
DISTRIBUTED DATA
MANAGEMENT FOR
GRID COMPUTING

MICHAEL DI STEFANO

A JOHN WILEY & SONS, INC. PUBLICATION





Innodata
0471738212.jpg





DISTRIBUTED DATA
MANAGEMENT FOR
GRID COMPUTING





DISTRIBUTED DATA
MANAGEMENT FOR
GRID COMPUTING

MICHAEL DI STEFANO

A JOHN WILEY & SONS, INC. PUBLICATION



Copyright # 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,

978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher

for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher

nor author shall be liable for any loss of profit or any other commercial damages, including but not

limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department

within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Di Stefano, Michael, 1963–

Distributed data management for grid computing / by Michael Di Stefano.

p. cm.

Includes bibliographical references.

ISBN 0-471-68719-7 (cloth)

1. Computational grids (Computer systems) 2. Database management. I. Title.

QA76.9.C58D57 2005
004.306--dc22 2004031017

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com


This book is dedicated to my parents, who instilled in their children the importance

of hard work, honesty, education, and dedication to family and friends, for making

any sacrifice, no matter how great, to ensure that all of their children succeed to their

fullest potential.

v





CONTENTS

FOREWORD xv

PREFACE xvii

ACKNOWLEDGMENTS xxi

PART I AN OVERVIEW OF GRID COMPUTING

1 What is Grid Computing? 3

The Basics of Grid Computing, 3

Leveling the Playing Field of Buzzword Mania, 4

Paradigm Shift, 7

Beyond the Client/Server, 7
New Topology, 10

2 Why are Businesses Looking at Grid Computing? 13

History Repeats Itself, 13

Early Needs, 14

Artists and Engineers, 14

The Whys and Wherefores of Grid Computing, 17

Financial Factors, 17

Business Drivers, 19

Technology’s Role, 19

vii



3 Service-Oriented Architecture 21

What is Service-Oriented Architecture (SOA)?, 21

Driving Forces Behind SOA, 23

Maturing Technology, 24

Networking, 24

Distributed Computing (Grid), 25

Resource Provisioning, 25

Web Services, 25

Business, 25

World Events, 26

Enter Basic Supply–Demand Economics, 27

Fundamental Shift in Computing, 29

4 Parallel Grid Planes 31

Using Art to Describe Life: Grid is the Borg, 31

Grid Planes, 32

Compute Grids, 33

Data Grids, 34

Compute and Data Grids—Parallel Planes, 35

True Grid Must Include Data Management, 36

Basic Data Management Requirements, 36

Coordinating the Compute and Data Grid Planes, 36

Data Surfaces in a Data Grid Plane, 37

Evolving the Data Grid, 38

PART II DATA MANAGEMENT IN GRID COMPUTING

5 Scaling in the Grid Topology 43

Evolution in Data Management, 43

Client/Server Evolution, 44

Grid Evolution, 44

Different Implementations of a Data Grid, 45

Level 0 Data Grids, 45

FTP in Grid, 46

Distributed Filing Systems, 47

Faster Servers, 47

Metadata Hubs and Distributed Data Integration, 48

Level 1 Data Grids, 48

Foundations, 49

Case Study: Integrasoft Grid Fabric (IGF), 51

Application Characteristics for Grid, 53

viii CONTENTS



6 Traditional Data Management 59

Data Management, 59

History, 59

Features, 60

Mechanics, 60

Data Structure, 61

Access, 62

Integrity, 63

Transaction, 63

Events, 64

Backup/Recovery/Availability, 64

Security, 64

Key for Usability, 65

7 Relational Data Management as a Baseline for

Understanding the Data Grid 67

Evolution of the Relational Model, 67

Parallels to Data Management in Grid Environments, 68

Analysis of the Functional Tiers, 69

Language Interface, 69

Data Management Engines, 69

Resource Management Engines, 69

Engines Determine the Type of Data Grid, 70

Data Management Features, 70

8 Foundation for Comparing Data Grids 73

Core Engine Determines Performance and Flexibility, 73

Replicated versus Distributed, 74

Centralized versus Peer-to-Peer Synchronization, 75

Access to the Data Grid, 75

User-Level APIs, 75

Spring-Based Interfaces, 76

Support for Traditional Data Management Features, 76

Support for Data Management Features Specific to

Grid Computing, 76

9 Data Regionalization 79

What are Data Regions?, 80

Data Regions in Traditional Terms, 80

Data Management in a Data Grid, 84

Data Distribution Policy, 85

Data Distribution Policy Expression, 87

CONTENTS ix



Data Replication Policy, 88

Data Replication Policy Expression, 89

Synchronization Policy, 90

Load-and-Store Policy, 90

Data Load Policy Expression, 93

Data Store Policy Expression, 94

Event Notification Policy, 95

Event Notification Policy Expression, 96

Quality-of-Service (QoS) Levels, 96

10 Data Synchronization 99

Intraregion Synchronization, 100

Interregion Synchronization, 101

Synchronization Architectures, 102

Centralized Synchronization Manager, 102

Peer-to-Peer Synchronization, 103

Synchronization Patterns, 104

Synchronization Granularity, 105

Synchronization Policy Expression, 106

Synchronization Pattern Simulations, 108

Synchronization Policy as a Standard Interface, 109

11 Data Integration 111

Enterprise Application/Information Integration

(EAI/EII) in Grid, 111

Straight-Through Processing (STP), EAI, and EII, 111

EII in Grid, 116

Natural Separation of Process and Data, 118

Data Load Policy, 120

Data Store Policy, 124

Load, Store, and Synchronization, 126

Enterprise Data Grid Integration, 129

12 Data Affinity 133

A Measurable Quantity, 134

What to Expect from Data Affinity, 135

How to Achieve Data Affinity, 135

Regionalization, Synchronization, Distribution, and

Data Affinity, 135

Data Distribution is Key to Data Affinity, 137

Data Affinity and Task Routing, 139

Integration of Compute and Data Grids, 139

Examples, 141

x CONTENTS



PART III PRACTICAL APPLICATIONS OF GRID COMPUTING

13 Which Applications are Good Candidates for the Grid 145

Grid Enabling Application Characteristics, 145

Atomic Tasks, 145

Complex Data Sets, 146

Data Collection, 146

Operations, 146

Gridable Applications, 147

Compute-Intensive Applications, 147

OLAP Data Analysis, 148

Data Center Operations, 148

Compute Utility Service, 149

Use Case Presentations, 149

14 Calculation-Intensive Applications 153

Description, 153

Use Cases, 154

General Architecture, 156

Data Grid Analysis, 160

15 Data Mining and Data Warehouses 165

Description, 165

Use Cases, 166

General Architecture, 168

First Use Case, 168

Second Use Case, 170

Enter the Compute Grid, 172

Data Grid Analysis, 172

Benefits and Data Grid Specifics, 174

16 Spanning Geographic Boundary 177

Description, 177

Business Use Cases, 178

Financial Services, 178

Operations, 180

Following the Sun, 183

General Architecture, 184

Data Grid Analysis, 185

Benefits and Data Grid Specifics, 188

CONTENTS xi



17 Command and Control 191

Problem Description, 191

Solution Architecture, 192

Command and Control Without a Data Grid, 193

Command and Control with a Data Grid, 194

Observations and Comparisons, 195

Data Grid Analysis, 196

Application Spinoffs, 202

18 Web Service’s Role in the SOA/SONA Evolution 203

Definition of Web Services, 203

Description, 205

Data Management: The Keystone to Web Services, 206

Web Services, Grid Infrastructures, and SONA, 208

The Undiscovered Past, 208

The SONA Model, 210

Connecting the Dots of the Past into the Continuum

of the Present, 211

Service-Oriented Network Architecture (SONA), 212

Network Computing Power Explosion, 214

Consequences of Moore’s and Metcalfe’s Laws, 215

Isomorphism to Evolution of Previous Systems, 215

Grid and Web Services as Manifestation of State Transition, 215

Conclusion, 215

19 The Compute Utility 217

Overview, 218

Architecture, 220

Geographic Boundary, 221

Command-and-Control Systems, 221

Macro/Microscheduling, 223

PART IV REFERENCE MATERIAL

20 Language Interface 229

Programmatic, 230

Query-Based, 232

XML-Based, 234

21 Basic Programming Examples 235

HelloWorld Example, 236

Coarse Granularity, 236

xii CONTENTS



Coarse Data Atom, 236

Writer Program, 237

Reader Program, 239

Fine Granularity, 240

Writer Program, 240

Reader Program, 243

Random-Number Surface Example, 245

22 Additional Reading 251

Useful Information Sources, 251

White Papers, 252

Grid Computing, 252

GridFTP, 252

Distributed File Systems, 252

Standards Bodies, 253

Globus—Data Grid, 253

Global Grid Forum, 253

W3C, 253

Public and University Grid Efforts, 253

Scientific Research Use of Grid Computing, 254

Web Services, 254

Distributed Computing, 255

Compute Utility, 255

Service-Oriented Architectures, 256

Data Affinity, 256

23 White Paper: Natural Attraction Forces of Data Bodies

within a Data Grid to Describe Efficient Data

Distribution Patterns 257

Introduction, 257

Observation, 258

Hypothesis, 259

Laws of Attraction, 259

How Does This Fit in with Data Distribution Patterns of

Single Data Bodies within a Data Grid Fabric?, 260

Collision of Single Data Bodies, 261

Effects of the Data Grid on a Single Data Body, 265

Conclusions, 265

24 Glossary of Terms 267

REFERENCES 273

INDEX 277

CONTENTS xiii





FOREWORD

Commercial grid computing is inevitable. As certain as the sunrise or sunset, grid

computing, or the ability to abstract the business logic (application) layer from

the infrastructure layer, will be a reality. As firms’ technology architecture continues

to become more complex and technology budgets continue to come under increasing

scrutiny, firms need to rethink the way they manage and utilize technology.

The current ways of tying applications to very specific hardware just will not

scale. Firms are buying new technology when other servers are sitting underutilized.

Firms are acquiring more hardware when they have thousands of desktops (after

work hours) and even whole data centers (across the globe) sitting dormant. And

even if we continue to throw hardware at our computational challenges, sooner or

later the overhead of managing this infrastructure will become overwhelming.

Besides not being able to function without grid technology to help manage our

increasingly complicated technology infrastructures, our 30 years of modern

computing history all point toward a need for a better way to manage a widely

distributed computing architecture. Whether it is called grid computing or utility

computing, the shift toward hardware and software componentization cries out for

a better technology management model.

Over the entire history of computing we have consistently experienced a pro-

nounced increase in computational power and a continual decrease in both CPU

size and cost (Moore’s law). In the mid-1980s, there was the mainframe; in 1990

it was the Unix server, and today there is the virtually disposable Linux or

Windows-based rack-mounted cluster. Concurrently we have witnessed a continual

decomposition of traditional software applications from mainline COBOL

programs, with embedded program calls, to client/server, the Web, and today

service-oriented architecture (SOA)–based applications. While the COBOL and

xv



client/server-based applications ran on dedicated hardware, today’s SOA-based

applications can be run virtually anywhere.

But what happens when firms begin to roll out these new hardware and software

architectures? How will firms be able to manage every single blade server running

all of these Web services? Will they know what is running on the second partition of

the third blade of the twenty-fifth cluster? Will corporate data centers be able to track

the utilization rate of the eighteenth blade of the fourth cluster? Will they know

when the blade was underutilized, and what could have been provisioned on that

platform? What if the blade is down? How will they know, who will fix it, and

what will happen to its workload?

None of these issues will be resolved without a more efficient, more fully auto-

mated technology management infrastructure. This is the challenge that grid com-

puting is tackling.

Grid computing was initially targeted at decomposing computationally challen-

ging problems into many pieces and parceling them out to a wide array of compu-

tational resources. Today grid computing is much more than high-performance

computing; it is about virtualizing and abstracting the complete technology footprint

from both users and software developers. It is about having technology manage

technology.

This is not an easy problem to solve. It is more than lashing together a dozen com-

puters. It is more than breaking a large problem into smaller pieces. It is more than

provisioning on the fly. Grid computing is a comprehensive technology management

infrastructure that decomposes, monitors, provisions, distributes, manages, and

meters virtually all technologies within the organization and sometimes outside

the organization.

That is why you are reading this book. Michael’s book will help you get a much

better understanding of grid computing—how it works, the theory, practice, and the

challenges of pulling it all together. While I firmly believe that this technology is

inevitable, the real question is “When will it be practical?” With this book, and

Michael’s help, the answer to that question will certainly be sooner rather than later.

LARRY TABB

Founder & CEO

TABB Group

xvi FOREWORD



PREFACE

Grid computing technology is breaking out of its birthplace in universities and

research facilities and is quickly gaining acceptance in the commercial industry.

In fact, the financial industry is where my company and I were first introduced

to grid computing technology. I am very active in financial firms on Wall

Street as they explore the potential use of grid technology for various business

applications, restructuring data centers, and operations of data centers. With

more years than I care to count or even mention, I have been an integral part

of architecting and building distributed computing environments (client/server
topology) for the financial industry and in the past few years (at the time of writ-

ing) have been working in the grid computing topology as it extends to financial

institutions. This is not to say that this is the only industry to which this tech-

nology applies. As a result, it quickly became apparent that running business

applications and services in the grid computing topology was not the same as

the traditional client/server and new data management techniques were needed

to leverage this new topology.

The first step is the buildout of the hardware infrastructure for grid computing

(compute nodes, networks, etc.). Once in place, “Bob’s your Uncle”; the rest

should be as simple as migrating applications over to, or better yet, converting

business line applications into, “services” for their “customers” to “purchase.” How-

ever, the reality is that the hardware and the operating system of a grid at the end of

the day is just another computer consisting of CPUs, memory, disks, and a com-

munication bus. Granted, the internal components appear radically different from

those of the big servers that we are accustomed to seeing in data centers. The com-

pute grid is a logical computer that physically consists of many networked compu-

ters (or compute nodes) that spans one data center, multiple data centers, floors of a

xvii



building, and even cities. When moving even the simplest of applications onto the

new computer, there is at least one critical tool that the developers must have, a data-

base, specifically, a data grid. The initial reaction is: “Our applications already have

a database, we will use those” or “Why don’t we use the relational databases that we

have already paid licenses for?” However, given the difference in physical topology

between the client/server and grid computing, the architects and developers will

immediately realize that managing data in a grid computing environment is very

different. Without the proper data management tools, developers are back to writing

down to the bare metal of the grid to get data in and out of the grid, distributing the

data among all the nodes where work needs to be performed, and must manage some

sort of data synchronization (e.g., distribution of data across the nodes of the grid,

and with external data sources that include not only databases but also all the various

middleware tools, file systems, etc.). The information technology staff in many

organizations have already received the green light to start to deliver applications

on the compute grid without the required tools for providing data management.

As a result, these projects will require more time and thus cannot achieve fast

time to market, low costs, and so on since large amounts of time must be spent

on creating pure infrastructure code customized for each application. The reus-

ability of such code is small or nonexistent, resulting in additional resources and

time to deal with the nuts and bolts of the grid. Without the proper data management

tools, the migration will be slow and expensive at the cost of total acceptance of the

technology into the commercial industry. This would jeopardize the whole “grid

thing” altogether.

Working with our clients and the grid computing technology vendors, it became

apparent that the management of data was not sufficiently addressed through the use

of traditional data management techniques. The physical topology of the grid is as

different from the client/server as the client/server was from the mainframe. Data

management systems that were architected for the client/server are optimized and

perform best in that topology, but not necessarily perform as needed by the grid top-

ology. To gain optimal performance from of the grid topology, various levels of

analysis are required, including the analysis of data types and their behaviors. The

analysis drives different data management techniques that are required as part of

the core for the data management system or the “engine” that needs to be redefined.

The engine’s (as an integral part of data management system) responsibility is to

manage the mechanics required by the data storage devices and the movement of

data into and out of the physical realm of the grid.

The first set of applications to run within the grid has operated over static data

sets, and large files whose contents rarely, if ever, change. Naturally, the data man-

agement techniques for these types of data and the applications associated with them

within the grid are geared toward the management and distribution of large static

data sets across the nodes of the grid. Examples are GridFTP (Grid File Transfer

Protocol) for distributed filing systems and various research projects such as Ocean-

Store. However, these techniques do not translate to the management of dynamic

data used by many applications within the financial services sectors (as well as

other vertical sectors).

xviii PREFACE



Throughout the evolution of the computer from mainframe/minicomputer to

client/server to middleware to distributed computing, the early adopters piloted

the transitions of each, followed by books and reference materials made readily

available to the armies of architects and developers involved in the mass adoption

of these respective technologies. As we are now working with the early adopters

of grid computing in the financial community, most, if not all, of the reference

materials on grid computing are white papers and research reports. There is an

obvious vacuum of printed material specifically as it relates to how to manage

data in the highly distributed topology of the grid. We, at Integrasoft, began to fill

this void by creating user groups where the early adopters of grid technology regu-

larly meet to discuss their activities and present some of the latest developments in

grid computing and data management within this technology: a forum of open idea

exchange and discussion. This is a small attempt since there are not enough user

groups globally to reach the masses needed to acquire the technology knowledge

required for this next evolutionary step in computing. I started this project of author-

ing a book on distributed data management in grid computing to assist in the adop-

tion of grid computing within the commercial industry, to provide an introduction to

grid computing for people who are just starting to hear about it for the first time; for

those who have been studying or considering and started to use grid computing, by

introducing the concepts for the management of data within grid computing; and for

the early adopters of this technology who are familiar with the complexities of data

management in grid computing, to hopefully spark research and development of

practical product in these areas in order to establish this technology as a standard.

The audience for this book is not limited to the technical purist; the topic of grid

computing is presented with the main drivers for its adoption, the economic and

sociological impacts on an organization. Thus, this is an introduction for people

who are along the managerial paths, who are aware of and familiar with the general

terms of data management, as with relational databases, and is intended to introduce

grid computing in business terms so that these individuals can see the benefits of

using grid technology and become advocates for the use of this technology in

their projects. It is hoped that they will be armed with the tools necessary to discuss

grid computing with their technical staff with a sufficient level of understanding of

this technology and to explain to the upper management and corporate leaders the

benefits of using grid technology. Finally, to complete the lifecycle, project man-

agers must be able to present their rationale for using grid computing in their pro-

jects to their corporate leaders such as the CIO and CFO (chief investment and

financial officers). They, too, should, having read this book, possess an understand-

ing of the business drivers behind grid computing and the benefits it brings to an

organization as a whole.

To draw in such a wide range of audience, I leverage three techniques: drawing

on a common baseline of knowledge, visitation through analogy, and finally practi-

cal applications of grid computing. For the first technique, a common baseline of

knowledge, the relational database and relational data management systems are

used to explain and introduce data management within the grid. Readers should

be able to walk away with the tools to help them promote grid technology into

PREFACE xix



their respective organizations and into the community as a whole. My intention is

not to provide a deep level of detail on the relational data management concepts

since technical people are typically familiar with them. Project managers should

already have the level of understanding of relational data management technology

on a par with what is discussed within, and drilling down into the bowels of the

underlying technology would not be of practical use.

The second technique, visitation through analogy, coupled with the common

baseline of relational data management, completes the conceptual bridge between

what is familiar to what is not. Finally, by presenting the practical business and tech-

nical use cases that people and corporations are looking for the grid technology to

solve, we will see the immediate benefits and widespread impact that the grid will

have on our everyday business and information technology lives.

The field of data management in the grid is a broad one; individually the topics

introduced warrant more in-depth discussion than the pages of this book can pro-

vide. In fact, each aspect or topic of distributed data management merits its own

book or series of books. So, for the technical readers who are intimately familiar

with the details of grid computing, this book should spark further thought and

work within the topics presented and contribute in the advancement of distributed

data management. The technical person becoming acquainted to grid computing

will acquire a firm understand of the field and the concepts of distributed data man-

agement in grid computing. I encourage them to read the white papers and reference

materials listed at the end of this book. The technologist will be able to take distri-

buted data management products (such as the one that we have developed, from the

ground up for data management within grid computing), and quickly get projects up

and running by assessing the various strengths and weaknesses of each product and

correlating that to their project needs.

A handful of people have been generous enough to read the manuscript of this

book, some being the early adapters and some are the newcomers to the field.

One person described my goals for this book as being the “rosetta stone” for grid

computing. As generous as he was in that description, I tend to look at is as

“beauty is in the eye of the beholder,” as individuals can look at a piece of work

and draw from it value particular to their respective backgrounds, experience, and

job responsibilities with the ultimate goal of helping them perform their jobs

better and contributing to the adoption of grid computing. Achievement of this

objective will also mean that I have achieved my goal.

xx PREFACE



ACKNOWLEDGMENTS

I would like to thank my loving family for their understanding, support, and further

sacrificing the already few precious moments we spent together while I took on the

additional responsibility of authoring this book.

Special thanks to Dave Cohen of Merrill Lynch and my partner in business, Steve

Yalovitser, for their contributions on Service Oriented Network Architecture

(SONA), to Andrew Delaney of A-Team Consulting for transforming my “techese”

into the English language, to Larry Tabb for his contributions in the Foreword of this

book, and to my editor, Val Moliere of John Wiley & Sons for her insight into the

importance of data management in grid computing and guidance during the author-

ing process.

xxi





PART I
AN OVERVIEW OF GRID
COMPUTING





1
WHAT IS GRID COMPUTING?

Grid computing has emerged as a framework for supporting complex compilations

over large data sets. In general, grids enable the efficient sharing and management of

computing resources for the purpose of performing large complex tasks. In particu-

lar, grids have been defined as anything from batch schedulers to peer-to-peer (P2P)

platforms.

Grid computing has evolved in the scientific and defense communities since the

early 1990s. As with most maturing technologies, there is debate as to exactly what

grid computing is. Some make a very clear distinction between cluster computing

and grid computing. Compute clusters are defined as a dedicated group of machines

(whether they are individual machines or racks of blades) that are dedicated for a

specific purpose. Grid computing uses a process known as “cycle stealing”: grabbing

spare compute cycles on machines across a network, when available, to get a task

done.

Since both compute clusters and grids coordinate their respective resources to

perform tasks, when does a compute cluster start to become a grid? Specifically,

does a compute cluster become a grid when it is leveraged to perform operations

other than those for which it was originally intended?

THE BASICS OF GRID COMPUTING

Grid computing is an overloaded term. Depending on whom you talk to, it takes

on different meanings. Some terms may better fit your practical usage of the

3

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright # 2005 John Wiley & Sons, Inc.



technology, such as clusters. For the purposes of this discussion, however, we shall

define grid computing as follows:

Grid computing is any distributed cluster of compute resources that provides an

environment for the sharing and managing of the resource for the distribution of

tasks based on configurable service-level policies.

A grid fundamentally consists of two distinct parts, compute and data:

. Compute grid—provides the core resource and task management services for

grid computing: sharing, management, and distribution of tasks based on con-

figurable service-level policies

. Data grid—provides the data management features to enable data access, syn-

chronization, and distribution of a grid

If the proliferation of jargon is a measure of a technology’s viability and its prom-

ise to answer key issues that businesses are facing, then transformation of jargon to

standards is a measure of the longevity of the technology in its ability to answer con-

cretely those key business issues. The evolution of grid computing from jargon to

standard can be measured by a number of converging influences: history, business

dynamics, technology evolution, and external environmental pressures.

The drivers behind grid technology are remarkably similar to those that corpor-

ations are facing today: a starving business need for powerful, inexpensive, and flex-

ible compute power, and limited funds to supply it. In the early 1990s, research

facilities and universities used increasingly complex computational programs

requiring the processing power of a supercomputer without the budget to supply

it. Their answer was to create a compute environment that could leverage any

spare compute cycles on campus to perform the required calculations.

Today, grid technology has evolved to the point where it is no longer a theory but

a proven practice. It represents a viable direction for corporations to explore grid

computing as an answer to their business needs within tight financial constraints.

There are additional forces in play that will present a fundamental paradigm shift

in how computing is done. As it migrates from the hands of artistry to the realm of

engineering—via the application of tried-and-true engineering principles—comput-

ing becomes a fundamental utility in the same way that gas and electricity gener-

ation and delivery is a utility. The quality of the service will be measured by its

ability to meet the supply-and-demand curves of the producers and consumers.

Leveling the Playing Field of Buzzword Mania

There are many analogies in the development and adoption of grid computing to

those of client/server technology. Both are fundamental paradigm shifts in the

way computing is performed. As client/server technology ushered in the broad

acceptance of relational database technology, grid technology will usher in new

4 WHAT IS GRID COMPUTING?



data management paradigms to address the specific topology of the physical com-

pute grid.

To see how this is happening, it is best to untangle the concepts of data manage-

ment in grid form by drawing on a fundamental baseline that we are all familiar with.

The people who are going to use grid technology—developers, architects, and lines

of businesses—are accustomed to thinking in terms of client/server technology and
the relational data management features within a client/server paradigm. Irrespec-

tive of the compute topology—client/server, computer clusters, or a computer

grid—from the user perspective, these data management service levels need to be

consistently maintained.

In the early days of client/server technology one would attend a seminar spon-

sored by a relational database vendor, promoting relational technology in general,

and the supplier’s product in particular. The message was that the new compute para-

digm of the client/server topology required new, more flexible data management

techniques than do those currently in use. As a result, relational databases became

synonymous with client/server technology and the standard for data management.

People attending those seminars were used to writing their own disk controllers

for data storage, so popular questions centered on disk management. How fast does

your product write to and/or read from disk? How efficient are your indices? How

well does your product manage physical data positioning on the disk? The bulk of

the seminar was spent on addressing these questions, and the only discussion of

data management centered on the use of a new language called Structured Query

Language (SQL) for storage and querying of the data. If you were interested,

there were SQL training classes to attend, where only the basics of how to form a

query were taught.

Figure 1.1 illustrates the parallels of the vocabulary and fundamentals between

data management within relational databases and that within grid computing. This

comparison is useful in two aspects: (1) it relates to terms that most are already

very familiar with and (2) more importantly, it suggests that any data management

system in grid computing must provide the same levels of service quality as within

relational databases.

Figure 1.1 links a baseline of data grid vocabulary to well-known relational data-

base terms. Relational database implementations have two fundamental com-

ponents: (1) the underlying engine that manages physical resources, in this case a

disk and (2) a layer on top of that to provide all the data management features

and functionality that architects and developers would rely on for data management,

querying, arrangement of data in highly ordered structures such as tables, the ability

to transact on data, leveraging stored procedures, event triggerings, and transacting

in and out of the database with external systems. These are the management features

and functions that today are where our true interest lies. How do I manage tables/
row locking? How do I structure indices for maximum performance? Very little

attention today is given to the underlying engine.

In the same way that relational database is a generic term, so is data grid. Com-

panies will offer implementations, products of their vision of what a data grid is.

To analyze the differences between the products offered, it is possible to apply a

THE BASICS OF GRID COMPUTING 5



baseline consisting of generic term, implementation, data management, and engine.

Each implementation of a data grid will have an engine. That engine may be a meta-

data dictionary or a distributed cache. It will also handle the data management

aspects of this data grid, defining how to structure data in tables, arrays, or matrices;

how to query data; and how to transact on the data.

Depending on the exact implementation of this engine—whether it is a metadata

dictionary that routes requests to the true long-term persistent stores, or a distributed

cache that spans all computers in the grid to form one virtual space—there are

General terms

Architecture

Implementations

Relational
database

Data
grid

Oracle
Sybase

DB2
MySQL
Others

Integrasoft
Avaki

Others

Tables,

Query Language

Procedures

Locking

Indexing

Relations

Triggers

Others…

Tables, arrays, and
matrices

Query API/language
procedures

Grid-specific policies
Data region
Data affinity
Data sync
Notification

Transactional
Others….

Disk management

Bit/byte
organization

Distributed cache
or metadata

Data Management Data Management

Engines Engines

Figure 1.1. Baseline of terms and function.

6 WHAT IS GRID COMPUTING?


