <—• 1000JM0,

inform, check
symbols symbol

which in Figure 4 is represented by its seven information bits: l(01)s =
1000001.

'American Standard Code for Information Interchange

10 CHAPTER 1. CODING AND DECODING

Source Code Source Code Source Code Source Code

Symbol Symbol Symbol Symbol

@ 1(00) 8

> 1(40)8 NUL 0(00)e SP 0 (40) e

A 1(01) 8
a 1(41)8 SOH 0(01) 8 ! 0 (41) 8

Β 1(02) 8
b 1(42)8 STX 0(02) 8

0(42) 8

C 1(03)8 c 1(43)8 ETX 0(03) 8 # 0(43) 8

D 1(04)8 d 1(44)8 EOT 0(04) 8 $ 0 (44) 8

Ε 1(05)8 e 1(45)8 ENQ 0(05) 8 % 0(45) 8

F 1(06)β f 1(46)8 ACK 0(06) 8 k 0(46) 8

G 1(07) 8 g 1(47)8 BEL 0(07)8 I 0(47) 8

Η 1(10)8 h 1(50)8 BS 0(10)8 (0(50) 8

I 1(11)β i 1(51)8 HT 0(l l)e) 0(51) 8

i 1(12)8 J l(52)e LF 0(12)8 * 0(52) 8

Κ 1(13)8 k 1(53)8 VT 0(13)8 + 0(53) 8

L 1(14)8 1 1(54)8 FF 0(14) 8 1 0(54)8

Μ 1(15)8 m 1(55)8 CR 0(15) 8 - 0(55) 8

Ν 1(16)8 η 1(56)8 SO 0(16)8 0(56) 8

0 1(17)8 0 1(57)8 SI 0(17)8 / 0(57) 8

Ρ 1(20)8 Ρ 1(60)8 DLE 0(20)8 0 0 (60) 8

Q 1(21)8 q 1(61)8 DC1 0(21)8 1 0(61)8

R 1(22)8 r 1(62) 8 DC2 0(22)e 2 0(62) 8

S 1(23)8 s 1(63)8 DC3 0(23)8 3 0(63) 8

Τ 1(24)8 t 1(64)8 DC4 0(24) 8 4 0(64) 8

υ 1(25)8 u 1(65)8 NAK 0(25) 8 5 0 (65) 8

ν 1(26)8 V 1(66)8 SYN 0(26)8 6 0(66) 8

w 1(27)8 w 1(67)8 ETB 0(27)8 7 0(67)8

χ 1(30)8 X 1(70) 8
CAN 0(30) 8

8 0(70)8

Υ 1(31)8 y 1(71) 8
EM 0(31)8 9 0(71)8

ζ 1(32)8 ζ 1(72)8 SUB 0(32) 8 0(72)8

[1(33)8 { 1(73)8 ESC 0(33) 8 t 0(73) 8

\ 1(34)8 1 1(74)8 FS 0(34)8 < 0(74) 8

] 1(35)8 } 1(75)8 GS 0(35) 8 = 0(75) 8

1(36)8 • 1(76)8 RS 0(36)8 > 0(76) 8

- 1(37)8 DEL 1(77)8 US 0(37)8 ? 0(77) 8

Figure 4: ASCII code (7 information bits)

1.5. CONSTRUCTION OF INSTANTANEOUS CODES 11

Let us finally mention an "everyday" code we meet in most textbooks.
It is called the international standard book number, ISBN, and it is a block
code of length 10. (Various hyphens are often inserted between the symbols,
but we can ignore them here since they are used just for optical orientation.)
The code alphabet has 11 symbols: 0, 1, . . . , 9 and X (read: ten). For
example, the book of Lin and Costello (1983) has

ISBN 0 13-283796-X.

The first number 0 denotes the country (USA), 13 denotes the publisher
(Prentice-Η all), and the next six digits are assigned by the publisher as
an identification number of the book. The last symbol is a check symbol
(analogously as in the ASCII code above). It is set in such a way that for
each ISBN code word 010203 . . . 09010 , the sum

10

^ i a i i _ i = 10oi + 9a 2 + 8 a 3 + h 2a 9 + a 1 0

• = 1

be divisible by 11. For example, in the ISBN above:

1 0 x 0 + 9 x 1 + 8 x 3 + 7 x 2 + 6 x 8 +

5 x 3 + 4 x 7 + 3 x 9 + 2 x 6 + 1 x 1 0 = 132 = 1 1 x 1 2 .

Some publishers have a three-digit identification (e.g., Wiley-Intersci-
ence has 471) and then they assign a five-digit number to each publication.

1.5 Construction of Instantaneous Codes

Suppose you want to construct a binary instantaneous code of the source
alphabet { α ι , . . . , ο „ } . It is sufficient to specify the lengths d\ d„ of
the expected code words. In fact, we can certainly assume that di < 0*2 <
·•• < d„. Then we choose an arbitrary binary word K(ai) of length d%.
Next we choose a binary word / ί (α 2) of length d 2 , but we avoid all those
which have the prefix Κ(αχ). This is possible: the number of all binary
words of length d2 is 2 d j . The number of those having the prefix K(ai) is
2dl~dl (because you can choose the 0*2 — di digits remaining after the prefix
K(ai) arbitrarily). Since 2d* > 2d7~dl + 1, we have at least one choice of
K(a2).

Next, we want to choose a word of length 0*3 which has neither prefix
K(a\) nor K(o.2). Thus, from the 2d* possible words, we must avoid all
the 2d3-dl words with the prefix Λ'(αι) and all the 2d*~d3 words with the
prefix K(a2). This is possible if (and only if)

12 CHAPTER 1. CODING AND DECODING

Dividing the last inequality by 2 d > , we obtain

1 > 2~dl + 2~dl + 2~di.

Analogously, we can see that the following inequality

1 > 2~dl + 2~d3 + · ·• + 2 _ d -

makes it possible to fulfil our task. It turns out that this inequality is both
necessary and sufficient for a construction of instantaneous codes.

Example. We want to find an instantaneous code with the same lengths
of code words as that in Example 1.3(3) above. This is possible since

1 > 2" 1 + 2 - 2 + 2 - 3 + 2 - 3 .

Here is such a code:

0 ι—• 0 I . — - 10 2 . — 110 3 H - . 1 1 1 .

1.6 Kraft's Inequality

Theorem. Given a source alphabet of η symbols and a code alphabet of
k symbols, then an instantaneous code with given lengths d%, d-ι, ... , dn of
code words exists, whenever the following Kraft's inequality

k~dl + k~i3 + • • • + k-d" < 1

is fulfilled.

P R O O F . We can assume that the source alphabet {αχ, a j , . . . , a„} is pre-
sented in the order imposed by the lengths of the expected code words; i.e.,
d\ < di < · · < dn. We define instantaneous coding Κ by the following
induction:

(1) Choose an arbitrary word K(a.\) of length d\.

(2) Suppose K(ai), K(a^), K(a,-i) have been chosen. Then
choose an arbitrary word K(a,) of length d, with no prefix among K(ai),
... , K(a,-i). This is possible: the number of words with the prefix K(ai)
is kd,~di, and thus we have a choice of

1.7. McMILLAN'S THEOREM 13

words. From Kraft's inequality, we get

and multiplying by kdi, we conclude

j - l

kd--S"kd--d' > 1.
i=l

•

1.7 McMillan's Theorem
McMillan's Theorem. Every uniquely decodable coding satisfies Kraft's
inequality.

R e m a r k . We see that Kraft's inequality is not only sufficient, but also
necessary for the construction of an instantaneous code. However, McMil-
lan's Theorem says much more: instantaneous codes are just as efficient
as uniquely decodable codes. More precisely, for every uniquely decod-
able code there exists an instantaneous code with the same lengths of code
words.

P R O O F . Let AT be a uniquely decodable coding. Denote by d< the length
of the code word K(ai), i = 1, 2 , . . . , n. Observe that for each number
j = 1, 2, 3 , . . . , we can form exactly k> words of length j in the (i-symbol)
code alphabet. By unique decodability, the number of source messages
aj ,a , - a . . . a j r whose code has length j cannot exceed lb'. The length of the
code is d,, + dj 3 + • • · + dj r . Thus, we observe that the number of all sums
of the form

d<, + d > 3 + · · · + ύ

is smaller or equal to W.
It is our task to prove that the number

+ dir = j (1.7.1)

η

is smaller or equal to 1. For this, we will verify that the numbers £ are
bounded for all r = 1, 2, 3, In fact, each number c > 1 clearly fulfils

14 CHAPTER 1. CODING AND DECODING

limr_oo y = oo, and, therefore, the theorem will then be proved. Let us
compute the powers of c:

\ = 1 ' \ ' = 1 ' i,j = l

and, in general,

c r = £ *-<*,+*.,+•••+*,.). (1 7 2)

<i,. . , i , = l

We can reorder the last sum by collecting all the summands ib -', where j
satisfies (1.7.1). The largest possible j is j = d + d + r d = rd, where
d = m&x(di,..., </„). As observed above, the number of all summands k~*
in sum (1.7.2) is smaller or equal to JbJ. Thus,

rd rd

cr < Σ V · 1 = rd.

Consequently, < d, which proves that c < 1. D

Exercises

1A What is the smallest length of a block code with the same source
alphabet {A, B, ..., Z) and the same code alphabet { · , — , space} as
the Morse code?

1 01 A . 1010
2 . Oil Β . . 001
3 . 10 C . 101
4 . 1000 D . 0001
5 . . 1100 Ε . 1101
6 . . 0111 F .. 1011

Figure 5 Figure 6

EXERCISES 15

I B Is the code in Figure 5 uniquely decodable? Is it instantaneous? Can
you find an instantaneous code with the same lengths of code words?

1C Is the code in Figure 6 uniquely decodable? If not, exhibit two source
messages with the same code.

I D Is the code in Figure 7 uniquely decodable?

0 .. . AA
1 .. . AABAB
2 . ABBBBB

ABABA 3 ..
. ABBBBB

ABABA A . . 001 A . 00
4 . . . ABBAA Β . 1001 Β . 10
5 . . BABBA C . . 0010 c . 011
6 . BBBAB D . 1110 D . 101
7 . AAAABB Ε 1010 Ε . 111
8 . AAAABA F . o n i o F 110
9 . AAAAAB G . . 0101 G . 010

Figure 7 Figure 8

I E Can you decide unique decodability of the two codes in Figure 8 by
using Kraft's inequality?

I F Construct a binary instantaneous code for the following source al-
phabet with the prescribed lengths of code words:

Symbol
Length

A B C D E F G H I J K L
2 4 7 7 3 4 7 7 3 4 7 7

1G Construct a ternary (three code symbols) instantaneous code for the
following source alphabet with the prescribed lengths of code words:

Symbol
Length

1 2 3 4 5 6 7 8 9 0
1 3 3 3 3 2 2 2 2 2

16 CHAPTER 1. CODING AND DECODING

1H How many code symbols are needed if the following source alphabet
is to be encoded into an instantaneous code with the prescribed lengths of
code words:

A B C D E F G H I J K L M N O P
1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2

I I Prove that for each instantaneous code for which Kraft's inequality
is not an equality, it is possible to add a new source symbol and extend
the given code to an instantaneous code (with the same code alphabet).
Demonstrate this on the code found in Exercise 1.6.

Notes

Coding theory and information theory have their origin in the fundamental
work of Claude E. Shannon (1948), reprinted in Slepian (1974), although
many of the ideas were understood and used before. The small interesting
book of Richard N. Hamming (1980), one of the founders of coding theory,
provides further historical remarks.

Kraft's inequality was formulated by Kraft (1949). The source of McMil-
lan's Theorem is McMillan (1956), the present proof is from Karush (1961).

Chapter 2

Huffman Codes

We have mentioned that if the frequencies of source symbols vary, then
instantaneous codes can be preferable to block codes: the most frequent
symbols will be encoded into the shortest code words. We now make these
considerations more precise. If the frequencies of source symbols are known
exactly (i.e., if the probability distribution of source symbols in messages
has been determined), we want to find the most efficient coding.

2.1 Information Source
Definition. An information source is a source alphabet together with a
probability distribution; i.e., a set {(ii,... ,an) together with numbers
Ρ(αι),..., P (a„) satisfying £ J L , P (a ;) = 1 and 0 < P(a .) < 1.

More precisely, we should speak about a discrete, zero-memory infor-
mation source: discrete because we have discrete source symbols, and zero-
memory because we assume that the source symbols appear independently.
In other words, the probabilities Ρ(α,) fully describe the statistics of the
source messages, and the probability of a message di,a%3 • • • o, r can be com-
puted from the probabilities of the individual symbols:

P(aitah ... air) = P(ah) P (a < a) . . . P (a < r) .

2.2 Huffman Codes

Let AT be a coding of an information source. That is, for each source
symbol α<, we have a code word Λ"(α,) and we know the probability P(aj)

17

