
Java ME on Symbian OS

Roy Ben Hayun

With
Sam Mason, Daniel Rocha, and Ivan Litovski, assisted by Sam
Cartwright

Reviewed by
Gavin Arrowsmith, Brendan Donegan, Erik Jacobson,
Martin de Jode, Mark Shackman, Jo Stichbury

Head of Symbian Press
Freddie Gjertsen

Managing Editor
Satu McNabb

A John Wiley and Sons, Ltd., Publication

ayyappan
9780470743744.jpg

Java ME on Symbian OS

Inside the Smartphone Model

Java ME on Symbian OS

Roy Ben Hayun

With
Sam Mason, Daniel Rocha, and Ivan Litovski, assisted by Sam
Cartwright

Reviewed by
Gavin Arrowsmith, Brendan Donegan, Erik Jacobson,
Martin de Jode, Mark Shackman, Jo Stichbury

Head of Symbian Press
Freddie Gjertsen

Managing Editor
Satu McNabb

A John Wiley and Sons, Ltd., Publication

Copyright 2009 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.com
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the
Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, London EC1N 8TS, UK, without the permission in writing of the Publisher. Requests to
the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.com, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It
is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or
other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Hayun, Roy Ben.
Java ME on Symbian OS : inside the smartphone model / Roy Ben Hayun, with Sam Mason ... [et al.].

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-74318-8 (pbk. : alk. paper) 1. Smartphones–Programming. 2. Java (Computer program language)

3. Symbian OS (Computer file) I. Title.
TK6570.M6H33 2009
005.26’8–dc22

2008053889

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-47074318-8

Typeset in 10/12 Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Foreword ix

Kicking Butt with Java Technology on Symbian OS xv

About This Book xvii

Author Biographies xix

Author’s Acknowledgements xxi

Symbian Press Acknowledgements xxiii

Part One: Introduction to Java ME and
Programming Fundamentals 1

1 Introduction to Java ME, Symbian OS and
Smartphones 3
1.1 2003: Rise of the Mobile 3
1.2 2008: Mobile Generation 6
1.3 Meet the Host – Symbian OS 7
1.4 What Is Java? 9
1.5 Java ME 12
1.6 Why Use Java ME on Symbian OS? 17
1.7 Java’s Place in the Sun 21
1.8 Routes to Market 22

vi CONTENTS

1.9 Time for a Facelift 24
1.10 Back to the Future: MSA 2.0 and MIDP 3.0 24
1.11 Summary 26

2 Fundamentals of Java ME MIDP Programming 27
2.1 Introduction to MIDP 27
2.2 Using MIDlets 28
2.3 MIDP Graphical User Interfaces API 34
2.4 Non-GUI APIs in MIDP 56
2.5 MIDP Security Model 59
2.6 Networking and General Connection Framework 69
2.7 Using the Push Registry 78
2.8 MIDP and the JTWI 81
2.9 Mobile Media API 82
2.10 Wireless Messaging API 95
2.11 Symbian OS Java ME Certification 100
2.12 Summary 101

Part Two: Java ME on Symbian OS 103

3 Enter Java ME on Symbian OS 105
3.1 Running a MIDlet on a Symbian Smartphone 106
3.2 Which APIs Are Supported? 113
3.3 Proprietary JAD Attributes 122
3.4 Computing Capabilities of Java ME on Symbian OS 123
3.5 Java ME: Exposing the Power of Symbian OS 125
3.6 Tools for Java ME on Symbian OS 131
3.7 Java ME Management on Devices 131
3.8 Crossing to the Native Land of Symbian OS 139
3.9 Finding More Information 145
3.10 Summary 146

4 Handling Diversity 149
4.1 General Approaches to Handling Diversity 150
4.2 Detecting Diversity using Properties 151
4.3 Using Adaptive Code and Flexible Design to

Handle Diversity 153
4.4 Handling JSR Fragmentation 158
4.5 Handling Transitions Between Foreground and

Background 161
4.6 Supporting Diverse Input Mechanisms 162
4.7 Handling Diverse Multimedia Formats and

Protocols 166
4.8 Handling Screen and Display Diversity 169

CONTENTS vii

4.9 A Last Resort: NetBeans Preprocessing 173
4.10 Summary 173

5 Java ME SDKs for Symbian OS 175
5.1 Recommended Tooling Approach for Java ME on

Symbian OS 176
5.2 Generic SDKs: Java ME SDK 3.0 and WTK 2.5.2 177
5.3 SDKs for the S60 3rd Edition and 5th Edition

Platforms 178
5.4 SDKs for the UIQ 3 UI Platform 189
5.5 Summary 205

Part Three: MSA, DoJa and MIDP Game
Development 207

6 Designing Advanced Applications with MSA 209
6.1 What Is MSA? 209
6.2 What Can I Do with MSA? 213
6.3 Spicing up Legacy MIDP Applications 222
6.4 Beyond MSA 1.1: MIDP 3.0 and MSA 2.0 227
6.5 MSA and Symbian OS 229
6.6 Summary 230

7 DoJa (Java for FOMA) 231
7.1 In the Beginning. . . 231
7.2 DoJa – the Basics 234
7.3 I Love JAM 238
7.4 DoJa Basic Operations Manual 240
7.5 Eclipsing DoJa 240
7.6 Dirty Hands 243
7.7 A Safe Port 250
7.8 DoJa 5.1 Profile 254
7.9 Summary 264

8 Writing MIDP Games 265
8.1 What Is a Game? 266
8.2 Building a Simple MIDP Game 273
8.3 MIDP 2.0 Game API Core Concepts 279
8.4 Building an Advanced Java Game on Symbian OS 282
8.5 Summary 303

viii CONTENTS

9 Java ME Best Practices 305
9.1 Investing in the User Experience 305
9.2 Good Programming Practices 308
9.3 Streamlining the Deployment and Execution

Lifecycle 322
9.4 General Tips for Symbian OS 325
9.5 Summary 327

Part Four: Under the Hood of Java ME 329

10 Java ME Subsystem Architecture 331
10.1 Java Applications and Symbian OS 331
10.2 Application Management Software 336
10.3 MIDP Push 337
10.4 Mean and Lean Virtual Machine 338
10.5 MIDP Implementation Layer 342
10.6 Handling Asynchronous Symbian OS Operations 346
10.7 Java-level Debugging Support 348
10.8 Performance 349
10.9 Security 350
10.10 Summary 351

11 Integration of Java ME and Native APIs 353
11.1 Importance of Integration with Symbian OS

Services 354
11.2 Types and Levels of Integration 356
11.3 Integration Challenges, Costs and Considerations 357
11.4 Determining the Right Integration Style 358
11.5 Examples of JSR Integration 359
11.6 Summary 384

Appendix A: WidSets 385

Appendix B: SNAP Mobile 411

References 433

Index 435

Foreword
James Coplien

It was great re-discovering through this book just how much of a nerd I
am. Roy’s descriptions and exercises painted amazing pictures in my head
of the internal workings of my own Nokia S60 phone, to the extent that I
unearthed new and useful menus previously invisible to me. While I can’t
promise that every casual reader will find this book suitable as a user’s
guide, and while I can’t promise that every programmer will become an
expert user of their own handset by reading the chapters that follow, I can
promise the intent programmer a treasure chest of knowledge not only
for understanding what goes on inside your phone but also for changing
what goes on inside your phone.

Java ME on Symbian OS is a title that sounds like nerd’s heaven – and
it is (though it’s more than that, as I’ll come back to below). Though
the title bears two trade names, the meat of the book proudly displays
its inclusiveness across the market: Sun, Symbian, Nokia, Samsung, LG,
Sony-Ericsson, Motorola . . . It’s the ultimate mash-up. This is a book less
about niche technologies than about a broad phenomenon. It isn’t only
a technological phenomenon but a sociological one; if you don’t view it
that way today, I believe that vision is rapidly approaching tomorrow.

To the everyday programmer, I think this book will open a new
world of wonder, as history has similarly favored our industry several
times in the past. Twenty years ago, someone would have thought
you to be drunk if you asked him to take a picture of you with his
phone. Today we have lost touch with photographic film and, to a large
degree, with those ancillary devices called cameras. We used to have a
shelf-full of gadgets for voice dictation on the run, digital photography,
calendar management, and, yes, even communication – all of which are

x FOREWORD

converging on single small, convenient computers that are the brain-
grand-grand-grand-grand-children of Alexander Graham Bell. And those
boxes need software – software such as you will find in this book, along
with guidance for bringing it to life.

It was inevitable that the evolution of consumer programming should
turn to the telephone. I remember the visions of unification of computers
and telephones in the minds of people such as Jerry Johnson back in
Bell Lab in the 1970s. We can now look back at the past 20 years and
conclude that computers’ primary contribution to society has been not
as calculating engines in their own right, but as tiny points on an almost
fully-connected network that ties together most computers in the world.
The phone network is more than just a metaphor for the worldwide web:
it is often its backbone. As the pundits predicted, the intelligence has
evolved out of the network into its periphery, out of its bowels and into
its eyes, ears, and fingers.

The intelligence hasn’t stopped at phones. Next year, Nokia and RWE
are expected to market a box that extends the phone network to control
heating, window shades, and home security cameras. The possibilities are
endless. Programmable phones will replace not only cameras and small
dictation machines, but will reach ever further into both our immediate
and physically remote realities. They have already made a significant
foray into the video game space, taking advantage of advancing display
technology, complementing our newfound connections with reality with
newfound escapes into fantasy. In the not so distant future, these two
worlds may blend and merge. Whereas yesterday’s play was a personal
Tamagotchi and today’s play includes multiple Tamagotchis talking via
an infrared Tamacom protocol, tomorrow will see our phones as a
Tamagotchi interface whereby we feed or clean up after the flesh-and-
blood Fido back home – all with a sequence of a few DTMF tones.

Roy’s book takes us on a journey into a land that is more than
just nerd heaven. The history of computing has drawn more and more
everyday folk into programming. This trend sits squarely in the center
of the vision of people such as Alan Kay and Adele Goldberg: that
computers should be the sidekicks of human beings from early life,
enabling children of all ages to extend their memory and processing
power by manufactured, rather than biological, means. This vision of a
Dynabook – a truly personal computer, an extension of self – includes
information tethered to the outside world as one of its central building
blocks. Because my Dynabook is part of me, I get to program it. Today,
that programming means setting a date on my calendar or setting an
alarm for a meeting. Those humble acts may not entail using Java, but

FOREWORD xi

it’s still programming: as Dan Barstow used to say, ”No matter how
high-level, it’s still programming.” To me, as a C++ programmer, Java
looks almost like a scripting language. And that’s not even an insult.
Java has perhaps finally realized its vision of ubiquitous expression of
general-purpose computation that is portable and intelligible enough that
Everyperson can at least tweak the code. I know that such æsthetics
are difficult to judge from the seat of a professional programmer, but
we can at least say that Java code provides a glimpse of such a world.
Perhaps even my neighbor, the real-estate salesman, could read some of
the code in this book and understand it well enough to play with it. Or
my dentist. Or my banker. None of them are professional programmers.
But each has a computer on his or her desk: a machine which 40 years
ago would have terrified most secretaries, and which still terrifies some
executives today. Machine creatures inhabit more and more of the human
ecosystem.

It’s interesting to note that such programmability has played out not in
desktop phones (yes, they still exist) but in hand-held portable phones.
Why? Perhaps it is because only personal cellular phones are close
enough to our heart – or some other part of our anatomy – to truly be part
of Self. It was a revolution when people who bought the early Ataris and
Amigas discovered that they could actually program them themselves. We
are perhaps on the threshold of a revolution that unleashes more powerful
programming into the hands of what will be over one billion owners of
Symbian OS phones in two or three years. Even if great programmers arise
from only one in a million of these users of small-handheld computers
that take pictures, play games, and even place phone calls, it will be
enough to move the world.

This book, as a nerd’s text, is nonetheless a bold foray into Dynabook
territory. If nothing else, it will make you realize that if you own a
regular personal computer and a mobile phone, that it’s within your
reach – today – to write software that can be an at-hand extension of
yourself any time, anywhere. It is perhaps one small step on the road to a
future vision of even further integration between man and machine. Such
integration must go forward with intense ethical scrutiny and social care;
if we choose such a path, machines can make us even more human,
humane, and social than we are today.

I leave you with a poem which, when published, was wrongly
attributed to me alone. It was written by the attendees at VikingPLoP
2004 as we took the human–computer symbiosis to its limit. Think of
Java ME on Symbian OS as an important step on this journey. Nerds,
children of all ages, and everybody out there: Happy Programming!

xii FOREWORD

Comfortable as blue jeans

She fits.
Part of me, yet not me;
Unplugged: oxygen is her food
And the breeze her power adaptor.

Her identity mine, yet not me:
I put her down, I take her up
like a well-worn wallet plump
with life’s means and memories.

A thin mask worn in life’s play
And both of us are players.

I call her Self; she does not call me User
A curse unique to programmers and other pushers.
I and my computer are one
But we own each other not.

Envision this: my new machine, a soulmate,
With whom I talk in whispers unencumbered by flesh and bone
Software begotten, not made
Of one being with its person.
She hears my voice, and perhaps my thoughts
rather than the drumming of my fingers
that burdened her forebears:
35 calcium levers linking brain to digits,
slow and tired machines of the information age.
Now, mind to mind,
there for tea and sympathy
all day, and our night
minds together process the day,
sharing dreams – yet
She slumbers not, nor sleeps.

An invisible mask the birthright of all humanity;
Her software penned by

My soul
And like my soul, her hardware
Im-mortal, invisible

Us together wise.
Transparent personæ mine, yet not me,
That with me loves, and lives, and walks life’s journey –
A path both real and virtual at once

as only a True and rich life is.

FOREWORD xiii

With me she dies
– our immortality inscribed in

the fabric of the network.
No duality of community here

and Internet there –
The Network is the Com-

munity:

One Web of life.

Jim Coplien
Mørdrup, Denmark

2 July 2008
en.wikipedia.org/wiki/James O. Coplien

Kicking Butt with Java Technology on
Symbian OS

Mobile phones have changed the lives of billions of people and it’s
clear that the revolution is just beginning. The quickly evolving world
of mobile technologies is an exciting place for developers to create new
applications to connect people and information.

Java technology has enjoyed dizzying success in just under a decade
in the mobile phone industry. As I write, more than 2.1 billion Java
technology devices are deployed worldwide. At the same time, Symbian
OS dominates the fast-growing smartphone market (with approximately
70%). This book is about the confluence of these two technologies and
how to create your own powerful mobile applications.

Now is a great time to be a mobile developer. You can help shape
the coming landscape of advanced mobile applications by harnessing the
power of both Java technology and Symbian OS. Learn the technologies,
let your imagination run free, and have fun!

Jonathan Knudsen
jonathanknudsen.com

Author of Kicking Butt with MIDP and MSA

About This Book

In 2001, Symbian published its first book devoted to Java on Symbian
OS. Jonathan Allin’s Wireless Java for Symbian Devices provided an
in-depth exposition targeted at programming PersonalJava on Symbian
OS. In 2004, Martin de Jode’s Programming Java 2 Micro Edition on
Symbian OS focused on programming MIDP, particularly MIDP 2.0 on
Symbian OS. This book is the third in the series and there is no longer a
need to explain what Java is. Therefore, the primary goal of this book is
not to teach Java programming but to introduce you specifically to Java
Platform, Micro Edition (Java ME) on Symbian OS.

This book covers various topics from different perspectives. Our
approach has been to start with the basics and prerequisites that are
assumed in the rest of the book, then zoom into Java ME on Symbian
OS specifically and then out again to discuss a few key areas of Java ME
development today. We finish the book by delving deep down to expose
what’s happening ’under the hood’.

The book logically divides into four main parts:

1. Introduction to Java ME and programming fundamentals

In Chapter 1, we describe the playground of Java ME on Symbian
OS. It is recommended reading if you are not familiar with Java
ME, Symbian OS or the smartphone industry. Chapter 2 is targeted
at developers with no experience in Java ME. It sets the baseline
information that is a prerequisite for reading the rest of the book,
which assumes a certain level of knowledge of Java programming
and, specifically, Java ME. Chapter 2 deals with the basic concepts
of a MIDlet, LCDUI, MMAPI, and so on.

xviii ABOUT THIS BOOK

2. Java ME on Symbian OS

Part 2 assumes you are familiar with Java ME but are interested
in learning about the Java ME platform hosted on Symbian OS.
Chapter 3 explains what makes Java ME on Symbian OS different
from other Java ME platforms; what makes it more powerful; and
what else is unique to Symbian smartphones. Chapter 4 provides
guidelines on how to handle differences between different Symbian
smartphones. Chapter 5 provides an overview of development SDKs
for Java ME on Symbian OS.

3. Drill down into MSA, DoJa and MIDP game development

Part 3 expands the discussion into various key areas of Java ME
development. We show how to leverage the power of MSA, give
an introduction to how Java evolved very differently in the Japanese
market, provide a glimpse of games development and equip you with
best practices for your next application.

4. Under the hood of Java ME

In Part 4, we reveal information that has rarely been exposed before.
Chapter 10 explains the internal architecture of the Java ME subsys-
tem as a Symbian OS component and Chapter 11 explains how Java
ME on Symbian OS is tightly integrated with the native services.

Appendix A introduces WidSets which is a run-time environment that
makes use of the Java language and the Java ME platform. Appendix B
introduces SNAP Mobile for game developers.

This book contains a number of web addresses. If any of them are bro-
ken, please consult the wiki page for this book at developer.symbian.com/
javameonsymbianos to find the updated location.

We welcome beginners and professionals, third-party application
developers and OEM developers working inside Symbian OS. Whether
you’re just starting out in the exciting world of mobile development, want
to learn Java ME or just like reading interesting stuff, this book is a mix of
different topics that combine in the same way as a dish full of spices.

Author Biographies

Roy Ben Hayun

Roy Ben Hayun has more than 10 years’ experience in various Java
technologies in various software engineering roles: engineer, consultant,
team lead, tech lead, and architect. He started his career in Lotus IBM,
working on JDK 1.1.8, and then became a founding member of eMikolo
networks, which pioneered P2P in the early days of Project JXTA. He later
worked in various roles in other startup companies in Java SE, Java ME and
Java EE. From 2002 until the end of 2007, he worked for Symbian, mostly
in the Java group working on the design and implementation of JSRs and
CLDC-HI VM tools support. In his last year at Symbian, he worked in the
team supporting developers, during which time he authored a number of
technical articles and white papers about run-time environments.

After JavaOne 2007, Roy joined Sun Microsystems. He is currently
working as a system architect in the Engineering Services group, which
leads the development, marketing and productizing of Java ME CLDC
and CDC on various platforms.

Ivan Litovski

Ivan joined Symbian in 2002, working first in the Java Team and later with
the System Libraries, Persistent Data Services and Product Creation Tools
teams. Ivan has 11 years of professional experience with Java, embedded
software, information security, networking, scalable servers and Internet
protocols. He enjoys solving difficult problems and research and devel-
opment. He has authored several patents and papers in peer-reviewed,

xx AUTHOR BIOGRAPHIES

international journals. He holds a BSc in Electronics and Telecommuni-
cations from the University of Nis, Serbia and is an Accredited Symbian
Developer.

Sam Mason

Sam spent about two years working on a Java-based, multi-lingual,
video-on-demand system for SingTel and other Asia-Pacific Economic
Cooperation (APEC) telecommunications agencies. He has spent most of
the last four years working with and learning about mobile phone tech-
nologies, while picking up a couple of Java certificates and completing a
Master of Information Technology (Autonomous Systems) at the Univer-
sity of New South Wales along the way. He was a contributing author
to Games on Symbian OS, writing the chapters on Java ME development
and DoJa. He is an Accredited Symbian Developer.

Daniel Rocha

Daniel is a software engineer with 10 years’ experience in application
development, having worked with web (Perl, ASP, PHP, JavaScript, JSP,
Flash), enterprise (Java EE) and mobile software (Symbian C++, Java ME,
Flash Lite, Python). He currently works as a Forum Nokia Technology
Expert.

Author’s Acknowledgements

I feel vividly that this project was an amazing experience, primarily
because of the people involved. I am blessed that there are so many
people to thank – editors, contributing authors, reviewers, test readers
and colleagues.

Two of the people whom I had the honor to be guided by, Jo Stichbury
and Jim Coplien, I met for the first time on the same day. The place was
the ACCU conference in 2006 and the idea of writing the next book about
Java ME for Symbian OS was too embryonic to be called ’an idea‘. Jo
Stichbury (who had just returned from Nokia to Symbian) knew from her
own authoring experience how to deliver a book from start to finish, and
I am thankful for her personal guidance, her professionalism and wisdom
as a technical editor, which has always managed to find the right solution
at any time and on any matter.

I am also thankful for meeting Jim Coplien, a truly visionary guy. Full
of passion, equipped with his one-of-a-kind way of thinking, he has that
rare long memory into the past of software engineering and a vision into
the future of what will come out of all that we are currently doing.

I am also in debt to the wonderful people who have contributed from
their knowledge and experience: Ivan Litovski, Sam Mason and Daniel
Rocha. Ivan has been a great friend from day one in the Java group at
Symbian, and is a reviewer and contributing author to this book. Sam
is a passionate mobile expert and the founder of Mobile Intelligence in
Australia. I have been lucky enough to work with Sam on this book and to
meet and become friends at JavaOne 2008. Daniel has constantly given
this project wonderful support and his contributions, from his viewpoint
inside Forum Nokia, have been invaluable. He came to the rescue on
many occasions, and I’m truly appreciative of his hard work and energy.

xxii AUTHOR’S ACKNOWLEDGEMENTS

I’d also like to thank Mark Shackman for the pleasure of working
with him during my four and a half years in Symbian. I am grateful for
his constant insistence on the build up of logical arguments and perfect
phrasing. Mark always delivers, and he manages to get the best out of
hundreds (by now probably thousands!) of embryonic articles and book
chapters.

Thanks also to Martin de Jode for his valuable comments from his own
experience in writing the second book in this series and much gratitude
to Satu McNabb for her support and for always being there to help.

I’d also like to acknowledge:

• the people at John Wiley & Sons for working with us on this book
with their high standards of professionalism and quality

• my current group, Engineering Services in CSG, Sun Microsystems,
which had the ability to see the future of Java from the remote distance
of the 1990s and leads the way towards the next generation of Java
technologies

• the Java group in Symbian, of which I had the pleasure to be a member
during most of my time in London

• the Developers’ Consulting team and the Developer Product Market-
ing team in Symbian

• the many people who took time and patience to read all the sugges-
tions and ideas that were yet to become chapters: Arnon Klein, Assaf
Yavnai, Yevgeny (Eugene) Jorov, Jonathan Knudsen, Tomas Brandalik,
Erik Hellman, Per Revesjö, Magnus Helgstrand, Lars Lundqvist, David
Mery, and Emil Andreas Siemes

• my parents and sister and all of my friends.

Finally, this book is for my friend, partner and wife – Gabi – and our
wonderful, beloved children, Noa and Ariel.

For being blessed with everything that has happened and the things
that are yet to happen.

I hope you will enjoy reading this book.

Symbian Press Acknowledgements

Symbian Press would like to thank Roy, Sam and Daniel for the hard
work and energy they’ve put into this book. Roy piloted this project with
particular passion, and the results you hold before you are testament to
his efforts and those he inspired in his co-authors. We were privileged
indeed to put together such a team of talented writers and developers,
and they in turn were fortunate to be able to draw on an extensive and
experienced support crew, including Sam Cartwright, Martin de Jode,
Ivan Litovski and Mark Shackman.

We’d like to thank everyone involved in writing and reviewing the
text of this book and in helping prepare the final manuscript. As usual,
we’re grateful to the Wiley team (Birgit, Colleen and Claire), and to Sally
Tickner and Shena Deuchars.

In particular, Jo would like to thank Antony and Bruce for supporting
the completion of this title.

Part One
Introduction to Java ME and
Programming Fundamentals

1
Introduction to Java ME, Symbian OS

and Smartphones

Symbian OS is the operating system that powers more than 70% of
smartphones worldwide. In addition to providing one of the industry’s
most powerful native platforms for after-market applications, Symbian OS
pushes the boundary further by allowing third-party software developers
to work with a wide variety of mobile technologies including Symbian
C++, Flash Lite, Python, POSIX-compliant C and, of course, Java ME – the
focus of this book.

The Symbian OS ecosystem has flourished over the last decade and,
like any success story, is made up of many parts. Handset manufacturers,
such as Nokia, use Symbian OS as the foundation stone of their user-
interface platforms. In Japan alone, Symbian OS powers over 30 million
phones that use NTT DoCoMo’s MOAP platform. The latest version,
Symbian OS v9, is used in almost all of Nokia’s famous Nseries (feature-
focused) and Eseries (business-focused) devices.

In this chapter, we explore the Java Platform, Micro Edition (Java ME)
technologies and see how they are uniquely positioned to address the
on-going mobile phone software revolution. We start with a look at
recent history, follow with a brief discussion of the Java language itself,
the composition of Java ME and the benefits it inherits from Symbian OS.
Finally, we wrap up with a look at the mobile phone market and get a
glimpse of what the future holds.

1.1 2003: Rise of the Mobile

One of the problems with turning points in history is that they’re often
only apparent in retrospect. Don’t expect to see Monday 16 June 2003
in any documentary about days that changed the world because it’s
not there – I checked. However, by the end of that day, a startling new

4 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

concept in mobile device hardware had been released, ushering in an
era of exponential progress in mobile computing.

On that rather special Monday, Nokia released a completely new type
of mobile phone. The Nokia 6600 was the most advanced mobile phone
anyone had seen, and it is still remembered today as a clear indication
of where the future was headed. It had a large, 16-bit color screen,
a four-way joystick for navigation and games, and a VGA, 640 × 480
camera for video recording and photography. The phone was a 2.5 G,
Internet-enabled GPRS phone running Symbian OS v7.0 s with 6 MB of
memory for storage, 3 MB RAM and had Bluetooth wireless technology
connectivity. It was also easy to use and looked great at the time (it looks
like a bit of brick today, as you can see from Figure 1.1).

Figure 1.1 Nokia 6600

This new device was clearly going to cause quite a stir, so the
Nokia marketing team came up with a special phrase just for the
launch – something that was prophetic and sounded really cool: Image is
Power.

Less important at the time but far more relevant to us today, the Nokia
6600 was the first mobile phone to come with the very latest in Java
technology – the Mobile Information Device Profile (MIDP) 2.0, which
had recently been finalized. Java ME was already dominating the mobile
software market; it was about to take a huge leap forward and the Nokia
6600 was the springboard. Even today, I keep my Nokia 6600 in a special
place and consider it with reverence.

In 2003, while the rest of the software industry was dragging itself out
of the Dot-com Bust, the constrained-device development sector was at
the start of a vertical rise. Hundreds of business applications had already
been written and shipped in expectation of an amazing shift in the way
people did business. The momentum for mobile hardware and software

2003: RISE OF THE MOBILE 5

built over the years following the release of the Psion Organiser 1 in
1984 and, by 2003, millions of portable information devices had sold
around the world. These included pagers, iPods and generic MP3 players,
personal organizers (both the original handheld computers and the latest
PDAs), Game & Watch1 devices and, of course, mobile phones.

People were getting busier and more ‘connected’. Business was becom-
ing more demanding, requiring decisions faster, for higher stakes, and
24 hours per day. It was an exciting time and mobile technology, it
seemed, had all the answers. Except that it didn’t work out that way.

What the oracles didn’t predict was that while there would be a
worldwide explosion in the use of mobile phones, they would largely be
used to send text messages, buy ringtones and wallpapers, and take photos
or video. People didn’t buy them to do business after all. They bought
them as personal statements and as fashion accessories. They bought
them as a convenient communications device. They also bought games.
Quite a lot of games, actually. Thousands of titles were developed and
sold directly to the public or shipped on devices. The market for mobile
phone games quadrupled between 2002 and 2003 and it is estimated that
over 50 million phones that allow after-market game installation were
shipped in 2002 alone.

Fast forward five years to 2007 and there are nearly three billion mobile
phone subscribers worldwide.2 The mobile phone has now become the
personal information accessory of choice – everyone is ‘texting’ using
appalling new pseudo-grammars (wch is gr8 if u cn do it), crowded buses
sound like call centers, the mobile games market has exploded into the
public eye with huge titles, such as The Sims 2,3 and in many parts of
the world a new kind of digital life has emerged and become the norm.
The newest devices are a far cry from the Nokia 6600. January 2007 saw
the iPhone launched into the marketplace, followed closely by the Nokia
N95 in March of the same year with the slogan ‘It’s what computers have
become‘. In October 2008, the T-Mobile G1 became the first smartphone
to use the Android platform. Clearly innovation and demand caused
many changes in just those five years!

Let’s look at some of the figures to put this into perspective – in 2007,
mobile handset annual sales exceeded 1 billion units for the first time.
That means that more than 2.7 million phones were sold each day.
Moreover, sales of Nokia handsets alone in 2007 were larger than the
entire industry in 2001 and 2002! Figure 1.2 charts annual sales and
shows how the market almost tripled over a six-year period, with an
annual growth rate of nearly 20%.

1 If you missed the 1980s, find out about the Game & Watch craze at en.wikipedia.
org/wiki/Game %26 Watch

2 Global cell phone penetration reached 50% in November 2007, according to
www.reuters.com/article/technologyNews/idUSL2917209520071129

3 www.thesims2.com

6 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
00

200,000

S
ales (000s)

400,000

600,000

800,000

1,000,000

1,200,000

Nokia Motorola Siemens Samsung Sony Ericsson LG Others

Figure 1.2 Annual number of devices sold4

Add five more years and it is 2012. At current growth rates, it is
estimated that smartphones will comprise nearly 30% of the market
(compared to 10% in 2007) and that subscriber levels worldwide will
reach 3.5 billion. Just think about that number – we can’t really conceive
figures like this in our minds, but this is a really big market. Eight out
of ten devices support some form of Java-based technology – quite an
opportunity for the budding technically-minded entrepreneur. If you sell
every thousandth person a $1 Java ME MIDlet, pretty soon you’ll have
made over $3 million – job done, time to retire.

1.2 2008: Mobile Generation

Our world has changed. Like all great upheavals, the ‘rise of the mobile’
has had both positive and negative effects on us. As a society, we’re
irrevocably addicted to our information devices now. Everywhere we look
we see iPod MP3 players, Tom-Tom personal navigation devices, mass-
market feature phones, smartphones, managers who can’t get off their
Blackberries, people talking while walking, people setting up meetings,
messaging, listening to music, reading, using devices for entertainment,
organization, romance, learning. It goes on and on.

Mobile information devices are the instruments of an unprecedented
wave of fundamental social change. The very basis upon which we inter-
act with each other has suddenly changed without notice and the results
are not necessarily all good. SMS bullying is on the rise; onboard cameras
have changed our expectations of personal privacy; train carriages are

4 java.sun.com/developer/technicalArticles/javame/mobilemarket

MEET THE HOST – SYMBIAN OS 7

like mobile offices; and I’ve yet to go to a funeral where someone’s mobile
doesn’t ring during the eulogy. It’s fashionable to talk about people being
more ‘connected’, as I did above, but a world full of people with iPods
and earphones can feel like an increasingly isolated one. Even our basic
standards of interaction are affected – people think nothing of sending
text messages while talking to you and the legalities involved with using
evidence from mobile phones are still being ironed out.

On the positive side though, the plethora of lifestyle applications and
services available on mobile phones now definitely makes life a lot more
interesting. GPS and navigation applications make it hard to get lost in
most places in the world and you can send goodnight kisses to your kids
via MMS from wherever you end up! Messaging is by nature asynchronous
so you don’t have to deal with inter-personal communication immediately
any more, which allows you to manage your time better. And if you have
a two-hour train trip to work why not listen to a podcast on some topic of
interest instead of reading the newspaper?

I was thinking the other day about the phrase ‘Information is power’
and about mobile phones, games, Symbian OS, business applications,
Nokia, the future, mobile phones (again), robots, Linux and just general
technology. As sometimes happens, I had an acronym attack and real-
ized that information is indeed POWER because it affords us Pleasure,
Opportunity, Wealth, Experience and Reputation. To me, this acronym
spells out five very good reasons to start learning Java ME today. If you’re
not yet convinced, stick with me, since the rest of this chapter, and
the book, considers the use of Java technology, specifically the Java ME
platform, as the candidate to address the growing hardware diversity and
the challenges of the future.

1.3 Meet the Host – Symbian OS

Symbian OS is a market-leading, open operating system for mobile
phones. Cumulative sales of Symbian smartphones reached 226 million
units worldwide in June 2008. By the end of that month, more than 250
different models of smartphone had been created by handset manufactur-
ers licensing Symbian OS; eight handset vendors, including the world’s
five leading vendors, were shipping 159 mobile phone models.5

On 24 June 2008, the Symbian Foundation was announced6 and,
at the time of writing, it is on track to create an open and complete
mobile software platform, which will be available for free, enabling
the whole mobile ecosystem to accelerate innovation. The Symbian
Foundation provides, manages and unifies Symbian OS, S60, MOAP(S)
and UIQ for its members. It is committed to moving the platform

5 www.symbian.com/about/fast.asp
6 www.symbian.com/news/pr/2008/pr200810018.asp

8 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

to open source within two years of the Foundation’s announcement.
See www.symbianfoundation.org for more information.

There have been many operating systems available over the last
decade – so what is it about Symbian OS that has enabled it to stay so far
ahead of the competition? The design of Symbian OS is highly modular,
which means that it is constructed from well-defined, discrete parts. Most
Symbian OS components expose a Symbian C++ API7 and a large number
of these APIs are available to third-party application developers.

At a high level, Symbian OS can be thought of as a layered model, with
a flexible architecture that allows different UI layers to run as platforms
on top of the core operating system. That is, Symbian OS provides a
framework that supplies a common core to enable custom components
to be developed on top of it. The generic UI framework of Symbian
OS supplies the common behavior of the UI and supports extension
by licensees who define their own look and feel. For example, the S60
platform, supplied by Nokia, sits on top of Symbian OS. S60 is the world’s
most popular smartphone platform, and is currently used by Nokia, LG
and Samsung. Almost 180 million S60 devices had been shipped by S60
licensees by the end of June 2008.8

The power and configurable design of Symbian OS are the key con-
tributing factors to its success. Today, Symbian OS devices are being
sold in every market segment as you can see from the variety of
hardware shown in Figure 1.3. If you want to find out more about
Symbian and Symbian OS, there are a range of resources including books
from Symbian Press, available from developer.symbian.com/books, and
www.forum.nokia.com. If you are new to Symbian OS and interested in
a slightly more detailed overview about Symbian OS, a recommended
resource is the first chapter of [Babin 2007].9

W
al

km
an

®

S
po

rt

R
em

ot
e

C
on

tr
ol

M
us

ic

M
ul

tim
ed

ia

W
at

er
pr

oo
f

M
ob

ile
 T

V

B
io

m
et

ric
s

H
yb

rid

B
us

in
es

s

M
us

ic

F
as

hi
on

Im
ag

in
g

S
im

pl
e

Figure 1.3 Symbian OS is everywhere

7 Symbian C++ is a dialect of C++ with idiomatic extensions.
8 www.forum.nokia.com/main/platforms/s60
9 The chapter can be downloaded from developer.symbian.com/main/documentation/

books/books files/dasos.

WHAT IS JAVA? 9

1.4 What Is Java?

Let’s jump back to August 1998. The word ‘Java’ is synonymous with the
Internet in the public mind. The most common question at the time is
‘What is Java?’ If you can explain that then you have a job.

The company behind Java technology is Sun Microsystems, which was
founded in 1982 and today provides a diversity of software, systems,
services, and microelectronics that power everything from consumer
electronics, to developer tools and the world’s most powerful data centers.
Other than Java technology, the core brands include the Solaris operating
system, the MySQL database management system, StorageTek10 and the
UltraSPARC processor.

In the early 1990s, Sun formed the ‘Green Team’ whose job it was
to prepare for the future. One of the team members was James Gosling
(known as ‘the father of Java’). The aim was to create a software platform
that could run independently of the host platform – and the ‘Write Once
Run Anywhere’ mantra was created. By creating a controlled virtual
environment, or machine, software written on one hardware platform
could run unaltered on any other hardware platform.

The Java programming language was introduced by Sun Microsystems
in 1995 and is designed for use in the distributed environment of the
Internet. It was designed to have familiar notation, similar to C++, but
with greater simplicity. The Java programming language can be character-
ized by:

• Portability: Java applications are capable of executing on a variety of
hardware architectures and operating systems.

• Robustness: Unlike programs written in C++, Java instructions cannot
cause a system to ‘crash’.

• Security: Features were designed into the language and run-time
system.

• Object orientation: With the exception of primitive types, everything
in Java is an object in order to support the encapsulation and message-
passing paradigms of object-based software.

• Multithreading and synchronization: Java supports multithreading and
has synchronization primitives built into the language.

• Simplicity and familiarity: This is, of course, relative to C++. Don’t
imagine that Java can be learned in a day.

Java is a technology rather than just a programming language. It is a
collection of software products and specifications that provide a system

10 StorageTek is a tape-based storage solution from Sun. See www.sun.com/storagetek
for more information.

10 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

for development and deployment of cross-platform applications. After
you’ve worked with Java technologies for a while, you’ll realize that
they’re also much more than that – they’re a way of thinking about
software systems and how they work together.

Java is an interpreted language. This means that program code (in
a .java source file) is compiled into a platform-independent set of
bytecodes (a .class file) instead of into machine-specific instructions
(which is what happens to a C program). These bytecodes are then
executed on any machine that hosts a Java platform, a software-only
platform that runs on top of a native platform (the combination of an
operating system and the underlying hardware). A Java platform is divided
into two components:

• The Java virtual machine (JVM) that executes the Java language
bytecode can be ported to various native platforms.

• The collection of Java APIs are ready-made software libraries that
provide programming capabilities.

Together, the JVM and the APIs form the Java platform which insulates
an application from the native platform.

This was a remarkable achievement but it was not achieved without
cost. Support for low-level power and fine-grained control was sacrificed,
as well as explicit memory management and pointers. It was almost
impossible to write Java software that would corrupt memory, but pro-
grammers couldn’t dispose of memory themselves (to the horror of many
there was a new keyword but no delete); instead it was handled auto-
matically by the run-time environment using the ‘garbage collector’. This
was part of the environment that monitored object references at run time
and would decide when to reclaim allocated memory on behalf of the
program.

Added to all of these new ideas was the ‘applet’. This probably had
the largest role in making Java a 1990s buzz word. Java applets are small
programs that can run inside a web browser. Code resides on a remote
server, is downloaded over the network and is executed locally inside a
‘sandbox’, restricting operations to those considered ‘safe’. At the same
time, class file verification and a well-defined security model introduced
a new level of software security.

Java applets had limited use and were quickly outdated by the rise of
Flash as a browser-based, client-side technology but applets had served
a special role in the Java world. They demonstrated the power of this
new language called Java, raised awareness of the Internet and helped
create a strong worldwide Java developer base that today numbers over
six million.

As time went on, Java moved to have more of a focus on desktop
applications and then server applications: suddenly, everyone was talking

WHAT IS JAVA? 11

about Enterprise Java Beans. Following this was a big leap to smart cards
and the emerging market with the rise of mobile phones.

Sun quickly realized that while there were Java solutions for all of
these areas, no one set of technologies could adequately address all
requirements. It was at this point that Java was separated into the four
core technologies that we see in Figure 1.4.11

Optional
packages

Servers &
enterprise
computers

Servers &
personal
computers

High-end PDAs,
TV set-top boxes &
embedded devices

Mobile
phones &
entry-level
PDAs

Smart
cards

Optional
packages

Optional
packages

Optional
packages

MIDP

Java Platform, Micro Edition (Java ME)

CLDC
JVM

CDC
Java
Card

Card VMJVMJVMJVM

Foundation Profile

Java 2
Platform,
Enterprise
Edition
(Java EE)

Java 2
Platform,
Standard
Edition
(Java SE)

Personal Profile

Personal
Basis
Profile

Figure 1.4 Java technologies

The Java Platform, Micro Edition (Java ME) fork was created to address
the constrained-device market. Java Card is a separate technology that
has nothing to do with Java ME. These days, most mobile phones include
some kind of Java technology. Blackberries run a superset of Java ME,
extended with RIM libraries. Google’s Android platform uses a ‘Java-like’
platform and even Microsoft’s Windows Mobile and Pocket PC support
Java ME. Nokia’s Series 40 phones, which form the backbone of the
feature phone market, all have support for Java ME as do all phones
running Symbian OS.12

If you want to know more about the other Java technologies or learn
about the Java language, this is probably the wrong book for you. If that’s
what you want, then probably the best place to start learning about Java

11 Java ME consists of two ‘flavors’, which is why there are five groups in Figure 1.4.
12 Except for MOAP(S), which has DoJa; it is very similar to Java ME, but is not strictly the

same.

12 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

is straight from the creator himself, James Gosling in [Arnold, Gosling
and Holmes 2005]. From this point on, we’re only going to talk about
ME – Java ME!

1.5 Java ME

Sun launched a research and development project called Spotless in the
1990s in order to produce a JVM that could run on devices with small
memory and power budgets, intermittent or non-existent connectivity,
limited graphical user interfaces, divergent file system concepts (if any)
and wildly varying operating systems. This could be anything from set-top
boxes to Internet phones, parking meters, digital TVs, vending machines,
automotive interfaces, electronic toys, personal organizers, household
appliances, pagers, PDAs, high-end smartphones and mass-market feature
phones.

The result of the project was the Kauai virtual machine (KVM). This
was a cut-down version of the JVM that required less than 10% of
the resources needed for the desktop standard edition of Java. This was
achieved by targeting the size of the virtual machine and its class libraries,
reducing the memory used during execution and by creating a pluggable
architecture that allowed sub-systems of the KVM to be tailored to specific
device architectures.

With such a diverse range of hardware targets, it was decided to
adopt a more flexible model for Java ME and the final result consisted of
three high-level components that together make a wide range of solutions
possible. Java ME consists of:

• configurations

• profiles

• optional packages.

We’ll look at each of these in detail shortly. In order to allow for future
expansion and new technologies, additions to the Java ME technologies
are managed through the Java Community Process13 in the form of Java
Specification Requests known as JSRs. Each JSR is reviewed by panels
of experts and public drafts allow a wide range of interested parties to
contribute to the process. JSRs are usually referred to by their name and
number; for example, JSR-82 is the specification request for the Bluetooth
API.

A lot of functionality had to be removed from the desktop Java Standard
Edition (Java SE) to make Java ME. For example, some things that are
missing include:

13 www.jcp.org

JAVA ME 13

• reflection

• thread groups and advanced thread control

• user-defined class loaders

• the Java native interface (JNI)

• automatic object finalization.

Compatibility played a large part in the design of Java ME. In order
to maintain as much compatibility with Java SE as possible, the Java
ME packages were divided into two logical groupings: those that were
specific to Java ME (packages whose names start with javax) and those
that were a subset of their Java SE counterparts which followed the same
package-naming convention.

One of the strongest features of the Java language is its security – both
at the application layer and within the virtual machine itself. The VM
security layer ensures that bytecodes are valid and safe to execute. This
works really well on servers and the desktop environment but not so
well on mobile phones with small processors and small power and
memory budgets. The solution was a hybrid approach using the concept
of pre-verification performed offline as part of the build process on the
development machine. Only after VM acceptance may the bytecodes
execute on the host hardware.

1.5.1 Configurations

Configurations define the lowest common denominator for a horizontal
category of devices that share similarities in terms of memory budgets,
processor power and network connectivity. A configuration is the spec-
ification of a JVM and a base set of necessary class libraries which
are primarily cut-down versions of their desktop counterparts. There are
currently only two configurations:

• The Connected Limited Device Configuration (CLDC) was aimed
specifically at mobile phones, two-way pagers and low-level PDAs.

• The Connected Device Configuration (CDC) was aimed at devices
with more memory, better network connectivity and faster processors.

We should be clear, however, that the CDC profile doesn’t really
have a role in the mobile phone space at this time. Although high-end
devices, such as Symbian OS phones, can accommodate a CDC-based
Java platform, the consumer market today is based on MIDP/CLDC
applications, so CDC is not within the scope of this book.

14 INTRODUCTION TO JAVA ME, SYMBIAN OS AND SMARTPHONES

Table 1.1 CLDC 1.1 Packages

Package Description

java.io Basic classes for I/O via data streams, Read-
ers and Writers

java.lang Reduced math library, threads and system
functionality, fundamental type classes

java.lang.ref Support for weak references which allows
you to hold a reference to an object even
though it is garbage collected

java.util The Vector and Hashtable classes, basic
date and calendar functionality and a
pseudo random number generator which
is great for games

javax.microedition.io CLDC specific interfaces and factories for
datagrams, connection stream etc. Imple-
mentation deferred to profiles.

So far there have been two versions of the CLDC,14 the latest being
CLDC 1.1. Most mobile phones shipped since 2003 contain version 1.1
of the CLDC. CLDC 1.1 (see Table 1.1) includes, amongst other updates,
support for floating-point operations with the introduction of the Float
and Double classes, thread naming and interrupts. The total minimum
memory requirement was also lifted from 160 KB to 192 KB.

While the discussion so far has focused on mobile phones, the CLDC
is not just for phones. As we’ll see in the following section, it forms the
foundation for a number of profiles that target completely different device
families.

1.5.2 Profiles

Profiles sit on top of a configuration and allow it to be adapted and
specialized for a particular class of devices in a vertical market such
as mobile phones. A profile effectively defines a contract between an
application and a set of devices of the same type, usually by including
class libraries that are far more domain-specific than those available in
any particular configuration.

Figure 1.5 shows the three profiles that currently extend the CLDC. The
Mobile Information Device Profile (MIDP) is most relevant to our work
here; the Information Module Profile15 (IMP) targets small devices that
may have no user interface at all, such as parking meters, call boxes, and

14 See the white paper at java.sun.com/j2me/docs/pdf/CLDC-HI whitepaper-February
2005.pdf .

15 java.sun.com/products/imp/index.jsp

