
Programming
PC Connectivity
Applications
for Symbian OS
Smartphone Synchronization and Connectivity
for Enterprise and Application Developers

By

Ian McDowall

Reviewed by

Day Barr, Emlyn Howell, Helena Bryant, Paul Newby,
Rob Falla, Simon Didcote, Tony Naggs, Zoë Martin

Symbian Press

Managing editor

Phil Northam

Project editor

Freddie Gjertsen

Innodata
0470090545.jpg

Programming
PC Connectivity
Applications
for Symbian OS

TITLES PUBLISHED BY SYMBIAN PRESS

• Programming PC Connectivity Applications for Symbian OS
Ian McDowall
0470 090537 477pp 2004 Paperback

• Symbian OS Explained
Jo Stichbury
0470 021306 416pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

• Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

• Programming for the Series 60 Platform and Symbian OS
Digia, Inc.
0470 849487 550pp 2002 Paperback

• Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

• Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

Programming
PC Connectivity
Applications
for Symbian OS
Smartphone Synchronization and Connectivity
for Enterprise and Application Developers

By

Ian McDowall

Reviewed by

Day Barr, Emlyn Howell, Helena Bryant, Paul Newby,
Rob Falla, Simon Didcote, Tony Naggs, Zoë Martin

Symbian Press

Managing editor

Phil Northam

Project editor

Freddie Gjertsen

Copyright 2005 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

McDowall, Ian.
Programming PC connectivity applications for Symbian OS : smartphone
synchronization and connectivity for enterprise and application developers
/ by lan McDowall.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-09053-7 (pbk. : alk. paper)
1. Cellular telephone systems – Computer programs. 2. Operating systems
(Computers) 3. Computer input-output equipment. I. Title.
TK6570.M6M38 2004
005.26′8 – dc22

2004017257

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09053-7

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Author Biography ix

Author’s Acknowledgments xi

Symbian Press Acknowledgments xiii

1 Introduction 1
1.1 What is PC Connectivity and Why is This Book Different

from Other Symbian OS Books ? 2
1.2 What This Book Will Tell You (and What It Will Not) 3
1.3 How This Book is Structured 4
1.4 Conventions Used in This Book 5
1.5 Developer Resources 5

2 A History of Symbian OS and PC Connectivity 7
2.1 A History of Symbian OS 7
2.2 PC Connectivity Using PLP 8
2.3 PC Connectivity Using TCP/IP 8
2.4 PC Connectivity Using OBEX 10

3 An Architectural Overview of PC Connectivity 11
3.1 The Bearers, TCP/IP and PPP 11
3.2 A Client-Server Model of PC Connectivity 12

4 The Symbian Connect Object Model 15
4.1 Overview 15
4.2 Functionality in SCOM and in PC Suites 15
4.3 SCOM and BAL 16
4.4 COM Programming and Language Choice 17
4.5 Error Handling 18

vi CONTENTS

4.6 SCOM Class Reference 18
4.7 BAL Class Reference 33
4.8 Using SCOM in C++ and Visual Basic 37

5 An Example PC Connect Application – a File
Browser 39
5.1 Overview 39
5.2 Connecting to a Phone or Emulator 39
5.3 Accessing SCOM and Connecting to a Device 48
5.4 Handling Differences Between Devices 52
5.5 Copying Files – Asynchronous Actions 53
5.6 Navigating the Filing System 58
5.7 A File Browser Application 60
5.8 Simple Actions on Files and Directories 66
5.9 Error Handling and Disconnection 77
5.10 Visual C++ Code for Application and Device

Management 78
5.11 Visual C++ Code for Drive and Directory Navigation 86
5.12 Visual C++ Code for Synchronous and Asynchronous

Operations 87

6 Programming for Symbian OS 89
6.1 Building a Project 90
6.2 Using the Emulator 96
6.3 Types and Naming Conventions 100
6.4 Error Handling 102
6.5 Descriptors 106
6.6 Arrays 108
6.7 Processes and Threads 109
6.8 Active Objects 110
6.9 Backwards Compatibility and Programming for Multiple

Phone Types 113

7 Developing Custom Servers 117
7.1 Overview of Custom Servers 117
7.2 Limitations of Custom Servers 118
7.3 Custom Servers API 119
7.4 Protocol Conventions 123
7.5 Creating Your First Custom Server 124
7.6 Installing a Custom Server 129
7.7 Starting a Custom Server from SCOM 130
7.8 Communicating with a Custom Server 132
7.9 Asynchronous Communication 133
7.10 Debugging a Custom Server 136

CONTENTS vii

8 Developing Socket Servers 137
8.1 Overview of Connectivity Socket Servers 137
8.2 An Introduction to the Server Socket Classes 138
8.3 Using the Service Broker API 141
8.4 Server Socket Classes 142
8.5 Developing an Echo Socket Server 151
8.6 Installing and Registering a Server Socket Service 161
8.7 Starting a Socket Service from SCOM 163
8.8 Communicating with a Socket Service 164
8.9 Asynchronous Communication 165
8.10 Debugging a Socket Service 165

9 Introducing SMS and Messaging Classes 167
9.1 The Message Server and MTMs 167
9.2 The Structure of Messages 170
9.3 Message Server Events and Sessions 173
9.4 SMS Specific Variations 174
9.5 Common Messaging Classes 175
9.6 SMS Specific Classes 187

10 Developing an SMS Management Connectivity
Service 191
10.1 SMS Management Protocol 191
10.2 Packing and Unpacking Data 200
10.3 Obtaining Access to the Message Server

and the SMS MTM 204
10.4 Listing SMS Messages and Returning Their Contents 206
10.5 Deleting and Creating SMS Messages 209
10.6 Handling Message Server Events 213
10.7 Putting the Messaging Code in a Connectivity Plug-in 215
10.8 A Command-line SMS Application 219

11 Using the Contacts Model 227
11.1 Databases and Models 227
11.2 The Contacts Model 228
11.3 Views 230
11.4 Contacts Observers 230
11.5 Synchronization and Performance Issues 231
11.6 Contacts Model API 231
11.7 A Contacts Connectivity Service 256

12 Using the Agenda Model 283
12.1 The Various Agenda Models 283

viii CONTENTS

12.2 Types of Agenda Entries 284
12.3 Repeating Entries 285
12.4 Alarms 285
12.5 List and Filter Classes 286
12.6 Agenda Model API 286
12.7 An Agenda Connectivity Service 325

13 Developing a Specialized Connectivity GUI
Application 347
13.1 What is Special About a GUI Application? 347
13.2 Managing Connections to Phones 347
13.3 Starting a PC Connectivity Service 351
13.4 Communicating and Managing Delays 351
13.5 A GUI SMS Application 358
13.6 A Contacts GUI Application 367
13.7 An Agenda GUI Application 384
13.8 Conclusion and Ideas for Further Development 396

14 Starting General Socket Servers 397
14.1 Communicating with a Socket Server 398
14.2 Starting a Server 400

15 Connectivity Dos and Don’ts 403
15.1 Protocol Design 403
15.2 Robustness and Defensive Design 406
15.3 Device and Service Management 407
15.4 General Development and Debugging Skills 410

Appendix 1 Developer Resources 413

Appendix 2 Specifications of Symbian OS Phones 421

Index 441

Author Biography

Ian joined Symbian in 2000 and is currently a technology architect
responsible for connectivity. He has previously filled roles ranging from
developer through project manager to technical manager by way of
quality manager and process consultant (including presentation at inter-
national conferences).

He has an MA in Computer Sciences from Cambridge University and
an MBA from Warwick University. As a software engineer for over twenty
years he has been with a number of software companies and has worked
on more than fifteen operating systems, developing software ranging from
enterprise systems to embedded software. He is married to Lorraine and
they have two children, Ross and Kelly, and a number of pets.

Author’s Acknowledgments

I would like to thank the members of the PC Connectivity team and others
in Symbian’s Software Engineering Department who have made this book
possible. In the PC Connectivity team Day Barr, Simon Didcote and Paul
Newby have provided essential information and suggestions, and in other
teams Emlyn Howell, Tony Naggs and David Cunardo have provided
invaluable advice on the best use of Symbian’s Messaging, Contacts and
Agenda APIs.

I would like to thank Zoë Martin, Colin Turfus and Ian Weston for their
support in promoting the wider use of PC Connectivity software.

The other reviewers have also been both diligent and construc-
tive – Helena Bryant and Rob Falla (who also suggested the original
idea for this book).

I must thank Freddie Gjertsen and Phil Northam of Symbian Press for
promoting the concept of this book inside and outside Symbian and for
their patient checking and support.

I would also like to thank all the engineers in Symbian and elsewhere
who have made Symbian’s PC Connectivity software what it is today.

Finally, I would like to thank my family who have put up with my
work on this book for more than a year.

Symbian Press Acknowledgments

Symbian Press would like to thank Ian for his perseverance in adversity.
And all those who reviewed the book, mentioned or otherwise. And those
who worked ‘behind the scenes’ to allow this book to be realized. And,
of course, the BA cabin-crew for always looking after the Symbian Press
‘frequent flyer’ so splendidly. And the wonderful Loza, Symbian Press
Officer extraordinaire.

Cover concept by Jonathan Tastard.

1
Introduction

Welcome to this book on programming PC Connectivity applications for
Symbian OS. PC Connectivity applications based on standard services
and APIs can be created purely by programming on the PC, but more
specialized applications involve programming on the Symbian OS smart-
phone as well as on the PC. This book will help you to create both types
of application.

If you have created an application for Symbian OS, have you consid-
ered how to improve its usability by integrating it with a PC? Maybe your
application could support a user interface on the PC when the Symbian
OS smartphone is connected, or maybe your application could store or
archive data on the PC.

If you have created an application for Windows PCs, have you con-
sidered how to improve your application by integrating it with Symbian
OS smartphones? This has been considered difficult and expensive but,
with the information in this book, it can be straightforward. You may be
surprised at the quality of integration you can achieve just by creating
PC software – for example, you could manage media files such as image,
audio and video files just by using the APIs described in Chapters 4
and 5. If your application is more specialized then a small amount of
Symbian OS programming may give you a unique service that increases
its attractiveness (and therefore its sales).

All the examples in this book are of stand-alone PC Connectivity appli-
cations, but this is by no means the only way to create PC Connectivity
applications. We will create a file browser that will provide a convenient
user interface to the filing system on Symbian OS smartphones; we will
create an application to read SMS messages on the smartphone and to
send such messages by means of the smartphone; we will create appli-
cations to directly read and modify the Contacts and Agenda data on
the smartphone.

These applications are potentially useful (I certainly use them exten-
sively in favor of the other ways of accessing Contacts, Agenda and SMS

2 INTRODUCTION

messages) but they are just examples of what can be done and I have
deliberately kept them simple. If you want to create a fully-featured,
integrated and commercialized version of these applications then I wish
you good luck. However, I feel that the largest potential value of PC
Connectivity applications lies in integration with other applications.

If you are an Enterprise or corporate developer this book is also
aimed at you. Symbian OS provides a selection of methods to connect a
smartphone to a server of which PC Connectivity is one of the cheapest
and fastest.

1.1 What is PC Connectivity and Why is This Book
Different from Other Symbian OS Books ?

A PC Connectivity application is an application with one part on the
Symbian OS smartphone and one part on the PC. Usually, the software
on the smartphone (commonly referred to as a server or service) will not
have a user interface.

Most books on Symbian OS programming are concerned with devel-
oping applications with user interfaces (although some also cover server
design). This book contains no information on user interface program-
ming on Symbian OS, but it does provide specialist information on how
to create services using the PC Connectivity plug-in and server APIs. As
most PC Connectivity services are interfaces to existing servers on the
smartphone, this book does not go into detail about server design.

The most obvious PC Connectivity software that most users will see is
the PC suite that is supplied with their Symbian OS smartphone. Typical
functions supported by such a PC suite include:

• synchronization with a Personal Information Manager (PIM) such as
Microsoft Outlook or Lotus Notes

• backup and restore of data

• the ability to install software on the smartphone remotely from the PC.

Some manufacturers add extra features such as a configuration appli-
cation or an interface to an MP3 player.

Some other books on Symbian OS programming touch on PC Connec-
tivity, but they only describe the standard functions and do not provide
information on how to create new PC Connectivity applications.

This book is aimed at software engineers creating additional appli-
cations or integrating other applications; it is not aimed at smartphone
manufacturers (who have their own support channels). This book does
not, therefore, cover the standard functions listed above, as I do not
expect third-party developers to create alternative PC suites.

WHAT THIS BOOK WILL TELL YOU 3

1.2 What This Book Will Tell You (and What It Will Not)

This book covers PC Connectivity for a wide range of Symbian OS
smartphones but, unfortunately, not all. The reasons for the variations
in PC Connectivity framework are discussed in Chapter 2. In summary,
this book covers all Symbian OS smartphones that I know of based on
Symbian OS v6.1 and Symbian OS v7.0 and some smartphones based
on Symbian OS v7.0s. It will also apply to a large extent to smartphones
based on Symbian OS v8.0 and later that include Symbian’s TCP/IP PC
Connectivity framework.

Because this book is aimed at PC Connectivity developers, it has less
space for general-purpose Symbian OS programming than some other
(commonly much larger) books. Chapter 6 explains the basics of Symbian
OS programming and the later chapters cover PC Connectivity and some
other APIs in detail. The developer resources that are available will
provide more detail on the other APIs in Symbian OS. However, if you
want to go further into Symbian OS programming then you may benefit
from another book that concentrates on Symbian OS programming, such
as other books published by Symbian Press.

For the Symbian OS programming I have used C++. This is the language
used to develop Symbian OS and the language in which all the APIs are
provided. Symbian uses C++ in ways that are slightly different from how
the language is used with other operating systems, but a good grasp
of object-oriented programming will be essential for any Symbian OS
development.

It is certainly possible to program for Symbian OS using Java. Java is
well supported by Symbian OS and is the most appropriate language for a
range of purposes, but there is no PC Connectivity API for Java. However,
Chapter 14 does show a way in which Java services might be accessed
using a PC Connectivity framework.

For programming on the PC I have used C# as I think it is the best
current language for development in Microsoft Windows. However, it is
possible to use any Microsoft-supported development language as the PC
Connectivity framework uses COM. The examples in this book would
be easily understood by any Microsoft Visual C++ programmer and, I
believe, also by Visual Basic programmers.

Because space in this book is limited, I have not provided any tuition
in using C++ or C#. Many good books and online resources on both
languages are available.

I have not included extensive information on using some of the
programming tools such as Integrated Development Environments (in
particular the debuggers). This is because I assume that the reader will
already know how to use these tools.

This book is aimed at integrating Symbian OS smartphones with
PCs running Microsoft Windows (multiple versions). What about other

4 INTRODUCTION

operating systems such as Linux or Mac OS? Theoretically, there is no
reason why PC Connectivity applications could not be created on these
operating systems, but Symbian does not publish the protocols required
and so the possibility remains more theoretical than practical. I have
created some experimental PC Connectivity software on Linux using Perl,
but that used undocumented protocols, required manual configuration
and would not work on all bearers.

1.3 How This Book is Structured

This book is structured so as to be read from the start to the end, but it
can also be used as a reference book and be dipped into.

Chapter 2 describes the history of Symbian OS in general and of
Symbian OS PC Connectivity in particular. You do not need to read this
to use the rest of the book, but it is only a short chapter and does provide
some context if you want to understand how Symbian OS evolved to its
current state.

Chapter 3 describes the architecture of Symbian OS PC Connectivity
and is a basis for understanding later chapters.

Chapters 4 and 5 describe the APIs provided on the PC for Symbian
OS PC Connectivity and show how to use these in creating a file browser
without writing any new code on the Symbian OS smartphone.

Chapter 6 leads into the development of software on the Symbian OS
smartphone. It contains a compressed tutorial on developing for Symbian
C++ but it ignores aspects that will not be used in developing for PC
Connectivity.

Chapters 7 and 8 describe how to create PC Connectivity services
using specialized APIs. Chapter 7 covers custom servers which are used
in Symbian OS v6.1 to Symbian OS v7.0s, while Chapter 8 covers the
socket server APIs introduced in Symbian OS v8.0. In order to illustrate
the APIs we will see how to create very simple PC Connectivity plug-ins.

Chapters 9, 10, 11 and 12 cover specific APIs and show how to create
PC Connectivity services using them. These chapters cover SMS messag-
ing, the Contacts Model and the Agenda Model and show how to create
PC Connectivity plug-ins to expose these APIs to the PC.

Chapter 13 builds on the previous chapters and shows how to create
an application on the PC that communicates with the services created in
the previous chapters to present a GUI on the PC that integrates with the
Symbian OS smartphone.

Chapter 14 is a slight diversion that discusses how to manage services
that were not originally design for PC Connectivity with minimal changes.

Chapter 15 finishes the book with a selection of advice on design-
ing and developing PC Connectivity applications based on Symbian’s
experience over a number of years.

DEVELOPER RESOURCES 5

1.4 Conventions Used in This Book

This book has very little in the way of conventions that are not obvi-
ous. Example code is presented in a fixed-width font and is normally
highlighted:

void CSomeClass::someMethod()
{
someOtherMethod();
}

The same convention is used for Symbian OS C++ as for C# or C++
for the PC. It should always be clear which is meant by the context.

In order to avoid pages of uninteresting code listings, this book shows
only the example code that I believe is relevant to the text. Because
Symbian OS is less commonly understood and because the code is more
compact, this book normally shows more complete listings of Symbian
OS C++. In a few cases I show an early version of a method and then
return to it later to add more code. In these cases the unchanged code is
not highlighted so that the new code can be clearly seen.

Where this book describes C# GUI code I have omitted all of the code
that is created by wizards.

Where classes or members are referred to in the text of the book, they
are normally shown in a fixed-width font to highlight them.

1.5 Developer Resources

In order to develop for Symbian OS in general and for PC Connectivity in
particular, you will need compilers and other development resources.

For PC development you will need standard Microsoft development
tools and developer resources: see www.msdn.microsoft.com.

For Symbian OS development the tools and resources are more spe-
cialized and are not all provided directly by Symbian. The best starting
point for resources and partners is www.symbian.com/developer which
has links to partner websites and also those resources that Symbian does
not provide.

Previously Symbian has not released software development kits (SDKs)
directly to developers. Instead the smartphone manufacturers have cre-
ated software development kits for their phones and released those. With
the creation of platforms that span multiple phones there are now software
development kits for those platforms. In a new departure, the CD that
accompanies this book includes an SDK for Symbian OS v7.0s based on
the TechView test user interface.

6 INTRODUCTION

At the time of writing, Nokia provides a range of developer re-
sources via its Nokia forum www.forum nokia.com and www.series60.
com, Sony Ericsson provides SDKs and Symbian OS documentation
and tools via http://developer.sonyericsson.com, and Sendo provides
information via www.sendo.com/dev.

Another site that is worth a look is www.newlc.com which is an
independent developer site. This has links to partners as well as tutorials
and other resources.

The link between the Microsoft development tools and the tools for
development on the Symbian OS smartphones is the PC Connectivity
framework on the PC. This requires an SDK that is available directly from
Symbian at www.symbian.com/developer/downloads/tools.html. As this
SDK is quite small we have not included it on the CD that accompanies
this book; you can pick up the latest version in a few minutes from the
Symbian website.

2
A History of Symbian OS and PC

Connectivity

2.1 A History of Symbian OS

Symbian was formed in 1998 as an unprecedented joint venture between
the largest players in the mobile telephone industry. From its inception,
Symbian has been dedicated to making Symbian OS available to any
smartphone manufacturer – it is not restricted to the original investors.
Since 1998 the number of licensees, that is smartphone manufacturers
who have licensed Symbian OS, has grown. The number of smartphone
models based on Symbian OS has grown at an increasing rate and so
have the numbers of actual Symbian OS smartphones shipped.

Over the last few years smartphones have become more advanced,
and the spread of advanced messaging and multimedia features requires
more advanced operating systems than the earlier, native, mobile phone
operating systems, while increasing computing power has made the
hardware required more affordable.

Symbian OS is not a complete and fully defined (and therefore limited)
system – instead it allows smartphone manufacturers to develop user
interfaces according to their own views and allows them to add extra
hardware features such as cameras and FM radios. Current user interfaces
include screens of differing sizes but all in color and include a variety
of input devices such as touchscreens, jog dials, softkeys, joysticks and
built-in or attachable keyboards. Symbian does not take a view on which
user interface is best but allows smartphone manufacturers to innovate
and compete.

One possible source of confusion is the name EPOC. This is the original
name for Symbian OS when it was created by Psion. ER5 stands for EPOC
Release 5 which was the first real version of Symbian OS. The name
EPOC still appears in some documentation, either as an anachronism or
as a reference to the underlying kernel.

Symbian OS is not static but has developed through multiple versions
from ER5, Symbian OS v6.0, Symbian OS v6.1, Symbian OS v7.0,

8 A HISTORY OF SYMBIAN OS AND PC CONNECTIVITY

Symbian OS v7.0s and Symbian OS v8.0, with further versions under
development. Each version builds on the previous versions and as much
consistency as possible is maintained, allowing for the new features in
each version.

The variety of possibilities that come with Symbian OS can be bewil-
dering and manufacturers have developed platforms that include a user
interface, a selection of applications and hardware interface layers that
can be used to develop multiple models of smartphones. This reduces
the development cost and time for new smartphones and allows devel-
opers to create applications that can be deployed on a wide range of
smartphones.

2.2 PC Connectivity Using PLP

In the first versions of Symbian OS (ER5) PC Connectivity was provided by
a component called PLP, which stands for Psion Link Protocol. PLP was
originally designed for RS232 serial connections and was later extended
to support infrared. It used proprietary software both on the PDA or
smartphone and on the PC, and it used limited-sized buffers.

Using PLP, Symbian and smartphone manufacturers were able to
provide the same headline functionality that is part of PC suites in
later versions: access to the filing system, backup and restore, PIM
synchronization and remote software install.

From the start, PLP supported plug-ins on the smartphone to make the
PC Connectivity extensible. These plug-ins were called ’custom servers’.
Each function required was implemented by a plug-in (some with sup-
porting libraries). Because of the use of plug-ins, the PC Connectivity
framework allowed extra features to be added and smartphone manufac-
turers were able to extend their PC suites. For this reason, the PC suite for
the Nokia 9210 supports plug-ins within the PC software.

2.3 PC Connectivity Using TCP/IP

PLP was used in Symbian OS v6.0, but during the implementation of
Symbian OS v6.1 Symbian switched to a TCP/IP based PC Connectivity
framework. The switch coincided with the introduction of Bluetooth as
a bearer.

Symbian did not develop the TCP/IP based bearer but instead licensed
a product named m-Router from Intuwave. m-Router has components
on the smartphone and on the PC. The PC components provide a PPP
implementation that is lacking from Microsoft Windows.

m-Router supports TCP/IP connections that can be used for any pur-
pose, but it also supports its own framework for loading services. In order

PC CONNECTIVITY USING TCP/IP 9

to make use of existing components, m-Router is able to load custom
servers (by means of a plug-in named ectcpadapter that we will
encounter again in Chapter 7).

The use of TCP/IP connections rather than PLP allowed a number
of underlying technical improvements, but the same functions were
supported by the PC suites; the change was one of extended bear-
ers and underlying technical improvements rather than extra headline
functions.

The first product to use the m-Router based PC Connectivity was the
Nokia 7650; its PC suite was a development of that from the 9210.
Through Symbian OS v6.1, Symbian OS v7.0 and Symbian OS v7.0s, the
PC Connectivity framework was improved in terms of performance and
robustness but was not significantly extended. This is not to say that all
the PC suites looked the same – the PC suites provided by Sony Ericsson
with the P800 and P900 Symbian OS v7.0 smartphones are significantly
different from those provided by Nokia. Other smartphone manufacturers
have also tried different approaches to make their smartphones more
attractive.

With the earliest Symbian OS smartphones, manufacturers were con-
cerned with supplying an attractive and robust PC suite for each product,
with a certain amount of innovation. When manufacturers released their
second or third Symbian OS smartphones, they began to consider the
value of standardization and moved towards developing PC suites to
support a range of their smartphones rather than providing a different PC
suite with each model of smartphone.

During 2002, Symbian introduced alternative PC software based
around SCOM (Symbian Connect Object Model). SCOM was intended to
require less resources when running than the previous PC software and
was designed to provide standardized functionality across as many types
of Symbian OS smartphone as possible. Subsequently, another layer of
software called BAL (Bearer Abstraction Layer) was added to provide a
standardized way of accessing connected phones and services. SCOM
and BAL did not introduce any changes to any software on the smart-
phone – they used the existing protocols rather than adding new ones.

Since its creation, SCOM and BAL have been maintained to support as
many Symbian OS smartphones as possible. At the time of writing, SCOM
and BAL work with all the Symbian OS smartphones that use m-Router
and the TCP/IP based services. It is impossible to guarantee this in the
future as smartphone manufacturers continue to improve their products
and some manufacturers will regard innovation as more important (that
is, more attractive to consumers) than standardization. In some cases this
will mean that individual models of Symbian OS smartphone will work
well with SCOM, but will also have additional services, whereas in other
cases the services may be so changed that SCOM and BAL may not work
with them.

10 A HISTORY OF SYMBIAN OS AND PC CONNECTIVITY

2.4 PC Connectivity Using OBEX

In the previous section I mentioned smartphone manufacturers seeking
to standardize their PC suites. It is worth bearing in mind that all
manufacturers of Symbian OS smartphones also make other mobile
phones and smartphones, so there is an attraction to creating a PC suite
that supports both Symbian OS smartphones and other, non-Symbian OS,
smartphones.

However, most non-Symbian OS smartphones do not use TCP/IP to
connect to Windows PCs. Instead, they use OBEX, which is well suited
to exchanging small objects such as contact details and SMS messages
and also supports larger objects such as file transfer.

Symbian OS includes some support for OBEX, but smartphone manu-
facturers have extended this and added services. This means that there is
not currently a standard Symbian-supported PC Connectivity framework
using OBEX, and for any development with such PC suites the developer
will require support from the smartphone manufacturer.

3
An Architectural Overview of PC

Connectivity

Most books on programming Symbian OS include a description of the
architecture. This chapter describes the architecture of Symbian OS PC
Connectivity without going into as much detail on the other Symbian
OS internals.

Figure 3.1 is a deliberately simplistic view of PC Connectivity, but it
shows the important features – a connection between the PC and the
Symbian OS smartphone, a client application on the PC, and a server or
service on the smartphone.

Symbian OS
smartphone

PC

Connectivity
Service

Client
Application

Connection (TCP/IP)

Figure 3.1 PC Connectivity

3.1 The Bearers, TCP/IP and PPP

All the PC Connectivity examples in this book run on Symbian OS
smartphones that use a TCP/IP connection as described in the previous
chapter. The TCP/IP connection between the relevant client and service
runs over a PPP link that can be carried over RS232-serial, infrared,
Bluetooth and USB. The use of PPP and TCP/IP to abstract the physical

12 AN ARCHITECTURAL OVERVIEW OF PC CONNECTIVITY

bearers means that the rest of the PC Connectivity software (on both the
PC and the smartphone) does not need to have any awareness of the
actual bearer in use.

Although Microsoft Windows uses PPP to connect user PCs to servers, it
does not include a PPP implementation that will natively run over infrared,
Bluetooth and USB as well as RS-232 serial. That is why Symbian PC
Connectivity uses m-Router to provide a PPP implementation.

The good news is that all the difficult problems (and handling the
various Microsoft and third-party communications stacks can cause a
range of problems) are hidden from the developer who is creating new
PC Connectivity services.

3.2 A Client-Server Model of PC Connectivity

Given a TCP/IP connection, we need two more components – the soft-
ware to run at each end of the connection. With a PC Connectivity
application, one of the software components runs on the Symbian OS
smartphone and the other runs on the PC.

The normal way of describing these components is to call the software
running on the smartphone a service or a server and to call the software
running on the PC a client. These names match the behavior of most PC
Connectivity applications. It is possible to reverse these roles and have
a client on the smartphone using a service on the PC, but this is less
common and there is less support for it.

It is worth bearing in mind that this client-server model of PC Con-
nectivity hides additional levels of complexity. Symbian OS uses the
client-server model extensively as an internal pattern – servers are used
to control access to shared resources throughout Symbian OS. Therefore,
a PC Connectivity server or service running on the smartphone is almost
certainly a client of one or more other servers on the smartphone.

In Chapters 4 and 5 we will use services that access the filing system
on the smartphone; these use PC Connectivity services that make use
of the Symbian OS file server. In Chapters 9–12 we will create further
PC Connectivity services that make use of the Message server and the
Contacts and Agenda servers.

Symbian OS provides a number of PC Connectivity services as standard
in order to provide the functions expected from a PC suite. It is possible
to access these directly from the PC, but this is not recommended for
two reasons.

Firstly, Symbian has not published documentation for the protocols,
and Symbian and the smartphone manufacturers have made improve-
ments and alterations across the different versions of Symbian OS and
even between different smartphone models based on one version of
Symbian OS. Therefore, although it has been done, reverse engineering

A CLIENT-SERVER MODEL OF PC CONNECTIVITY 13

the protocols is difficult and prone to unpredictable differences between
smartphone models.

Secondly, Symbian provides a layer of middleware (called SCOM)
described in Chapter 4 and used in Chapter 5 to access the standard
services. SCOM has the task of handling protocol differences and also
exposes an API that is much easier to use than driving the proto-
cols directly.

If you want to create a new PC Connectivity service (as we will in later
chapters) then you have a series of challenges:

1. You need to create the software on the Symbian OS smartphone to
actually provide the service.

2. You need to create the software on the PC to use the service.

3. You need a way of starting the service on the smartphone when
required (you do not want to have the service running when it is
not required).

4. You need a way of establishing a connection between the PC software
and the service.

Challenges 3 and 4 are addressed by the Symbian OS PC Connectivity
framework. In Symbian OS v6.1 to Symbian OS v7.0s you can create the
service on the smartphone as a custom server as described in Chapter 7.
The PC Connectivity framework then provides methods to load the server
and connect to it. In Symbian OS v8.0 onwards the custom server APIs
are replaced by socket server APIs described in Chapter 8. In both of
these cases I will show the commands required to use your services.

As an alternative, it is possible to create your service as a standard
TCP/IP socket server that knows nothing about PC Connectivity. In this
case the challenge is to start the service and connect to it, and this is
covered in Chapter 14.

4
The Symbian Connect Object Model

4.1 Overview

SCOM (the Symbian Connect Object Model – pronounced ‘escom’) is
a reusable software component that allows developers to more easily
produce applications that incorporate connectivity with Symbian OS
smartphones. While SCOM does this by abstracting core connectivity
features, it also provides the ability for developers to access other services
on the phone which may be developed either by themselves or by a
third party. SCOM is an out-of-process COM server that supports multiple
clients. SCOM is not an application that can be directly used by an
end-user. Instead, some form of application must be created that uses
SCOM in a way that is helpful to the end-user. This chapter describes the
functionality provided by SCOM that can be used by an application.

4.2 Functionality in SCOM and in PC Suites

SCOM does not provide all the functions that a user might expect. It
provides functionality to manage device connections and services, and
it provides simple access to some core services that Symbian considers
should be common to all Symbian OS smartphones.

SCOM was originally created with the needs of smartphone manufac-
turers in mind. These Symbian licensees have to provide a PC suite to
accompany their smartphones. Typically, the suites include the following
functionality:

• backup – copying files that include data, settings and installed appli-
cations from the smartphone to the PC

• restore – restoring the files that include data, settings and installed
applications back to the smartphone to restore it to a previous state

• installation of new software (Symbian OS applications or Java appli-
cations) on the smartphone

16 THE SYMBIAN CONNECT OBJECT MODEL

• synchronization with PIMs on the PC to keep contacts and calendar
data up to date

• some form of image or sound file management that requires the ability
to copy files to and from the smartphone.

Often, Symbian OS smartphone manufacturers will provide additional
functionality in order to give their smartphones a competitive advantage,
but Symbian cannot predict this functionality and so SCOM cannot
directly support it (although it does provide the means to access any
additional services by means of stream interfaces).

SCOM provides the following functionality directly:

• backup and restore

• file management

• software install.

PIM synchronization is not directly provided by SCOM. It, instead,
allows specialized synchronization software access to services on the
Symbian OS smartphone.

It is possible for any developer with sufficient skill and resources to
create a complete PC suite based on SCOM, but Symbian does not regard
that as sensible. You should assume that the smartphone manufacturers
or specialist partners will create their own PC suites and that it will not be
sensible to compete directly with them. Instead, developers should focus
their attentions on creating applications that complement the PC suites
provided with the smartphones. Therefore, this book shows how to carry
out functions useful to third-party developers and does not attempt to
show how to create a full PC suite. The backup and restore and software
installation functionality are omitted from this chapter, and the protocols
used for them and for PIM synchronization are not covered.

The main areas of functionality covered by this book are:

• managing connections to devices and starting and using services on
Symbian OS smartphones

• file management functions on Symbian OS smartphones.

4.3 SCOM and BAL

SCOM is the higher-level API provided to manipulate devices and their
filing systems. BAL (the Bearer Abstraction Layer) is a slightly lower-level
API that manages device connection and disconnection and services on
the device. SCOM uses BAL to provide its own API (take a look at the

COM PROGRAMMING AND LANGUAGE CHOICE 17

respective device properties and the mapping will become apparent). It is
possible to use SCOM without making direct use of BAL – indeed, this is
how SCOM was originally intended to be used. However, the BAL service
API is slightly more efficient, in terms of performance, than that of SCOM
and so the developer may choose to use BAL for some operations. In later
chapters we will start up services on the phone, using SCOM and BAL,
which are then accessed by means of Windows sockets in various guises.

Figure 4.1 gives a simplified view of the components that a PC Connect
application interacts with.

PC Connect
Application

SCOM

PC BAL

Winsock

m-Router

Symbian
Connect RFS

Other Named
Services

ESOCK

m-Router

PC Phone

Figure 4.1 SCOM and BAL

4.4 COM Programming and Language Choice

SCOM and BAL are built as COM servers because this provides the
simplest way to access their functionality. It also allows SCOM and BAL
to be used from any COM-compatible language and so makes them
available to the widest possible set of developers. On a PC this means
that just about any development language can access SCOM and BAL.

This book does not attempt to provide an introduction to COM – the
bookstores have shelves of books on COM (and all its variants) and
it would be wasteful to reproduce their contents here. This book does
include specific guidance on using SCOM and BAL in several languages,

18 THE SYMBIAN CONNECT OBJECT MODEL

so you will be able to use SCOM and BAL even if you have never
used COM.

Similarly, this book is not intended as a tutorial in C#, C++ or Visual
Basic because there are even more books on these subjects than on COM.
The examples in the subsequent chapters are mostly written in C# and
the logic should be apparent to any developer, although the way COM
is used in different languages means that the actual class and method
names will vary slightly. Sufficient examples are provided in Visual C++
and in VB to get developers started in those languages; standard IDE
tools will then allow you to obtain the detail that you need on class and
method names.

4.5 Error Handling

All the methods provided by SCOM and BAL can fail with bad HRESULTs
and developers should check the return values. In C# these errors are
thrown as exceptions that must be caught.

SCOM provides rich error information to clients by means of IError-
Info, but these error descriptions are not localized. Therefore, they must
not be displayed to the user – they are intended just as debugging aids.

4.6 SCOM Class Reference

This section lists the classes that make up SCOM and BAL that are
intended for use by third-party developers and describes the API for these
classes. It omits some classes and APIs that are intended only for use by
smartphone manufacturers (these can be accessed using the type libraries,
but I suggest that you ignore them).

You will see that some of the class names are of the form
<name><number>, for example ISCDevice2. These are classes that
have been extended. SCOM developers follow the rules for COM
development and so, once the interface to a class has been defined
and published, they will not change it. However, there have been cases
where additional functionality has been desirable and so classes have
been extended by defining a new class that replaces the old one. In such
cases you should normally use the ’latest’ class to have access to the most
functionality.

All the classes and types listed are part of the SymbianConnect
namespace. The types of members and arguments are given in C# termi-
nology; it should be straightforward to convert these to the appropriate
types for C++ or VB. In any case, the type libraries will provide information
on the types in a language-specific form.

Figure 4.2 is a simplified view of the major SCOM classes and interfaces
that you will use.

SCOM CLASS REFERENCE 19

Application

ISCDevice2

ISCDeviceStorage

ISCDeviceStorageDrive2

ISCDeviceStorageDirectory

ISCDeviceStorageFile

Figure 4.2 SCOM Classes

4.6.1 SCOM Application, Connection and Device Classes

These classes handle an SCOM application (which provides access to
connected devices and provides a basis for event handlers) and con-
nected devices.

Class SymbianConnect.Application – This class implements ISCApplication and
ISCEvents and provides access to connected devices and to SCOM events.

Member Variables

ISCDeviceCollection ConnectedDevices
This read-only member provides access to the set of currently connected devices. See also
DeviceConnected and DeviceDisconnected events.

Event Handlers (part of ISCEvents interface – described in Section 4.6.3)

20 THE SYMBIAN CONNECT OBJECT MODEL

DeviceConnected
This event handler is called when a new device is connected. See
ISCEvents DeviceConnectedEventHandler.

DeviceDisconnected
This event handler is called when a device is disconnected. See
ISCEvents DeviceDisconnectedEventHandler.

DeviceCopyStorageFileProgress
This event handler is called to report progress during a file copy operation. See
ISCEvents DeviceCopyStorageFileProgressEventHandler.

DeviceCopyStorageFileError
This event handler is called when an error occurs during a file copy operation. See
ISCEvents DeviceCopyStorageFileErrorEventHandler.

DeviceCopyStorageFileExistingFileFound
This event handler is called when a file copy operation encounters an existing file with the
same name as the target. See
ISCEvents DeviceCopyStorageFileExistingFileFoundEventHandler.

DeviceCopyStorageFileComplete
This event handler is called when a file copy operation is complete. See
ISCEvents DeviceCopyStorageFileCompleteEventHandler.

Class ISCDevice2 – This interface provides access to the properties of a connected device
and its storage.

Member Variables

string ConnectionBearer
This read-only member provides a string that describes the transport used to connect the
device.

string Manufacturer
This read-only member provides the name of the manufacturer of the device.

string Model
This read-only member provides the name of the model of the device. This should be used in
conjunction with the manufacturer.

string Id
This read-only member provides a unique identifier for the device. It is guaranteed to be
different from any other device and can be used to identify it. Commonly, it is the IMEI
number of the smartphone.

SCOM CLASS REFERENCE 21

ISCDeviceStorageDriveCollection StorageDrives
This read-only member provides the set of drives owned by the device. This member is the
root for navigation of the filing system on the device.

ISCDeviceStorage Storage [string]
This read-only member is used to directly access a directory or file on the device. It is
possible to access any file or directory on the device by navigating through the directory tree,
but this can be tedious. Instead, this member is used with the full path of the file or directory
required (directories should be terminated with a trailing backslash, \) and returns an object
that can be cast to an ISCDeviceStorageDirectory or ISCDeviceStorageFile.

bool IsActive [string]
This read-only member is obsolete and should not be used. It is used by some legacy
synchronization software.

Member Methods

void SynchroniseDateTime ()
This method synchronizes the device date and time with that of the PC. It is commonly used
as a part of synchronization and backup operations.

ISCSequentialStream OpenDeviceService (string aServiceName)
This method attempts to open a service on the device by name and returns a stream that can
be used to communicate with the service. This is how SCOM provides access to lower-level
or third-party services on the smartphone.

aServiceName – the name of the service to be started on the device.
returns – a stream object if successful or null if unsuccessful.

SCAsyncStreamSink OpenAsyncDeviceService(string aServicename)
This method attempts to open a service on the device by name and returns a stream that can
be used to communicate with the service asynchronously. This is how SCOM provides
asynchronous access to lower-level or third-party services on the smartphone.

aServiceName – the name of the service to be started on the device.
returns – an asynchronous stream object if successful or null if unsuccessful.

void SetActive(string)
This method sets a device as the active device. This concept is used only by some legacy
synchronization software and should not be used elsewhere.

Class ISCDeviceCollection

This class is a collection of ISCDevice objects. It can be accessed by standard iterators.
Note that its first index is 1, not 0.

22 THE SYMBIAN CONNECT OBJECT MODEL

4.6.2 SCOM Storage Classes

Enumerated Type ScStorageType

• scDrive

• scDirectory

• scFile

Class ISCDeviceStorage – This interface is the base for drives, directories and files.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.
Note that paths always start with a drive letter and a colon, directory paths always terminate
with a backslash (\), and file paths never terminate with a backslash.

Flag Type ScDriveAttributes

Not all of these attributes may be applicable to a smartphone.

• scDriveAttLocal = 0×01
• scDriveAttROM = 0×02
• scDriveAttRedirected = 0×04
• scDriveAttSubsted = 0×08
• scDriveAttInternal = 0×10
• scDriveAttRemovable = 0×20
• scDriveAttRemote = 0×40

• scDriveAttTransaction = 0×80

Enumerated Type ScDriveBatteryState

• scBatteryGood

SCOM CLASS REFERENCE 23

• scBatteryLow

• scBatteryNotSupported

Flag Type ScMediaAttributes

• scMediaAttVariableSize = 0×01
• scMediaAttDualDensity = 0×02
• scMediaAttFormattable = 0×04
• scMediaAttWriteProtected = 0×08
• scMediaAttLockable = 0×10
• scMediaAttLocked = 0×20
• scMediaAttHasPassword = 0×40

Enumerated Type ScMediaType

• scMediaCdRom

• scMediaFlash

• scMediaFloppy

• scMediaHardDisk

• scMediaNotPresent

• scMediaRam

• scMediaRemote

• scMediaRom

• scMediaUnknown

Class ISCDeviceStorageDrive2 – This interface provides access to the properties of a
drive and access to the directories on the drive.

Member Variables

int Attributes
This read-only property is a combination of zero or more ScDriveAttributes flags.
This property does not always provide meaningful values, so test it with specific devices.

24 THE SYMBIAN CONNECT OBJECT MODEL

ScDriveBatteryState BatteryState
This read-only property indicates whether or not the drive supports a battery and, if so, its
state. This property does not always provide meaningful values, so test it with specific devices.

int Capacity High
This read-only property is the high 32-bits of the drive capacity in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int CapacityLow
This read-only property is the low 32-bits of the drive capacity in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int FreeSpace High
This read-only property is the high 32-bits of the drive free-space in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int FreeSpaceLow
This read-only property is the low 32-bits of the drive free-space in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

long MediaAttributes
This read-only property is a combination of zero or more ScMediaAttributes flags.
This property does not always provide meaningful values, so test it with specific devices.

ScMediaType MediaType
This read-only property gives the type of media mounted on the drive.
This property does not always provide meaningful values, so test it with specific devices.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorageDirectory RootDirectory
This read-only property gives the directory at the root of the drive.

ScStorageType Type
This read-only property gives the type of the device storage object.

int UniqueId
This read-only property gives the unique identifier for the drive. This is meaningful only for
some types of removable drive and it changes after formatting with some devices.

string VolumeLabel
This writable property gives the volume label of the drive. Setting this property will set the
volume label of the drive.

SCOM CLASS REFERENCE 25

Member Methods

int Format ()
This asynchronous method initiates a format operation on the drive. The return value is the
request ID that will be returned by event handlers. Please note that SCOM may not be able to
format the c: drive because it may contain files which are necessary to maintain the
connection. It is probably unwise to try to format the c: drive anyway, because it contains
essential data.

void Refresh ()
SCOM caches information about drives, directories and files to provide fast access to that
information, as it would be slow to retrieve that information on demand whenever required.
This method refreshes that stored information about a drive. It is likely to be most useful if the
drive is a removable drive such as an MMC card.

Class ISCDeviceStorageDriveCollection

This class is a collection of ISCDeviceStorageDrive objects. It can be accessed by
standard iterators.
Note that its first index is 1, not 0.

Class ISCDeviceStorageDirectory – This interface provides access to the properties of
a directory and the child directories and files that it owns, and supports a range of operations
on the directory.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorage Parent
This read-only property gives the parent of the device storage object. This will be an
ISCDeviceStorageDirectory for all directories except root directories for which it will
be an ISCDeviceStorageDrive.

ISCDeviceStorageDirectoryCollection ChildDirectories
This read-only property gives the collection of child directories.

ISCDeviceStorageFileCollection ChildFiles
This read-only property gives the collection of files in the directory.

26 THE SYMBIAN CONNECT OBJECT MODEL

Member Methods

int CopyFileFromPC (string aFileToCopy)
This asynchronous method copies a file from the PC to the device.

aFileToCopy – the name of the file on the PC to copy to the directory.
returns – the request ID for the file copy operation. This will be returned by subsequent file

copy events.

void Rename (string aNewName)
This method attempts to rename the directory.

aNewName – the new name for the directory. This can be either a fully qualified directory
name on the same drive ending with a backslash or an unqualified valid directory name
in the same parent directory.

void Delete ()
This method attempts to delete the directory. If the directory is not empty it can still be
deleted – in fact SCOM will recursively delete all child directories and files and then delete
the empty directory. This method should be used with care.

Class ISCDeviceStorageDirectoryCollection

This class is a collection of ISCDeviceStorageDirectory objects. It can be accessed by
standard iterators.
Note that its first index is 1, not 0.

Class ISCDeviceStorageFile – This interface provides access to the properties of a file
and supports a range of operations on the file.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorage Parent
This read-only property gives the parent of the device storage object. This will be an
ISCDeviceStorageDirectory for all files.

string FileName
This read-only property is the name of the file. Although it is read-only as a property, it can be
altered using the Rename() method.

int Size
This read-only property is the size of the file.

