
z/OS JOB CONTROL LANGUAGE

F IFTH EDIT ION

Gary DeWard Brown

John Wiley & Sons, Inc.

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page i





Innodata
0471426733.jpg



9228 Brown/JCL IDX.k.qxd  5/1/02  11:53 AM  Page 482



z/OS JOB CONTROL LANGUAGE

F IFTH EDIT ION

Gary DeWard Brown

John Wiley & Sons, Inc.

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page i



Publisher: Robert Ipsen
Editor: Margaret Eldridge
Developmental Editor: Kathryn A. Malm
Associate Managing Editor: Penny Linskey
New Media Editor: Brian Snapp
Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper. ∞�
Copyright © 2002 by Gary DeWard Brown. All rights reserved.

Published by John Wiley & Sons, Inc.,
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, record-
ing, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

Library of Congress Cataloging-in-Publication Data:
ISBN 0471-236357

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page ii



CONTENTS

Preface ix

Job Control Language Parameters xi

Chapter 1 Introduction 1
1.1 The Shock of JCL 1
1.2 The Role of JCL 3
1.3 The Difficulty of JCL 3
1.4 The Approach to JCL 4

Chapter 2 Introduction to JCL and z/OS 6
2.1 z/OS Concepts and Vocabulary 6
2.2 z/OS Hardware Architecture 10
2.3 Computer Data 26
2.4 Data Storage 33

Chapter 3 JCL within a Job 35
3.1 JCL Statements 35
3.2 Computer Jobs 36
3.3 Creating Programs 41
3.4 Sort Example 42
3.5 Compile, Linkage Edit, Execute Example 45
3.6 Cataloged Procedure 50

Chapter 4 JCL Statement Formats and Rules 51
4.1 JCL Statement Format 51
4.2 Parameters in the Operand Field 53
4.3 Parameter Rules 53

iii

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page iii



4.4 General JCL Rules 54
4.5 Continuing JCL Statements 55
4.6 Commenting JCL 56
4.7 Style in Writing JCL 57
4.8 Placement of JCL Statements 58

Chapter 5 The JOB Statement 60
5.1 Jobname: Name of Job 62
5.2 Accounting Information 63
5.3 Name: Programmer Name 64
5.4 CLASS: Job Class 64
5.5 TIME: Time Limit 65
5.6 MSGCLASS: System Messages 67
5.7 MSGLEVEL: Printing JCL Statements 72
5.8 TYPRUN: Special Job Processing 73

Exercises 74

Chapter 6 The EXEC Statement 77
6.1 Stepname: Name of Job Step 78
6.2 PGM: Name of Program 78
6.3 Procedure: Name of Cataloged Procedure 82
6.4 Keyword Parameters 83
6.5 Region Size 83
6.6 COND: Conditions for Bypassing Job Steps 85
6.7 IF/THEN/ELSE/ENDIF Statement Construct 92
6.8 PARM: Pass Parameters to Job Steps 97
6.9 ACCT: Job Step Accounting Information 99

6.10 SYSUDUMP, SYSABEND, SYSMDUMP: 
Abnormal Termination Dumps 100
Exercises 101

Chapter 7 The DD Statement 103
7.1 Overview of Data Sets 103
7.2 Data Control Block 105
7.3 DD Statement Format 106
7.4 ddname: Data Definition Name 109
7.5 Referback: Referback Parameter 109
7.6 DCB: Data Control Block Parameter 110
7.7 DSN: Data Set Name 120
7.8 DISP: Data Set Disposition 125
7.9 UNIT: I/O Unit 135

iv CONTENTS

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page iv



7.10 VOL: Volume Parameter 140
Exercises 145

Chapter 8 More on the DD Statement 146
8.1 Sequential and Partitioned Data Sets 146
8.2 DUMMY, NULLFILE: Dummy Data Sets 147
8.3 Concatenating Data Sets 149

Exercises 152

Chapter 9 DD Statements for Input Stream 
and Print Data Sets 153

9.1 *,DATA: Input Stream Data Sets 153
9.2 SYSOUT: Output Stream Data Sets 155
9.3 The OUTPUT JCL Statement and Output DD Parameter 158
9.4 The JES /*OUTPUT Statement 168
9.5 The JES3 //*FORMAT PR Statement 169
9.6 Parameters Coded on Several Statements 170

Chapter 10 Direct-Access Storage Devices 181
10.1 Direct-Access Hardware Devices 181
10.2 Space Allocation 183
10.3 The SPACE Parameter 185
10.4 DCB Parameters 194
10.5 Virtual I/O (VIO) Temporary Data Sets 195
10.6 Estimating Space 196
10.7 The LABEL Parameter: Data Set Labels 200
10.8 Multivolume Data Sets 200
10.9 Using Data Sets on Direct-Access Volumes 201

10.10 ABSTR: Requesting Specific Tracks 205
Exercises 206

Chapter 11 SMS: Storage Management Subsystem 208
11.1 The AVGREC Parameter 209
11.2 The DATACLAS, STORCLAS, MGMTCLAS, 

and SECMODEL Parameters 209
11.3 The LIKE and REFDD Parameters 213
11.4 RECORG and KEYOFF for VSAM Data Sets 214
11.5 DSNTYPE Parameter for Partitioned and Extended 

Sequential Data Sets 215

CONTENTS v

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page v



Chapter 12 Magnetic Tapes 217
12.1 Description of Tape 217
12.2 LABEL: Tape Labels 220
12.3 DCB Subparameters 228
12.4 Using Tapes 228
12.5 Compressing Data on Tape 231
12.6 Multivolume Tape Data Sets 232
12.7 Reading Tapes from Another Installation 233
12.8 ISO/ANSI/FIPS Version 3 Labels 233

Exercises 235

Chapter 13 JES2 and JES3 236
13.1 Job Entry Subsystems 236
13.2 JES2 236
13.3 JES3 239

Chapter 14 Cataloged and Instream Procedures 248
14.1 Modifying Statements in Cataloged Procedures 249
14.2 Cataloged Procedures 255
14.3 Instream Procedures 257
14.4 Symbolic Parameters 258
14.5 Nesting Procedures and the INCLUDE Statement 267
14.6 DDNAME: Postponing Definition of Data Sets 270
14.7 Example of Cataloged Procedure 272

Exercises 274

Chapter 15 Generation Data Groups 276
15.1 Creating the Generation Data Group Base Entry 276
15.2 Creating the Model Data Set Label 

(Non-SMS-Managed Data Sets Only) 277
15.3 Creating a Generation Data Set 278
15.4 Retrieving Generation Data Sets 280
15.5 Listing Generation Data Group Catalog Information 280
15.6 Deleting Generation Data Groups 280

Chapter 16 Miscellaneous JCL Features 282
16.1 Checkpoint/Restart 282
16.2 Spanned Records 289
16.3 Data Set Protection 289
16.4 Job Execution Priority 292
16.5 Other JCL Parameters 293

vi CONTENTS

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page vi



16.6 Null Statement 296
16.7 Operator Commands 297
16.8 CNTL/ENDCNTL Program Control Statements 298
16.9 XMIT Data Transmission Statements 298

Chapter 17 VSAM Data Sets 300
17.1 Creating VSAM Data Sets with JCL 304
17.2 Accessing VSAM Data Sets through JCL 305
17.3 The IDCAMS Utility 307
17.4 JOBCAT and STEPCAT DD Statements 314

Chapter 18 The Linkage Editor and Loader 315
18.1 The Linkage Editor 315
18.2 The Loader 328

Exercises 329

Chapter 19 IBM Utility Programs 331
19.1 The IDCAMS Utility 331
19.2 The Icetool Utility Programs 336
19.3 The IBM Utility Programs 341

Chapter 20 Sort/Merge 352
20.1 Sorting Concepts 352
20.2 The DFSORT Program 353
20.3 The SORT Statement 354
20.4 MERGE Statement 358
20.5 Other SORT Statements 359
20.6 Sort Efficiency 376

Exercises 378

Chapter 21 ISPF 379
21.1 Using ISPF 379
21.2 Using ISPF for Programming 384
21.3 Editing Data Sets 388
21.4 Browsing Text 408
21.5 The ISPF Utilities 409

Chapter 22 TSO/E 417
22.1 The TSO/E Language 417
22.2 Logging on and off TSO/E 419

CONTENTS vii

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page vii



22.3 Displaying Information about Data Sets 420
22.4 Allocating Data Sets 422
22.5 Calling Programs 424
22.6 Submitting Jobs 424
22.7 Use of TSO/E for Utility Functions 427
22.8 TSO/E CLISTs 428

Chapter 23 TSO/E REXX 438
23.1 Variables 439
23.2 Arithmetic Expressions 440
23.3 Logical Expressions 440
23.4 Character Operations 441
23.5 REXX Statements 442
23.6 Supplying Arguments in the Command Line 447

Chapter 24 Hierarchical File System (HFS) Files 449
24.1 JCL Parameters for HFS Files 449
24.2 TSO/E HFS Parameters 453
24.3 The BPXBATCH Utility 453

Chapter 25 JCL and the Internet 456
25.1 Useful Web Sites 456
25.2 Sending E-Mail from Batch Jobs 457

Index 461

viii CONTENTS

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page viii



PREFACE

The IBM mainframe continues to be alive and well, despite all the attention
received by PCs. It has adapted to the changing environment, where issues
such as security and reliability make it an ideal platform for the electronic
economy. JCL (Job Control Language) is necessary to run batch jobs on IBM
large mainframe computers, and batch jobs are an inherent part of pro-
gramming on the mainframes. z/OS is the next generation of the OS/390
operating system. The information for it in this book has been extracted
from close to 40 IBM manuals. There are so many manuals for z/OS that if
programmers were each to have a personal copy of all the manuals they
might need, they would risk crushing the continental plate under their
weight. Since manuals are expensive, this book saves you and your com-
pany money.

This is the fifth edition of the JCL book. I have updated it to incorporate
recent changes to JCL and the z/OS features.

My goal for this book continues to be to explain the operating system
and provide readers with most of the information they need to use it. For
this reason, chapters on such subjects as the linkage editor, the IBM utili-
ties, the Sort/Merge utility, VSAM, TSO/E, ISPF, and REXX are included.

Please visit the book’s Web site at www.wiley.com/compbooks/brown
for solutions to the exercises and a summary of obsolete JCL features.

Gary DeWard Brown
Los Angeles, California
April 2002

ix

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page ix



9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page x



Subparam-
Parameter eter of Page

ACCODE DD 234
ACCT EXEC 101
ADDRESS OUTPUT 168
ADDRSPC JOB, EXEC 293
AFF UNIT 140
AMP DD 303
AVGREC DD 209
BLKSIZE DD, DCB 118
BLKSZLIM DD TK
BUFND AMP 304
BUFNI AMP 304
BUFNO DD, DCB 120
BUFSP AMP 304
BUILDING OUTPUT 168
BURST DD, OUTPUT 175
BYTES JOB 173
CCSID JOB, EXEC TK
CHARS DD, OUTPUT 176
CHKPT DD 283
CKPTLINE OUTPUT 174
CKPTPAGE OUTPUT 174
CKPTSEC OUTPUT 174
CLASS JOB 66
CLASS OUTPUT 166
CNTL — 296
CNTL DD 296
COLORMAP OUTPUT TK
COMMAND — 295

Subparam-
Parameter eter of Page

COMPACT OUTPUT 178
COMSETUP OUTPUT 167
COND JOB, EXEC 87
CONTROL OUTPUT 178
COPIES DD, OUTPUT 171
CROPS AMP 304
DATA DD 155
DATACK OUTPUT 167
DATACLAS DD 209
DCB DD 112
DD — 105
DDNAME DD 270
DEFAULT OUTPUT 161
DEN DD, DCB 228
DEPT OUTPUT 168
DEST DD, OUTPUT 173
DISP DD 127
DLM DD 156
DPAGELBL OUTPUT 167
DSN DD 122
DSNTYPE DD 215
DSORG DD, DCB 113
DUMMY DD 149
DUPLEX OUTPUT TK
DYNAMNBR EXEC 294
ENDCNTL — 296
EXEC — 79
EXPDT DD, LABEL 289

xi

JOB CONTROL LANGUAGE
PARAMETERS

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page xi



Subparam-
Parameter eter of Page

FCB DD, OUTPUT 175
FILEDATA DD 440
FLASH DD, OUTPUT 177
FORMDEF OUTPUT 167
FORMLEN OUTPUT TK
FORMS OUTPUT 175
FREE DD 160
GROUP JOB 291
GROUPID OUTPUT 167
HOLD DD 158
IF/THEN/
ELSE/ENDIF — 94

INCLUDE DD 268
INDEX OUTPUT 179
JCLLIB — 257
JESDS OUTPUT 166
JOB — 62
JOBCAT Special DD 311
JOBLIB Special DD 81
KEYOFF DD 302
LABEL DD 220
LGSTREAM DD TK
LIKE DD 213
LINDEX OUTPUT 179
LINECT OUTPUT 178
LINES JOB 172
LRECL DD, DCB 116
MEMLIMIT JOB, EXEC TK
MGMTCLAS DD 211
MODIFY DD, OUTPUT 176
MSGCLASS JOB 69
MSGLEVEL JOB 74
NAME OUTPUT 168
NOTIFY JOB 415
NOTIFY OUTPUT 166
NULLFILE DSN 149
OFFSET OUTPUT TK
OPTCD DD, DCB, AMP 176
OUTBIN OUTPUT 166
OUTDISP OUTPUT 166
OUTLIM DD 172

Subparam-
Parameter eter of Page

OUTPUT — 160
OUTPUT DD 160
OVERLAY OUTPUT TK
OVFL OUTPUT 179
PAGEDEF OUTPUT 167
PAGES JOB 173
PARM EXEC 99
PASSWORD JOB 291
PATH DD 439
PATHDISP DD 440
PATHMODE DD 442
PATHOPTS DD 440
PEND — 257
PERFORM JOB, EXEC 293
PGM EXEC 80
PIMSG OUTPUT 167
PRMODE OUTPUT 167
PROC — 255
PROC EXEC 85
PROTECT DD 291
PRTERROR OUTPUT TK
PRTNO OUTPUT TK
PRTOPTNS OUTPUT TK
PRTQUEUE OUTPUT TK
PRTSP DD, DCB 178
PRTY JOB 292
PRTY OUTPUT 167
QNAME DD 294
RD JOB, EXEC 284
RECFM DD, DCB 114
RECORG DD 302
REF VOL 143
REFDD DD 213
REGION JOB, EXEC 85
RESFMT OUTPUT TK
RESTART JOB 285
RETAIN OUTPUT TK
RETRY OUTPUT TK
RETPD DD, LABEL 289
RLS DD 304
ROOM OUTPUT 168

xii JOB CONTROL LANGUAGE PARAMETERS

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page xii



Subparam-
Parameter eter of Page

SCHENV JOB TK
SECLABEL JOB 291
SECMODEL DD 212
SEGMENT DD 159
SER VOL 143
SET — 263
SORTCKPT Special DD 283
SPIN DD 159
SPACE DD 185
STEPCAT Special DD 311
STEPLIB Special DD 82
STORCLAS DD 209
STRNO AMP 304
SUBSYS DD 295
SYNAD AMP 304
SYMNAMES DD TK
SYSABEND Special DD 102
SYSAREA OUTPUT 168
SYSCHK Special DD 287
SYSCKEOV Special DD 283
SYSIN Special DD 155
SYSMDUMP Special DD 103

Subparam-
Parameter eter of Page

SYSOUT DD 157
SYSUDUMP Special DD 102
TERM DD 417
THRESHLD OUTPUT 179
TIME JOB, EXEC 67
TITLE OUTPUT 168
TRC OUTPUT 176
TRTCH DD, DCB 105
TYPRUN JOB 75
UNIT DD 137
USER JOB 291
USERDATA OUTPUT 168
USERLIB OUTPUT 168
VIO DD 195
VOL DD 142
WRITER OUTPUT 174
XMIT — 297
//* — 58
// — 295
/* — 155
* DD 155

JOB CONTROL LANGUAGE PARAMETERS xiii

9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page xiii



9228  Brown/JCL FM.k.qxd  5/2/02  11:36 AM  Page xiv



CHAPTER 1

INTRODUCTION

1.1 THE SHOCK OF JCL

Your first use of JCL (Job Control Language) will be a shock. No doubt you
have used personal computers costing $500 or $1,000 that had wonderfully
human-engineered software, giving you an expectation of how easy it is to
use a computer. Now, as you use a computer costing several million dollars,
you may feel like a waif in a Dickens story standing in the shadow of a mas-
sive mainframe computer saying meekly, “Please, sir, may I run my job?” It
will come as a shock that its software is not wonderfully human engi-
neered.

The hardware and software design of large IBM mainframe computers
date back to the days when Kennedy was president. JCL is a language that
may be older than you are. It was designed at a time when user-friendliness
was not even a gleam in the eye of its designers. This is easily demonstrated
by taking the simple task of copying a file and contrasting how it is done
through JCL with how it is done on the most popular personal computer 
system, Windows. To copy a file with Windows, you left-click twice on the
MY COMPUTER icon, left-click on the C: drive icon, left-click twice on the
folder containing the file, and right-click on the file to copy. On the resulting
menu, you click on COPY and then left-click twice on the folder into which
you want the file copied. Finally, you right-click inside the folder and select
PASTE from the menu and you are done. It is wonderfully intuitive and
simple. To do the same thing with JCL, you might write the following, in
which old-name names the original file and new-name is the name you
select for the copy.

//RT452216 JOB (45992,335),'SAMPLE JOB',CLASS=A
//STEP1  EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSUT1   DD DSN=old-name,DISP=SHR
//SYSUT2   DD DSN=new-name,DISP=(NEW,CATLG),

1

9228 Brown/JCL 01.k.qxd  5/1/02  11:39 AM  Page 1



//            UNIT=SYSDA,RECFM=FB,LRECL=80,
//            SPACE=(0,(100,20))
//SYSIN    DD *
REPRO INFILE(SYSUT1) OUTFILE(SYSUT2)
/*

This is far more complicated and not remotely intuitive. But what if you
must copy 50 files? With JCL, you could use your text editor to quickly
make 50 copies of the JCL statements, and overtype all the old-names and
new-names. Then you simply submit the job to the computer, which is eas-
ier than going through the Windows clicking and pointing procedure 
50 times. Now suppose you must copy the same 50 files on a daily basis.
Windows would be a nightmare, but with JCL, a single command lets you
resubmit the lines of JCL that copy the 50 files.

Then the inevitable happens. Your boss comes in and, with an accusing
eye, asks if you inadvertently forgot to copy a file the previous day. With the
pointing and clicking of Windows, you would have no answer. By contrast,
JCL produces a listing—an audit trail—that you can wave in your boss’s
face to prove that the problem was not yours. The next day your boss
informs you that the copy procedure must be done during the graveyard
shift. With Windows, your nights will be sleepless. But with JCL, you can
specify a job class that starts during the graveyard shift, leaving your nights
free for more enjoyable activities.

What has just been described for JCL is the essence of batch processing
(submitting one or many jobs or procedures in one fell swoop) and produc-
tion computing. Interactive computing, such as that provided by Windows,
Linux, Macintosh, and UNIX is wonderful for many things, but once those
wonderful things are completed and the daily grind of running them begins,
JCL comes into its own.

JCL is neither lovable nor simple. It was designed long ago and shows
its age in ways such as having to code information in specific columns of a
line. However, IBM has made changes to both JCL and the operating system
that eliminate some of its worst aspects.

The large mainframe computer is an extremely conservative environ-
ment. The basic hardware architecture and operating system appear to the
user much as they did over a third of a century ago. The benefit of this is
that programs written back then can still run unchanged today, and knowl-
edge gained back then is still valid. The greatest strength of large IBM main-
frame computers, indeed, the strongest force in the computing universe, is
compatibility. Billions of dollars are tied up in application software, and
many companies would not accept an incompatible computer with modern
design and software features even if it were free, because software is the
dominating cost in computing, not hardware.

2 z/OS JOB CONTROL LANGUAGE

9228 Brown/JCL 01.k.qxd  5/1/02  11:39 AM  Page 2



1.2 THE ROLE OF JCL

You do not use JCL to write computer programs. Instead, it consists of con-
trol statements that introduce a computer job to the operating system, pro-
vide accounting information, direct the operating system on what is to be
done, request hardware devices, and execute the job. JCL tells the operating
system everything it needs to know about a job’s input/output (I/O) require-
ments. Sitting above JCL in many installations is a job entry system (JES)
with a job entry control language (JECL). You code the JECL statements to
specify on which network computer to run the job, when to run the job, and
where to send the resulting output. IBM provides two job entry systems for
z/OS: JES2 for decentralized control, and JES3 for highly centralized con-
trol of several computers. JCL and JES go hand in hand, and this book de-
scribes both.

1.3 THE DIFFICULTY OF JCL

JCL provides the means of communicating between an application program
and the operating system and computer hardware. Measured by the number
of moving parts, the z/OS operating system is one of humankind’s most
complex creations. The computer hardware is less complex, but complex
nonetheless.

JCL is difficult because of the way it is used. A normal programming
language, however difficult, soon becomes familiar through constant usage.
In contrast, JCL has language features used so infrequently that many never
become familiar. JCL is also difficult because of its design. It is not a proce-
dural language like COBOL or C/C++ in which you build up complex appli-
cations step by step from simple statements. JCL consists of individual
parameters, each of which has an effect that may take pages to describe. JCL
makes few useful assumptions for you—you must tell it exactly what to do.
For example, virtually every batch computer program prints some output.
However, the system doesn’t assume this. You must supply a JCL statement
to print output.

The z/OS operating system demands an extraordinary amount of in-
formation, most of it supplied by JCL, to run a job. For example, to save a
file on disk storage, the system wants to know the record type, the record
length, the block size, the type of I/O unit, the volume serial number of the
disk volume, and more. (The recent changes to simplify JCL have been in
this area.)

JCL was designed at a time when people were relatively cheap and com-
puters expensive. In 1965, one million computer instructions were roughly

INTRODUCTION 3

9228 Brown/JCL 01.k.qxd  5/1/02  11:39 AM  Page 3



equivalent in cost to 15 minutes of a programmer’s time. Today the opposite
is true. People are expensive and computers are cheap. A million instruc-
tions today buys less than a fraction of a millisecond of a programmer’s
time. Consequently, JCL, designed to be efficient in computer time, is oper-
ating today in an environment where the cost of a person’s time is the dom-
inant expense. This book attempts to save you time—not just save computer
time. Some of the worse things done in computing have been for efficiency.
Saving two bytes in the year field is an extreme example that made 
the new millennium stressful for many. The cost performance of computer
chips is still doubling roughly every 18 months, and while this can’t last
forever, it would be foolhardy to predict when it will end. This has a pro-
found effect on how much effort a company wants to invest in optimizing
programs.

1.4 THE APPROACH TO JCL

The first several chapters of this book describe the individual language
statements, tell how to write them, explain what they do, and suggest how
to use them. With this as background, the book shifts to functional descrip-
tions of the hardware devices, access methods, and other topics. Because
you rarely need many JCL features, the book notes whether a feature is
ESSENTIAL, SOMETIMES USED, or RARELY USED. You should pick and
choose.

The goal of this book is to give you all the information you need to pro-
gram on z/OS, except for the programming language you use. To accomplish
this, the book goes far beyond JCL. The book introduces the concepts and
facilities of the operating system from the application programmer’s point of
view. Several non-JCL operating system facilities are also described, includ-
ing IBM utility programs, the Sort/Merge program, the linkage editor, VSAM
(Virtual Sequential Access Method), TSO/E (Time Sharing Option), and
REXX (REstructured eXtended eXecutor).

This book explains JCL and shows you how to use it, but it won’t try to
make you like it because JCL is not a likable language. Almost no one, even
programmers with years of experience, can sit down and write JCL state-
ments the way they could COBOL or C++ statements. Consequently, people
who write JCL generally know what they want to do and then consult some
existing JCL to use as a prototype to write the new JCL statements. The book
gives many short examples to serve as prototypes with the assumption that
short, concise examples are preferable to lengthy explanations.

The book gives special attention to the use of JCL with COBOL, 
FORTRAN, PL/I, C/C++, and Assembler Language. Where appropriate, the
book describes their interfaces to JCL. The book is based on the z/OS ver-

4 z/OS JOB CONTROL LANGUAGE

9228 Brown/JCL 01.k.qxd  5/1/02  11:39 AM  Page 4



sion of the operating system. Although IBM occasionally releases new ver-
sions of z/OS, the new releases seldom change existing JCL.

If you are just learning z/OS, you can use this book as an introduction
to the operating system and JCL, skipping over the RARELY USED, being
selective with the SOMETIMES USED, and concentrating on the ESSEN-
TIAL features. The book presumes you have some familiarity with a higher-
level language. If you are an experienced z/OS programmer, you can use
this book to learn unfamiliar JCL features or to refresh your memory on 
seldom-used features. Finally, the book serves as a reference for all who
program in z/OS.

For classroom usage, read Chapters 1 to 14 in sequence, working in the
installation’s particular requirements. Then select topics from the remain-
ing chapters as needed. Exercises at the end of many chapters consist of
short, simple problems that can be run on a computer. They are designed as
much to teach you about your installation and the problems of actually run-
ning jobs as they are about JCL as a language.

JCL provides many abbreviations and alternate names for coding. For
simplicity and to reduce errors, the book shows only one form, the shortest,
except when the short form conveys no meaning (CANCEL rather than C) or
the long form is very short (NO rather than N). The book displays JCL state-
ments and parameters in capital letters, with italics denoting items for
which you select values. Text comments about a JCL statement are set off in
brackets beneath the statement:

//SYSUT1   DD DSN=new-name,DISP=NEW

[The new-name represents a name you choose for the file. Code
uppercase characters exactly as shown.]

INTRODUCTION 5

9228 Brown/JCL 01.k.qxd  5/1/02  11:39 AM  Page 5



CHAPTER 2

INTRODUCTION
TO JCL AND z/OS

Essential

This chapter introduces z/OS concepts and vocabulary. You may be famil-
iar with many of the concepts, but perhaps not in the z/OS context. While
large mainframe computers have essentially the same hardware compo-
nents as all other computers, including personal computers (PCs), the ter-
minology differs. The formidable-sounding direct-access storage device (or
DASD—pronounced daz-dee) on a mainframe becomes the more unassum-
ing hard disk on a PC. Likewise, the impressive term data set on a main-
frame turns out to be just a file on the PC.

The computer is essentially a device that reads some data, does some
computing or processing, and writes some data. The main computer hard-
ware that concerns you is illustrated in Figure 2.1 and consists of

� The CPU, or central processing unit. (Corresponding to a Pentium
chip on a PC.)

� Central storage—formerly called real storage, computer memory, and
core storage. (Corresponding to RAM, random access memory, on a PC.)

� Input/output (I/O) devices, often called peripherals, such as disks,
tapes, and printers.

2.1 z/OS CONCEPTS AND VOCABULARY

The IBM Mainframe consists of a computer (the zSeries 900), an operating
system (z/OS), and a vocabulary. People who work on z/OS form a separate
culture, and you need to understand the concepts and speak the language to
be accepted within the culture. Acronyms are the key to acceptance
because everyone uses them, quickly forgetting what they represent.

6

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 6



2.1.1 The People

One difference between large IBM mainframes and smaller computers is 
the number of people required to support them. Computer operators run the
mainframe, schedule jobs, mount tapes, and distribute output. One of the
advantages of a large computer is that you don’t have to worry about hard-
ware problems or paper jams—the operators do this.

System programmers on large IBM mainframe computers install, main-
tain, and tune the operating system software. The software on large IBM
mainframe computers is extremely complicated to install, and once in-
stalled, is even more difficult to maintain and tune for good performance.
System programmers are highly skilled and valuable—and aware of this
fact.

Installations usually have support staff to establish and enforce stan-
dards and procedures for using the computer. The support staff must also
provide security, issue passwords and userids, and control access to the
computer. Many installations also have a hot line or a help desk for answer-
ing questions. The first thing to do in any installation is to find out where
to go for help.

INTRODUCTION TO JCL AND z/OS 7

FIGURE 2.1 A typical computer.

CPU

Central
storage

Channel

Input/output
operations
interface

I/O
devicesor bus

CPU — The central processing unit executes instructions to perform computations, initiates input/output 
and directs the operation of the computer. It is the part of the computer that does the 
computing.

Central storage — The computer memory holds both the instructions and data during computations and 
is termed central storage or real storage. It corresponds to random access memory (RAM) 
on a PC.

I/O device — The input/output devices contain external data. A collection of data stored on an external 
device is called a data set or file. I/O devices consist of a recording device and access 
mechanism, a control unit (actually a small computer itself), and a channel or bus to 
transmit the data between the I/O device and the computer’s storage. The most popular I/O 
devices are disk, tape, and printer.

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 7



2.1.2 The Operating System (z/OS)

The z/OS operating system introduces programs to the computer, initiates
their execution, and schedules all the resources and services they require,
such as printers, central storage, and disk storage space. The operating sys-
tem is made up of a general library of programs that can be tailored to
accommodate a variety of applications on a wide range of hardware config-
urations. The system programmers select the portions that an installation
needs through a system-generating process (SYSGEN), add their own pro-
cedures, and update the procedures as the needs change.

The programs and routines that comprise the operating system are clas-
sified as either control or processing programs. Control programs perform
the tasks of the operating system: reading, scheduling, initiating, allocating,
executing, and terminating jobs in a continuous flow; supervising the dis-
patching and service requests of all work in the system; storing and retriev-
ing all the data; controlling the user of virtual, central, and expanded
storage; allocating the computer’s resources; and finally, recovery from sys-
tem and hardware failures.

Processing programs consist of language translators (such as the
COBOL and C++ compilers), service programs (such as the linkage editor
and sort programs), and application programs (such as the programs that
you write.)

Batch versus On-Line
The original System/360 operating system was designed as a batch system
that could run on-line jobs. This is in contrast to the PC, UNIX, and
VM/ESA (the other popular system on large IBM mainframe computers),
which were designed as on-line systems that could run batch jobs. With a
batch system, you prepare a complete job and submit it to the computer.
The computer’s operating system schedules the job and executes it at its
convenience, which may be hours later. You have no control over the job
once you submit it. Often you submit a job and then hours later, when you
get your output, find that a minor JCL error caused the entire job not to run.
(With JCL, there is no such thing as a minor error.) On-line or interactive
jobs are submitted from your computer terminal and you stay at the termi-
nal while the job runs, usually interacting with the job to supply necessary
information. You can quickly correct any errors.

Batch execution is great for long-running jobs, especially those run on a
routine basis—production jobs. They have several advantages over interac-
tive jobs:

You needn’t wait at your terminal for your job to complete. You can go
away and come back later.

8 z/OS JOB CONTROL LANGUAGE

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 8



You can run the job off shift, when computer rates are usually lower.

You can set up a complex job once and then keep resubmitting it rather
than having to retype all the run commands each time.

The job may run more efficiently because it doesn’t require the com-
puter resources of an on-line job.

The computer can schedule the jobs at its convenience to make the most
effective use of its hardware to maximize throughput.

Your program will produce an audit trail so you can reconstruct what
happened during the run.

Of course, there are also disadvantages to running jobs in batch with
JCL:

You don’t get immediate turnaround, as a rule.

You must learn to use JCL.

If something goes wrong while a job is running, you don’t get a chance
to correct it and continue.

You must set the entire job up in advance, anticipating all the contin-
gencies. You can’t play it by ear.

You don’t get to interact with the job and enter data and directions
while it is running.

On-line is great for jobs requiring interaction while the job runs, jobs
that change frequently, and jobs requiring quick turnaround. In practice,
on-line is usually used for program development, data entry, inquiry, and
quick response, whereas batch is used for production runs once the pro-
grams are developed.

Since many jobs are run concurrently on a mainframe computer, the
resources of the computer must be shared so that each job eventually gets
the resources it needs. This is done by multiprogramming and time-sharing.

Time-Sharing and Multiprogramming
Time-sharing allows many people to use a computer simultaneously in
such a way that each is unaware that others are using the computer. The
usual case is an on-line system with several consoles using the main com-
puter at the same time. Time-sharing attempts to maximize an individual’s
use of the computer, not the efficiency of the computer itself. Time-sharing
is supported on z/OS by such systems as the TSO/E (Time-Sharing Option),
CICS (Customer Information Control System), IMS (Information Manage-
ment System/Virtual Storage), VTAM (Virtual Telecommunications Access
Method), and UNIX and Linux.

INTRODUCTION TO JCL AND z/OS 9

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 9



Multiprogramming is just the opposite of time-sharing in concept. It
attempts to maximize the efficiency of the computer by keeping all the
major components busy, such as the CPU, I/O devices, and central storage.
Most jobs running on a large general-purpose computer do not use all the
I/O devices or storage. Moreover, not all of the CPU is used since time is
spent waiting for some I/O action to complete. Rewinding a tape is an
extreme case in point.

Since most jobs do not use all of the storage, all of the I/O devices, or all
of the CPU, a multiprogramming system can keep several jobs inside the
computer at the same time and switch back and forth between them. Sev-
eral jobs are loaded into storage and the operating system gives control to
one job. It then switches control to another whenever one becomes idle. By
balancing I/O-bound jobs with the compute-bound jobs, several jobs can be
completed in little more time than it would take to complete a single job.

2.2 z/OS HARDWARE ARCHITECTURE

Perhaps the best way to understand the architecture is to trace its individual
components to see why they were added. z/OS has evolved over the past
third of century, and while not elegant or simple, it is eminently practical.

2.2.1 The 1960s and the Quest for Multiprogramming: MVT

Before the introduction of System/360 (z/OS’s ancestor) in 1964, IBM com-
puters ran a single program at a time. Business and scientific applications
used different computers with different instruction sets and operating sys-
tems. Different-sized computers also had their own instruction sets and
operating systems. System/360 gave all IBM mainframes the same hardware
architecture so that applications could run independent of a particular com-
puter model. The System/360 ancestor of today’s operating system, MVT
(Multiprogramming with Variable Tasks), could run a maximum of 15 jobs
concurrently in the same central storage. The programs were placed in vari-
able-sized areas called regions as shown in Figure 2.2. The computer used
24 bits for addressing, and so could address 16MB of memory or central stor-
age. (The amount of storage that a computer can address is termed its
address space, which is determined by the number of bits used to form an
address. The address space size is calculated by the number of bits raised to
the power of 2, so that 15 bits gives a 215 = 32,768 address space.) However,
memory was so expensive that a 512K machine was considered large.

Multiprogramming added immensely to the complexity of the operating
system. The system had to protect each job in storage from other jobs. This
was implemented through a hardware feature called storage protection in

10 z/OS JOB CONTROL LANGUAGE

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 10



which each region could change data only in its own region, protecting
other regions and the operating system. The system also had to dole out the
computer’s resources so that the mixture of jobs in storage did not contend
for nonshareable resources, such as tape drives. (PCs went through this bar-
rier when Windows replaced MS-DOS.) The system had to hold back a job
if it needed an unavailable resource and schedule another job whose
resource requirements could be met.

The fact that the large mainframe computer was shared was a major rea-
son it became so complex and difficult to use. Files and applications were
potentially accessed by hundreds of users, making security a critical issue.
If the mainframe crashed, hundreds of people could be affected, and in
many cases, prolonged downtime could destroy a company. The main-
frame, by necessity, became a serious environment.

The system, since it scheduled jobs based on their resource require-
ments, had to be told what resources each job needed. This was (and still is)
done with JCL statements. For example, if a job needed a tape, a JCL state-
ment had to describe the tape unit needed. The system would not schedule
the job until such a tape unit became available. This prevented the job from
sitting idle in central storage waiting for an available tape unit.

Figure 2.3 illustrates the original MVT multiprogramming system. Each
job occupied a contiguous region in central storage, and the jobs remained
there until they were complete. Users specified their region size with JCL
statements. Some regions, such as the readers or writers, never completed
and were always resident. The system decided which region to run and for
how long and was made as crashproof as possible so that, although a par-
ticular job might fail, the system was not disturbed. This continues today,

INTRODUCTION TO JCL AND z/OS 11

FIGURE 2.2 Central storage in MVT.

Program 1

Resident portion of
the operating system

This area is
termed a region

The CPU executes instructions for
one program, then quickly switches
to another program and executes
instructions for it.

Program 2

Program 3

Program 4

Program 5

•

Program N

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 11



and much of the expense of the mainframe is in hardware and software
designed to isolate problems and speed recovery. One of the advantages of
z/OS as an old system is that most of the bugs have been shaken out and it
is extremely reliable. (But not bugfree. Nothing as complex as an operating
system is without bugs.)

The first region contained the nucleus or resident portion of the operat-
ing system (those portions of the system not kept on a direct-access storage
device). The reader/interpreter (or reader) read in jobs and queued them on
a direct-access volume. The term volume referred to a specific storage unit
such as a direct-access storage volume or a tape cartridge. A direct-access
storage volume was usually a disk pack—a large version of the hard disk on
a PC. The writers wrote output from the queue on the direct-access volume
onto the proper output device. Queuing the input and output on direct-
access volumes was called spooling, which you might equate to the take-up
reel of a movie projector. Spooling was an acronym for simultaneous
peripheral operation on-line; one of those rare cases where an acronym
conveys more meaning than that for which it stands. The sequence of lines
read by the reader was called the input stream, and the sequence of output
written by the writers was called the output stream.

The unit record devices (printers, and, back then but never today, card
readers and cardpunches) were normally assigned to the readers and writ-
ers. All other I/O units except tapes could be concurrently used by any of
the regions. The system could assign a tape unit to only one region at a time.

12 z/OS JOB CONTROL LANGUAGE

FIGURE 2.3 MVT multiprogramming system.

Printer

Printer Writer

Printer Writer

Regions

Resident system

Direct-access
storage device

Direct-access
storage device

Reader/interpreter

15 regions maximum

Writer

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 12



This was one reason for using direct-access storage devices—the jobs were
not kept waiting for a tape unit to become free.

To capsulate the operating system: The reader/interpreter read jobs from
the input stream and queued them on a direct-access volume. When a job
came to the top of its queue, a system program called the initiator/termina-
tor loaded it into a region and executed it. If the job read data from the input
stream, the system fetched the lines from a direct-access volume where they
had been stored. If the job printed output, this output was again queued on
a direct-access volume. A job never printed directly—it was all done by
queuing on a direct-access volume. The job was not aware of this because
the system did it automatically. After the output was queued on a direct-
access volume, the writers wrote it out to the appropriate output device. Fig-
ure 2.4 illustrates how spooling worked. All of this holds true today, except
that users often examine their output on-line through a terminal while the
output is in the output queue, and then decide whether to discard or print it.
Although the running of a single region has been described here, several
regions could be kept running concurrently in a similar manner.

Multiprogramming, which divided the computer’s central storage into
regions, presented several problems. A job was limited to the size of the
largest region, and inevitably, some applications needed more central stor-
age to run than the computer had. Central storage was often wasted when it
became fragmented because jobs could only be run in contiguous storage.

Two applications aggravated these problems, time-sharing and telepro-
cessing. Time-sharing gave many people access to a computer at the same
time with fast response required for each. Teleprocessing connected remote
devices to the main computer through communication lines. The applica-

INTRODUCTION TO JCL AND z/OS 13

FIGURE 2.4 Spooling.

Printer

Program 1
“prints” lines

Program 2
“prints” lines

Data set to print

Disk

Data set to print

Print queue is sent to printer

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 13



tions were often real time as typified by an airline reservations system in
which an agent at a remote location reserved a seat on an airliner by com-
municating with the central computer. Time-sharing and teleprocessing
applications were both characterized by long periods of inactivity and then
brief spurts of frenzied activity requiring fast response.

Because the MVT was a batch system, on-line systems had to be devel-
oped that would run under its control in a region. Even today, such on-line
systems as TSO/E, CICS, and VTAM are executed as batch jobs through JCL
statements, and once running in their region, they begin supporting the
many on-line users as illustrated in Figure 2.5.

2.2.2 The 1970s and the Quest for Central Storage: OS/VS2 and MVS/370

By the 1970s, the amount of central storage became a critical bottleneck.
The operating system provided for 15 concurrent users, but there wasn’t
enough central storage for more than a few to reside in the computer at the
same time. Central storage was still extremely expensive.

In 1972, IBM introduced the 370 family of computers with new cir-
cuitry that included a major architectural component called virtual storage.
With virtual storage, the storage addresses of an application program were
made independent of the addresses of the computer’s central storage. The

14 z/OS JOB CONTROL LANGUAGE

FIGURE 2.5 On-line system supporting many users.

CICS
region 1

Terminals

CICS
region 2

TSO
region 3

CICS
region 4

•
•
•

Nucleus

Controller

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 14



program, still limited to 16MB, was stored on disk (virtual storage), and the
system brought small portions of the program into central storage on
demand. A hardware feature was added to translate the user’s virtual stor-
age addresses to the computer’s central storage addresses during execution.
The MVT operating system was renamed OS/VS2 (Operating System/Vir-
tual Storage 2), and it could operate as if it had the maximum of 16MB of
central storage when in fact the actual amount might be (and generally was)
considerably smaller. Each region residing in virtual storage could also be a
maximum of 16MB, including space occupied by the operating system, but
the total for all regions was limited to 16MB as illustrated in Figure 2.6.

One of the limitations in any computer is the amount of storage it can
address—its address space. The IBM mainframe was a 32-bit computer.
However, it used only 24 bits to contain addresses, and the maximum size
of the address space was 224 or roughly 16 million (MB) bytes.

Sixteen million bytes of address space seemed like a lot of memory back
when the typical computer had only 512K of memory. A thousand bytes of
memory—actually 1,024 bytes—is called a kilobyte and abbreviated as K.
The 1,024 is used because it is a power of two. A million bytes is termed a

INTRODUCTION TO JCL AND z/OS 15

FIGURE 2.6 OS/VS2 with virtual storage.

Region 15

Virtual storage
in OS/VS2

Region 14

Region 13

•
•
•

Region 3

Region 4

Region 2

Region 1

Nucleus of
operating system0MB

16MB

Physical storage
in OS/VS2

0MB

16MB
max

Actual
storage

••••••

••••••

Central
storage

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 15



megabyte or just a meg and abbreviated as MB. A billion bytes are termed a
gigabyte or just a gig, abbreviated as GB. But application programs kept
growing. Also, the operating system required a portion of the application’s
program address space, and less address space became available as the
operating system grew to where little more than 8MB was available to an
application program. Programs also grew larger. Finally, applications such
as CICS, IMS, VTAM, and DB2 required huge amounts of address space for
buffers. Even worse, some, such as CICS, were designed to run all of their
on-line applications in the same address space.

Virtual storage relieved much of this problem. When a program began
execution, the system first loaded it onto a direct-access volume—the vir-
tual storage—rather than directly into the computer’s memory, or central
storage. The system divided the application program into small parts called
pages. Central storage was likewise divided into parts termed page frames
to contain the pages on the direct-access volume. A paging supervisor in the
operating system loaded each page from the direct-access volume into cen-
tral storage on demand as illustrated in Figure 2.7. Thus, large portions of
an application program might reside on a direct-access volume, the exter-
nal paging storage, rather than in central storage at any given time during
execution. The implications of this were twofold: the size of the program
could exceed that of central storage, and inactive portions of programs
wasted little central storage.

When the hardware detected a reference to a virtual storage address of
a page not in central storage, it notified the paging supervisor, an event

16 z/OS JOB CONTROL LANGUAGE

FIGURE 2.7 Virtual paging hardware.

Hardware translates
virtual addresses to make
it appear to program as

if the pages are in
contiguous central storage

Paging
storage

Region divided into
pages contains an

application program

Pages in
central storage

Paging supervisor

Resident
nucleus

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 16



termed a page break. The paging supervisor looked around in central stor-
age for a free page frame in which to load the page. If it found no free page
frame, it looked for an inactive page in central storage to swap out.

With virtual storage, a program need occupy only a relatively small
amount of central storage. This let programs run whose size exceeded the
central storage available on the computer. It had another important benefit
in that it allowed a larger number of programs to be run on the computer at
the same time, although there was still a limit of 15. Only the virtual stor-
age (disk) needed to contain an entire program while it was executing. Vir-
tual storage remains an inherent part of z/OS today.

In 1974, IBM changed the name of the operating system to MVS/370
(Multiple Virtual Storage/370). It also scraped together two additional bits
for addressing. With 26-bit addressing, the address space increased to
64MB. Central storage could be 64MB, the sum total of all concurrent pro-
grams in virtual storage could be 128MB, but individual programs were still
limited to 16MB. MVS/370 also eliminated the restriction of 15 concurrent
regions maximum. Figure 2.8 illustrates MVS/370.

By the end of the 1970s, another bottleneck appeared. Virtual storage
allowed the computer to think it had a very large storage, but the 16MB

INTRODUCTION TO JCL AND z/OS 17

FIGURE 2.8 MVS/370 Virtual storage and regions.

Physical
storage

Virtual
storage

Central
storage

0MB

64MB
max

128MB max

User
area

(region)

Common
area

0MB

16MB
per

address
space

Actual
hardware
storage

installed

••••••

••••••

System
area

1
2

3
4

••••
n

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 17



maximum for individual programs and 128MB limit for all programs in vir-
tual storage became a problem. Programs were now sharing data, and the
shared data was placed in a common area that came out of a program’s
address space, as did the nucleus of the operating system. (Considering that
16MB today is insufficient for one user in Windows, this was a severe lim-
itation indeed.)

2.2.3 The 1980s and the Quest for Address Space: MVS/XA and MVS/ESA

In 1983, IBM introduced the successor to MVS/370 and called it System/
370-XA (System/370-Extended Address) to reflect the computer’s ability to
now use 31 bits for addressing, which provided 2GB of address space.
Although central storage could in theory be 2GB, XA supported only a
256MB central storage. However, applications residing in virtual storage
could address 2GB as shown in Figure 2.9.

18 z/OS JOB CONTROL LANGUAGE

FIGURE 2.9 MVS/XA storage.

Physical
storage

Virtual
storage

Central
storage

0MB

2GB
max

User
area

Common
area

Extended
common

area

Extended
user area

0MB

2GB
per

address
space

256MB
actual
max

16MB

••••••

••••••

System
area

1
2

3
4

••••
n

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 18



Increasing the address space from 26 to 31 bits required changing both
the hardware and the format of the computer’s instructions. For compati-
bility, old programs could be marked to run in the 16MB address space
mode, whereas new programs could use the entire 2GB address space. Pro-
grams that exceeded the 16MB address space were termed above the line.
This could occur in two ways. First, a program could require more than
16MB in which to run. This would be a very large program and was rare.
Second, and far more common, were CICS applications. In CICS, all the
applications had to run in the same address space, and so even a small pro-
gram could be forced above the 16MB line because of other applications
loaded into storage below it, as depicted in Figure 2.10.

Users had to set special parameters during compilation and linkage
editing for a program to run above the 16MB line. But if one didn’t write
very large programs or CICS programs, one generally didn’t have to worry
about it.

MVS/XA fulfilled the address space need for the large IBM mainframe
for only a few years. As very large database applications were developed,
address space again became a bottleneck. In response to this, IBM enhanced
the operating system again in 1985 and renamed it MVS/ESA (Enterprise
Systems Architecture). MVS/ESA allowed central storage to be as large as
2GB. Like MVS/XA, it also permitted an application to have a 2GB address
space, but additionally permitted the same application to have multiple
2GB address spaces as illustrated in Figure 2.11.

MVS/ESA not only provided a larger effective address space, it also
allowed huge applications to be segregated into functional parts. This espe-
cially benefited CICS because now each on-line application’s data could be
placed in a separate segment so that one application could no longer clob-
ber another’s data. Before this, CICS couldn’t be impacted by a non-CICS job

INTRODUCTION TO JCL AND z/OS 19

FIGURE 2.10 Jobs “above the line.”

24MB
Program

Very large
job above
the 16MB line

Small job above
the 16MB line
in CICS

0

24MB

0

20MB

14MB

8MB

16MB line

6MB
Program

6MB

Program

8MB
Program

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 19



and vice versa, but one CICS application could take down the entire CICS
system. MVS/ESA solved this problem first by allowing each CICS applica-
tion to have its own data space. It then implemented subsystem storage pro-
tection to protect system code, control blocks, and data areas within the
same region. With this, one CICS user could not take down another CICS
user or the CICS system.

In MVS/ESA, the first address space was called the application space,
and programs had to execute in it. The extended storage of the other
address spaces were called data spaces and, as their name implies, could
contain only data. They could contain a program as a file of data, but the

20 z/OS JOB CONTROL LANGUAGE

FIGURE 2.11 MVS/ESA storage.

Physical
storage

Virtual storage

Central
storage

0MB

2GB
max

User
area

Address
space

Common
area

Extended
common

area

Extended
user area

User 1

0MB

2GB
per

address
space

16MB

••••••

••••••

System
area

1
2

…
n

•••
1

2
…

n

1
2

…
n

User 2

User n

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 20



program could not be executed in a data space. The system had to copy it to
the application space to execute it. The operating system didn’t take up any
part of the data space, so each data space had the full 2GB available for data.
The data space was byte addressable, resided in virtual storage for the dura-
tion of a job, and was used as a logical extension of the address space for
containing large tables, databases, and buffers.

MVS/ESA also added a facility called Hiperspaces, which allowed tem-
porary data to be stored or retrieved in 4K blocks under program control,
using the fast paging hardware of the computer. An application program
could create a hyperspace as an alternative to storing temporary data sets on
disk. The system moved the data from the hyperspace in 4K blocks into the
application space for the application program to use the data.

2.2.4 The 1990s and the Quest for Capacity: OS/390

With MVS/ESA, the mainframe was well suited for large applications.
Meanwhile, the PC had become dominate for small applications. PCs grew
in CPU speed, central storage, and disk space. The mainframe had always
maintained a large edge in speed over the PC, partly because it used a bipo-
lar technology in its chips in which power was permanently applied to save
time in executing a logical operation. But by the early 1990s, bipolar tech-
nology hit a wall. The chips generated large quantities of heat, and even
with air conditioning and water cooling, heat could not be dissipated fast
enough to allow circuits to be packed closer together. Consequently, IBM
began switching to CMOS (Complementary Metal Oxide Semiconductor)
technology, long used in PCs. In CMOS technology, power was applied only
during an actual logical operation, generating less heat and consuming less
electricity. This not only saved money, but also made battery backup more
practical as a guard against power outages. CMOS technology had been
slowly gaining on bipolar technology to where today, it exceeds it.

One of the consequences of the bipolar limits and the switch to CMOS
was that the mainframe CPU lost its speed advantage over the PC. Size con-
veys no speed advantage in computers because with chips, smaller is faster.
In fact, OS/390 is at a disadvantage because of its large, robust instruction
set, and many smaller computers achieve their high speeds by reducing
their instruction sets (RISC, reduced instruction set computers).

Central storage became so inexpensive on the PC that 128MB is consid-
ered average. Hard disks grew to where 40GB is common. How was a poor
mainframe to compete against such a PC that cost only a few hundred dol-
lars? Why not connect the PCs into a network; write some software to
schedule applications, share data, and handle security; and scrap the main-
frame? Some installations did this, only to discover that at great time and
expense, they had reinvented the mainframe.

INTRODUCTION TO JCL AND z/OS 21

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 21



The mainframe cannot compete with the PC in interactivity. An indi-
vidual PC may or may not be as fast as the CPU of mainframe, but it serves
only one user whereas the mainframe serves many. Unused CPU cycles on
a PC are valueless, so no one begrudges that PC systems devote most of their
CPU cycles to screen savers.

What then was the role of the mainframe? It seemed as if the comments
made back in the 1950s by T. J. Watson, Sr., the founder of IBM, that there
would be a need for no more than a dozen or so large computers to handle
the world’s needs might indeed be prophetic.

However, there was less to all this than met the eye. Mainframes con-
tinued to be as busy as ever and IBM continued to sell as many as ever. The
reason for this is threefold. First, many old applications are still running on
the mainframe that would be expensive and impractical to migrate to the
PC. Second, the mainframe is superb at what it does best: process vast
amounts of data. When performance is measured in throughput (processing
transactions, large databases), the PC cannot touch the mainframe. When
there is no throughput and performance is measured by interactivity (word
processing, spreadsheets, small databases, and graphics), the mainframe
cannot touch the PC. The mainframe’s high-speed channels, high-capacity
I/O devices, its large address space, the reliability of the hardware and the
software, its backup procedures and standards, and its software tools for
handling databases all permit the mainframe to tackle applications involv-
ing large amounts of data that would be impractical on a PC. Such applica-
tions are also the life stream of many corporations.

The third is, of course, the Internet. Since the Internet provides access
to data and most of the data is on a mainframe, mainframes quickly evolved
into servers on the Internet. The IBM mainframe also supports UNIX with
its z/OS UNIX System Services, and can also support hundreds of Linux
images running open source applications. And it runs everything concur-
rently in one system.

There is another thing that the IBM mainframes do very well that we
don’t often think about. They are secure systems. Security was an inher-
ent part of the system design, not something recently added. While this
has been important in the past, it is likely to become the overriding con-
sideration for future computer systems as we plunge into an information
economy. Aside from issues of privacy, trillions of dollars move over the
electronic highways in a hostile environment in which many people with
many motivations, ranging from teenage hackers to disgruntled employ-
ees to terrorists to sophisticated crooks, stand ready to attack our com-
puter systems.

Since individual CPUs were limited in speed, IBM developed the Par-
allel Sysplex (System Complex) to interconnect multiple systems with
high-speed fiber optics so that they act as if they were a single logical entity.

22 z/OS JOB CONTROL LANGUAGE

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 22



Individual processors (one or more CPUs operating on the same storage)
could be dynamically connected and disconnected into the Sysplex with-
out stopping systems operations for both hardware and software updates
and maintenance. Even new processors could be added without bringing
down the system.

The Parallel Sysplex also provided for shared data in which separate
servers in a client/server environment share the same image of both the
operating system and user data. This permitted multiple users connected
to multiple servers to operate on the same database. It was the opposite of
distributed data systems in which different portions of the database were
sent to different servers, and different than partitioned data systems in
which multiple servers could each access different portions of a database.
Shared data also allowed work to be balanced across multiple processors.
The processors could share the same libraries for ease of maintenance
and reduced cost.

As shown in Figure 2.12, OS/390 computers could also have multiple
CPUs that operated on the same processor storage, so that when the CPU
ran out of gas, the installation could add another. In addition, multiple
processors could be configured as n-way multiprocessors in which two or
more individual processors could either act as one large computer system

INTRODUCTION TO JCL AND z/OS 23

FIGURE 2.12 Multiple CPUs.

Central
storage

Expanded
storage

2nd-
level
buffer

System
control

unit

Interconnect
communications

element

Channel
control
element

I/O devices

CPU 1

CPU 2

CPU 3

CPU 4

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 23



or be physically partitioned into two independent operating systems that
shared a single mechanical frame. The partitions (now called LPARS, logi-
cal partitions) might run different operating systems or different versions of
the operating system, or hardware and software maintenance might be per-
formed on one without affecting the other, as illustrated in Figure 2.13.

DASD was also changed. Large disk drives still abounded, but IBM 
also provided the RAMAC disk storage based on RAID technology. RAID
(Redundant Array of Independent Disks) groups several smaller hard disks
into a single unit. Data can then be stored sequentially in strips across the
several individual disks rather than continuously on one disk to reduce
access time. The hard disks are essentially those found on a PC. Because a
RAID device has more disk units, there is more potential for hardware error.
This is minimized by three levels of parity written onto a separate disk to
allow all the data in an entire disk to be recovered, should it be lost. (The
concept of parity is simple. If you stored the number 45 on one hard disk
and the number 23 on another, the system could write the sum, 68, on the
parity disk. Then if the number were lost on any one of the disks, the sys-
tem could recover it from the other two.) All this enabled individual disks
to be hot-plugged in a RAMAC unit without bringing the system down.

24 z/OS JOB CONTROL LANGUAGE

FIGURE 2.13 N-way multiprocessor.

Expanded
storage

Central
storage

System
control
element

CPU 1

Channel
control
element

CPU 3

CPU 5

Expanded
storage

Central
storage

System
control
element

CPU 2

CPU 4

CPU 6

Channel
control
element

9228 Brown/JCL 02.k.qxd  5/1/02  11:40 AM  Page 24


