МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

А.Н. Ковалев О.И. Рабинович М.И. Тимошина

Физика и технология наноструктурных гетерокомпозиций

Учебник

Допущено Научно-методическим Советом по физике Министерства образования и науки Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по техническим направлениям подготовки и специальностям

Москва 2015

Репензенты:

д-р физ.-мат. наук, проф. *В.И. Трухин* (МГУ); д-р физ.-мат. наук, проф. *Ф.И. Маняхин* (НИТУ МИСиС)

Ковалев А.Н.

К56 Физика и технология наноструктурных гетерокомпозиций : учеб. / А.Н. Ковалев, О.И. Рабинович, М.И. Тимошина. – М. : Изд. Дом МИСиС, 2015. – 460 с.

ISBN 978-5-87623-941-9

Учебник содержит всестороннее изложение базовых элементов физики полупроводников, объемное изложение и анализ современных технологий выращивания полупроводниковых материалов, учитывающих квантово-размерные эффекты (метод молекулярно-лучевой эпитаксии и газофазная эпитаксия из металлоорганических соединений, метод Фольмера—Вебера—Странского, Бартона—Кабреры—Ван дер Мерве). Рассмотрены современные многокомпонентные наногетероструктуры, в том числе нитридные, фосфидные и арсенидные материалы. Представлен и проанализирован широкий спектр приборов опто- и наноэлектроники. Приведены рабочие характеристики всех видов транзисторов, фотодиодов, солнечных элементов, светоизлучающих диодов и лазеров, механизмы их деградации и принципы спинтроники на основе нитридов.

Учебник предназначен для бакалавров, магистров, инженеров, обучающихся по специальностям 28.03.01 «Нанотехнологии и микросистемная электроника», 11.03.04 «Электроника и наноэлектроника», 15.03.04 «Автоматизация технологических процессов и производств», 11.03.01 «Радиотехника», 11.03.02 «Инфокоммуникационные технологии и системы связи». Представляет интерес для широкого круга читателей, специализирующихся в опто- и наноэлектронике, технологии полупроводниковых материалов и приборов на их основе.

УДК 621:38

© А.Н. Ковалев, О.И. Рабинович, М.И. Тимошина, 2015 © НИТУ «МИСиС», 2015

ОГЛАВЛЕНИЕ

	Условные обозначения и сокращения	8
	Предисловие	
1.	Основные понятия физики полупроводниковых материалов	11
	1.1. Металлы, диэлектрики и полупроводники	11
	1.2. Электропроводность твердых тел	12
	1.3. Основные уравнения движения носителей тока	14
	1.3.1. Уравнение непрерывности	14
	1.3.2. Уравнения для плотности токов	16
	1.3.3. Уравнение Пуассона	17
	1.4. Механизмы проводимости твердых тел	19
	1.4.1. Прохождение тока через металлический проводник	19
	1.4.2. Прохождение тока через идеальный диэлектрик	20
	1.4.3. Прохождение тока через идеальный монополярный	
	полупроводник	22
	1.4.4. Произвольный случай	26
	1.4.5. Биполярная проводимость	26
	1.5. Контактные явления	30
	1.6. Свойства структуры металл-диэлектрик-полупроводник	32
	1.6.1. Энергетические диаграммы идеальной	
	МДП-структуры	32
	1.6.2. Собственный полупроводник	34
	1.6.3. Примесный полупроводник	35
	1.6.4. Приближение полного обеднения	36
	1.6.5. Учет свободных носителей заряда	38
	1.7. Выпрямляющий и омический контакты	
	металл-полупроводник	45
	1.7.1. Выпрямляющий контакт	46
	1.7.2. Роль поверхностных состояний	48
	1.7.3. Невыпрямляющий (омический) контакт	50
2.	Свойства р-п-перехода	53
	2.1. Образование <i>p-n</i> -перехода. Толщина и барьерная емкость	
	<i>p-n</i> —перехода	53
	2.2. Резкий <i>p-n</i> —переход	56
	2.3. Линейный симметричный <i>p-n</i> -переход	58
	2.4. Неоднородный полупроводник	60

	2.5. Идеальная вольтамперная характеристика	63
	2.6. Генерация и рекомбинация носителей в обедненном слое	
	2.7. Высокий уровень инжекции	68
	2.8. Учет сопротивления базы	
	2.9. Пробой <i>p-n</i> –перехода	
	2.10. Поведение <i>p-n</i> -перехода на малом переменном сигнале.	
	Переходные процессы	70
	Переходные процессы в <i>p-n</i> -переходе	74
	2.11. Сравнение диодов Шоттки с <i>p-n</i> -переходами	76
	2.12. Варизонный полупроводник	
3.	. Гетеропереходы	
	3.1. Построение энергетических диаграмм. Разрывы краев	
	энергетических зон	79
	3.2. Односторонняя инжекция	84
4.	. Квантование энергии электронов. Сверхрешетки.	
	вантово-размерные объекты	86
	4.1. Двумерная плотность электронных состояний	
	4.2. Потенциальная энергия электронов в инверсионном слое,	
	приближение треугольного потенциала	88
	4.3. Модель Кронига – Пенни	
	4.4. Квантово-размерные объекты	
	4.4.1. Дельта (δ)-легирование	
	4.4.2. Квантово-размерные нити и точки. Плотность	
	электронных состояний	94
	4.5. Квантово-размерный эффект и плотность состояний	
	блоховских волн	96
	4.6. Сверхрешетки	98
	4.7. Оптические свойства сверхрешеток	
5.	. Эпитаксиальные методы выращивания наногетероструктур	
	5.1. Технологии выращивания квантово-размерных объектов	
	5.1.1. Послойный и нормальный рост кристалла	
	5.1.2. Спиральный механизм роста	
	5.1.3. Гетерогенное и гомогенное образование зародышей	. 113
	5.1.4. Коалесценция и образование сплошного слоя	
	5.1.5. Механизмы формирования гетероэпитаксиальных	
	структур с квантово-размерными точками	. 118
	5.1.6. Полупроводниковые нанотрубки	

5.2. Технологии выращивания многокомпонентных	
наногетероструктур и тонких пленок	. 127
5.2.1. Метод молекулярно-лучевой эпитаксии	. 128
5.2.2. Метод эпитаксиального выращивания гетероструктур	
из металлоорганических соединений	
(МОС-гидридный метод)	. 132
5.2.3. Рентгено-дифрактометрические методы исследования	
структурных свойств слоев AlInGaN	. 141
5.3. Электролюминесцентные свойства гетероструктур	. 143
5.4. Электронография	. 144
5.5. Рентгенолитография	. 147
5.6. Ионная литография	. 149
5.7. Фотолитография	. 150
6. Полупроводниковые приборы	. 155
6.1. Выпрямители	. 155
6.2. Стабилитроны	. 156
6.3. Варикапы	. 157
6.4. Высокочастотные диоды	. 159
6.4.1. Туннельный и обращенный диоды	. 162
6.4.2. Лавинно-пролетные диоды	. 168
6.5. Надежность диодов	. 170
6.6. Биполярные гетеротранзисторы на Si/Ge $_x$ Si $_{1-x}$ и A ^{III} B V	. 172
6.6.1. Основные характеристики биполярного транзистора	. 172
6.6.2. Эквивалентная схема транзистора.	
Предельные частоты	. 176
6.6.3. Дрейфовый планарный биполярный транзистор	. 180
6.6.4. Принцип действия биполярного гетеротранзистора	. 182
6.6.5. Биполярные гетеротранзисторы на основе $A^{III}B^{V}$. 186
6.6.6. Биполярные гетеротранзисторы на основе	
нитридов III группы	. 194
6.6.7. Сравнение достигнутых результатов с теоретическими	
оценками	. 199
6.7. Современные полевые гетеротранзисторы	
на основе соединений А ^ш В ^V	. 209
6.7.1. Основные представления и параметры	. 210
6.7.2. Модель полевого транзистора	
6.7.3. Особенности переноса в субмикронных структурах	. 217

6.7.4. Полевые транзисторы на основе Al _x Ga _{1-x} As/GaAs	
A 1 A	221
6.7.5. Полевые гетеротранзисторы на основе	
материалов А ^{III} N	238
6.8. Фотоприемники	
6.9. Фотодиоды. Фотодиодный и фотогальванический режим.	
Фототранзисторы	277
6.10. Фотоэлементы	
6.11. Фотоприемники на основе квантово-размерных структур	282
6.12. Солнечные элементы	
6.12.1. Солнечные элементы на основе кремния	
6.12.2. Многопереходные кремниевые солнечные элементы	
6.12.3. Солнечные элементы на основе соединений А ^{III} В ^V	
6.12.4. Технологии изготовления солнечных элементов	
6.12.5. Каскадные солнечные элементы	
6.13. Светоизлучающие диоды	
6.13.1. Типы светоизлучающих диодов	
6.13.2. Характерные черты многокомпонентных	
наногетероструктур на основе А ^ш В ^у	315
6.13.3. Устройства на основе многокомпонентных	
наногетероструктур AlGaInP	325
6.13.4. Светоизлучающие диоды на основе	
многокомпонентных наногетероструктур AlGaInN	352
6.13.5. Структура AlGaInP светоизлучающих диодов	
6.13.6. Технология сборки светоизлучающих диодов	
6.13.7. Влияние деградационных явлений на рабочие	
характеристики светоизлучающих диодов	372
6.13.8. Обзор исследований в области деградации	
светоизлучающих диодов	380
6.14. Инжекционные лазеры	
6.14.1. Гетероструктуры AlGaN/InGaN/GaN	
с квантово-размерными ямами для инжекционных лазеров	389
6.14.2. Принцип действия полупроводникового	
инжекционного лазера	393
6.14.3. Лазерная генерация через состояния	
самоорганизованных квантовых точек	395
6.15. GaN-материал для спинтроники	

7. Краткий обзор развития транзисторов, светоизлучающих	
диодов и лазеров. Примение светоизлучающих диодов	409
7.1. Основные этапы развития технологии транзисторов	409
7.2. Развитие технологии светоизлучающих диодов	417
7.3. Этапы развития лазерных технологий	430
7.4. Основные области применения	
светоизлучающих диодов	439
Библиографический список	

Условные обозначения и сокращения

АЧХ – амплитудно-частотная характеристика

БГТ – биполярный гетеротранзистор

БК – база-коллектор

ВЯ – высокояркие СИД

ВАХ – вольтамперная характеристика

ВнешКВ – внешний квантовый выход

ВнКВ – внутренний квантовый выход

ВОЛС – волоконно-оптическая линия связи

ДЭГ – двумерный электронный газ

ДОБЭ – дифракция отраженных быстрых электронов

ДТЛ – дефекты темных линий

ДТТ – дефекты темных точек

ЗЦ – зарядовые центры

ИЛЛ – ионно-лучевая литография

ИЛТ- ионно-лучевое травление

КН/КП – квантово-размерная нить или проволока

КС – квантово-размерная структура

КТ – квантово-размерная точка

КЯ – квантово-размерная яма

ЛВР – лазер с вертикальным резонатором

ЛПД- лавинно-пролетный диод

МДП – металл-диэлектрик-полупроводник

МДМ – метал-диэлектрик-метал

МКНГ – многокомпонентная наногетероструктура

МКЯ – множественная КЯ

МЛЭ (МВЕ) – метод молекулярно-лучевой эпитаксии

МОС – гидридный метод (МОСVD) – газофазная эпитаксия из металлоорганических соединений

ОПЗ – область пространственного заряда

ОБ, ОЭ, ОК – общая база, общий эмиттер, общий коллектор

ООЗ – область обедненного заряда

ПГС – паро-газовая смесь

ПМЛЭ – плазменная молекулярно-лучевая эпитаксия

ПС – полупроводниковая структура

ПТ (FET) – полевой транзистор

ПШКК (FWHM) – ширина на полумаксимуме кривой качания (полумаксимум спектра)

ПЭ – пьезоэлектрический эффект

РМЛЭ – реактивная молекулярно-лучевая эпитаксия

СБИС – сверхбольшая интегральная схема

СВЧ – сверхвысокие частоты

СИД (LED) - светоизлучающий диод

СП – спонтанная поляризация

СР – сверхрешетка

СТМ – сканирующая туннельная микроскопия

СЭ – солнечный элемент

ТООЗ – токи, ограниченные объемным зарядом

ТТЭ – ток термоэлектронной эмиссии

УЗ – ультразвук

УЗВ – ультразвуковое воздействие

ФИП – фокусированный ионный пучок

ФЛ – фотолюминесценция

ФП – фотопроводимость

ЦБИР – центры безызлучательной рекомбинации

ШХР – модель Шокли – Холла – Рида

ЭБ – эмиттер-база

ЭДС – электродвижущая сила

ЭЛ – электролюминесценция

ЭОС – электронная Оже-спектроскопия

ЭУФ – экстремальный ультрафиолет

ЭС – эпитаксиальная структура

COB (Chip on board) – чип на плате

0D, 1D, 2D, 3D – нульмерный, одно-, дву- и трехмерный элемент

DMS – доменные магнитные полупроводники

ELOG (epitaxial lateral overgrowth) – технология эпитаксиального поперечного разрастания

LEEBI (low energy electron beam irradiation) – метод обработки слоя пучком электронов низкой энергии

RIE – сухое реактивное травление

SMD (surface mounted device) – СИД в корпусе поверхностного монтажа

TMGa – триметил галлия

TMAl – триметил алюминия

TMIn – триметил индия

Предисловие

Современная наноэлектроника во многом уходит корнями в микроэлектронику прошлого века. Не зря древние говорили: «Рег crucem ad lucem» («Через крест к свету»). Этот постулат верен – у опто- и наноэлектронных приборов очень сложная, но увлекательная история. Подобно тому как изобретение транзистора в 1947 г. привело к изобилию электронных приборов наших дней, опто- и наноэлектроника как научно-техническое направление, стартовав на заре прошлого века, развивалась столь динамично, что становится правомерным сравнение с очередной научно-технической революцией.

За последние десять лет заметен огромный рост интереса к наноэлектронике. Материаловеды, а также физики, химики и инженеры с одинаковым интересом изучают потенциал различных наноматериалов с точки зрения их основных свойств и возможностей применения.

Нанотехнология способна изменить все аспекты человеческого существования. Возможность синтезировать наномасштабные элементы, а затем собирать такие элементы в более крупные структуры, обладающие уникальными квантово-размерными свойствами (КС) и функциями, приводит к революционным изменениям во многих отраслях. Полупроводниковая гетероструктурная наноэлектроника представляет собой составную часть нанотехнологии и охватывает разработку полупроводниковых приборов и устройств в субмикронном диапазоне размеров. Поэтому в настоящее время особенно актуальна необходимость в учебниках, в которых сочетаются физика и технология производства наноматериалов. Именно эту цель преследовали авторы, работая над данным учебником.

В учебнике рассмотрены базисные элементы физики полупроводников, свойства и характеристики основных, наиболее использующихся многокомпонентных наногетероструктур, типы и области применения трансзиторов, солнечных элементов, фотодиодов, светоизлучающих диодов и лазеров. Приведены примеры реализации транзисторов, солнечных элементов и светоизлучающих диодов на основе многокомпонентных наногетеросистем материалов Ge/Si и A^{III}B^V, размеры активных областей которых менее 100 нм. Значительная часть работы посвящена изучению механизмов выращивания и формирования наногетероэпитаксиальных структур с квантово-размерными элементами. Рассмотрены явления самоорганизации при эпитаксии и применение элементов самоорганизации для эпитаксиального наращивания наногетероструктурных объектов полупроводниковой электроники на основе массива квантово-размерных объектов.

1. ОСНОВНЫЕ ПОНЯТИЯ ФИЗИКИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

1.1. Металлы, диэлектрики и полупроводники

Металлы (лат. *metallum* — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокие пластичность и прочность, металлический блеск и ковкость.

Диэлектрики (изоляторы) (греч. $di\acute{a}$ – через и англ. electric – электрический) – вещества, практически не проводящие электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 10^8 см⁻³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твердого тела диэлектрик – вещество с шириной запрещенной зоны больше 2 эВ.

Полупроводники — это материалы, которые по своей удельной проводимости занимают промежуточное место между проводником и диэлектриком и отличаются от проводника сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещенной зоны которых соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а lnAs — к узкозонным.

Условно к проводникам относят материалы с удельным электрическим сопротивлением $\rho < 10^{-5}$ Ом·см, а к диэлектрикам — материалы, у которых $\rho > 10^8$ Ом·см. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10^{-8} Ом·см, а у лучших диэлектриков превосходить 10^{16} Ом·см. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах $10^{-5}...10^8$ Ом·см.

Число атомов в линейной цепочке и число независимых значений квазиимпульса в зоне Бриллюэна исходя из одномерной модели можно рассчитать по формуле L/a (L — линейный размер кристалла, a — межатомное расстояние) [1]. Следовательно, зона, образованная из L/a атомов, содержит 2L/a состояний, т.е. если рассматриваемое тело состоит из одновалентных атомов, отдающих в зону по одному электрону, то эта зона заполнена (снизу) только наполовину (рис. 1.1, a).

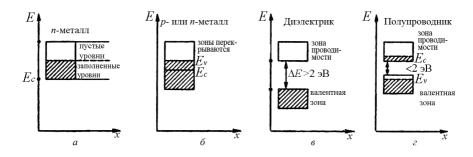


Рис. 1.1. Взаимное расположение энергетических зон (схематически) в твердом теле: a-n-металл; $\delta-p$ - или n-металл; $\varepsilon-$ полупроводник

Верхняя половина зоны свободная, и электроны под действием внешнего поля могут беспрепятственно в ней перемещаться. Такие тела обладают электронной проводимостью, характерной для металлов. Если атом отдает в зону четное число электронов, то она полностью заполнена и электроны в ней не могут принимать участие в проводимости. В этом случае тело обладает свойствами диэлектрика (рис. 1.1, б), если зоны не перекрываются и между ними существует зона запрещенных энергий, ширина которой ΔE порядка нескольких электрон-вольт. В этом случае при комнатной температуре энергии теплового движения $kT_0 \sim 10^{-2}$ эВ недостаточно для того, чтобы перевести электроны из заполненной валентной зоны в пустую зону проводимости, и тело не проводит электричество. При расчете электропроводности твердых тел рассматриваются только две зоны, одна из которых (самая верхняя) при T=0 является полностью свободной (зона проводимости), а другая (под ней) полностью занята (валентная зона). Соответственно дно зоны проводимости обозначается через E_{zz} а верх валентной зоны — через $E_{..}$

1.2. Электропроводность твердых тел

До тех пор пока среднее расстояние между электронами проводимости r оказывается много больше длины волны де Бройля $\lambda = h/p$, электронный газ в твердом теле является «классическим». В этом случае можно не учитывать взаимодействие между электронами и их свойства не лишены индивидуальности, т.е. в принципе по траекто-

рии их движения всегда можно проследить за отдельным электроном и таким образом отличить один от другого.

За счет низкой концентрации свободных электронов (дырок) проводимость полупроводников оказывается в 10^3-10^4 раз меньше, чем у металлов, и соответственно предельная плотность тока $J_{\rm max}$ достигается при напряженности поля, в 10^3-10^4 раз большей, чем в металлах. Как следствие этого отклонения от закона Ома в полупроводниках начинают наблюдаться уже при сравнительно низких полях $10^2...10^3$ В/см. Отклонения от закона Ома возникают, когда средняя энергия электрона $W=qE\lambda_e$, приобретаемая им на длине свободного пробега k_e , становится соизмерима со средней энергией теплового движения kT_0 .

Типы проводимости

Проводимость, обусловленная электронами и дырками, образовавшимися в полупроводнике за счет тепловой ионизации из валентной зоны в зону проводимости, называется собственной. Очевидно, что за счет собственной проводимости концентрация электронов в зоне проводимости n_i должна равняться концентрации дырок p_i в валентной зоне. Так как $n_i = p_i$, то собственный полупроводник всегда обладает смешанной проводимостью, называемой биполярной проводимостью, в отличие от монополярной проводимости, когда ток переносится носителями только одного знака. В литературе индекс «i» принято присваивать величинам, описывающим свойства собственных полупроводников (он берет свое происхождение от английского слова intrinsic — собственный).

В реальных полупроводниках всегда имеются примесные атомы других элементов, которые позволяют получить монополярную проводимость — электронную или дырочную. Такие полупроводники соответственно называются n-типа и p-типа.

На энергетической диаграмме уровни примесей располагаются в запрещенной зоне вблизи границ зон (рис. 1.2). Энергия ионизации примерно равна 10^{-2} эВ. Поэтому при комнатной температуре ($kT_0 \sim 3\cdot 10^{-2}$ эВ) практически все атомы примеси можно считать ионизованными. Примеси, обусловливающие электронную проводимость, называются dohopamu, а дырочную – akuenmopamu.

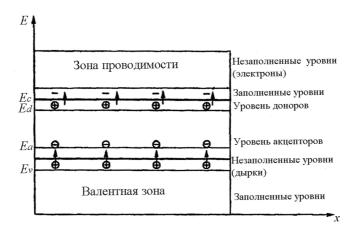


Рис. 1.2. Расположение примесных уровней доноров и акцепторов в запрещенной зоне

1.3. Основные уравнения движения носителей тока

Для описания неравновесных процессов, протекающих в твердотельных приборах, недостаточно располагать только энергетической диаграммой, которая соответствует распределению носителей в условиях термодинамического равновесия. Любое нарушение этого состояния (электрическое поле, освещение, локальный нагрев и др.) приводит к изменению распределения концентрации подвижных носителей во времени и в пространстве. Основными уравнениями, описывающими такие изменения, являются уравнение непрерывности, уравнения для плотности токов и уравнение Пуассона.

1.3.1. Уравнение непрерывности

Уравнение непрерывности выражает условие динамического равновесия концентрации неосновных носителей в полупроводнике и означает, что разность потоков обусловлена рекомбинацией за вычетом генерации. Рассмотрим уравнение непрерывности для дырок, которое можно представить в виде

$$\frac{\partial p}{\partial t} = g_p + g - R + M,\tag{1.1}$$

где $\frac{\partial p}{\partial t}$ — изменение числа дырок в единице объема в единицу времени; g_p — темп генерации неравновесных дырок — интенсивность генерации дырок только за счет внешнего (не теплового) возбуждения; g — темп генерации равновесных дырок — интенсивность тепловой ионизации с примесных уровней и через запрещенную зону; R — темп рекомбинации — интенсивность «захвата» дырок примесными центрами в запрещенной зоне («ловушки») и свободными электронами в зоне проводимости; M — интенсивность притока дырок за счет протекающего тока.

Наиболее распространенными причинами, вызывающими генерацию неравновесных носителей, являются световая ионизация и лавинное размножение носителей в сильных электрических полях.

Первые три члена в правой части уравнения (1.1) (приток дырок за счет тока учитывать не будем, M=0) можно записать в следующем виде:

$$\frac{\partial p}{\partial t} = g_p - \frac{\Delta p}{\tau_p},\tag{1.2}$$

где τ_p — время жизни неравновесных дырок в валентной зоне.

Время жизни τ_p и τ_n зависит от неравновесных и равновесных концентраций, и поэтому они не являются характеристиками данного полупроводника, так как могут меняться во времени (при нестационарных процессах) при изменении температуры и интенсивности внешнего возбуждения g_p . Однако если уровень возбуждения мал, так что выполняются неравенства $\Delta n << n_0$ или $\Delta p << p_0$, то при определенных условиях времена жизни τ_p и τ_n можно считать постоянными, зависящими только от концентрации введенной примеси N_D и N_A .

На рис. 1.3 качественно показана зависимость τ_p и τ_n от отношения n/n_0 и p/p_0 , соответственно в электронном и дырочном полупроводнике.

В собственном полупроводнике, когда $\frac{n_i}{n_0} = \frac{p_i}{p_0} \simeq 1$, время жизни достигает максимального значения $\tau_p = \tau_n = \tau_i = (2rn_i)^{-1}$ и затем быстро убы-

вает с ростом n_0 или p_0 , достигая постоянного значения $\tau_{p_0} = (rp_0)^{-1}$ в электронном и $\tau_{n_0} = (rn_0)^{-1}$ в дырочном полупроводнике.

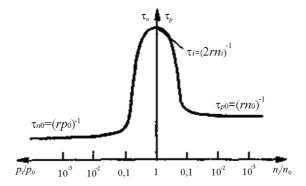


Рис. 1.3. Зависимость времени жизни дырок τ_p в электронном полупроводнике и электронов τ_n – в дырочном от комбинации носителей заряда

Уравнения непрерывности для дырок и электронов принимут вид

$$\frac{\partial p}{\partial t} = -\frac{p - p_0}{\tau_p} - \frac{1}{q} \operatorname{div} J_p + g_p; \tag{1.3}$$

$$\frac{\partial n}{\partial t} = -\frac{n - n_0}{\tau_n} - \frac{1}{q} \operatorname{div} J_n + g_{n'}$$
 (1.4)

где $\mathbf{\tau}_{_{\! D}},\,\mathbf{\tau}_{_{\! R}}$ соответствуют значениям $\,\mathbf{\tau}_{p_0}\,,\,\,\mathbf{\tau}_{n_0}\,.\,$

Знак «+» перед вторым членов в (1.4) связан с тем, что направление движения электронов протитвоположно направлению плотности поля.

1.3.2. Уравнения для плотности токов

Основными причинами, вызывающими направленное движение носителей в твердых телах, являются электрические поля и градиенты концентрации подвижных носителей. В соответствии с этим полную плотность тока для дырок и электронов можно представить в виде суммы дрейфового и диффузионного токов:

$$J_p = q\mu_p pE - qD_p \operatorname{grad}(p); \qquad (1.5)$$

$$J_n = q\mu_n pE - qD_n \operatorname{grad}(n); \qquad (1.6)$$

$$J_0 = J_n + J_p, (1.7)$$

где $\mu_{n/p}$ — подвижность электронов/дырок; E — напряженность поля; J_0 — плотность тока носителей заряда; $J_{n/p}$ — плотность тока электронов и дырок; $D_{n/p}$ — коэффициент диффузии электронов и дырок.

Для дырок плотность дрейфового тока совпадает с направлением движения носителей и поля E. Поэтому первый член в (1.5) имеет положительный знак, диффузионный ток имеет отрицательный знак, так как направление возрастания градиента противоположно направлению движения дырок. Электроны смещаются в сторону убывания поля, но ток течет против их движения, поэтому дрейфовый ток электронов, так же как и для дырок, имеет положительный знак. Диффузионный ток электронов положителен, так как электроны движутся в сторону убывания градиента концентрации, а ток — в сторону возрастания. Приведенные выражения не универсальные и нуждаются в комментариях.

Соотношения (1.5) и (1.6) не учитывают влияния внешнего магнитного поля и тока смещения. Это связано с тем, что здесь не рассматриваются приборы, использующие магнитные явления, а ток смещения учитывают лишь в тех частных случаях, когда его влияние на характеристики прибора становится существенным. Соотношения (1.5) и (1.6) справедливы только для невырожденных полупроводников, когда подвижность μ и коэффициент диффузии D связаны соотношением Эйнштейна

$$\mu = \frac{q}{kT}D. \tag{1.8}$$

1.3.3. Уравнение Пуассона

Связь между напряженностью электрического поля E и объемной плотностью неравновесного заряда ρ задается уравнением Пуассона:

$$\operatorname{div} E = \frac{4\pi\rho(x, y, z)}{\varepsilon_1 \varepsilon_{\text{OTH}}} \frac{\rho(x, y, z)}{\varepsilon_{\text{OTH}} \varepsilon_0},$$
(1.9)

где $\varepsilon_0 = e/4\pi = 8,85\cdot 10^{-14}~\Phi/\text{см}$ – абсолютная диэлектрическая проницаемость вакуума; $\varepsilon_{\text{отн}}$ – относительная диэлектрическая проницаемость вещества; ε_1 – нормальная составляющая диэлектрической проницаемости вещества.

Для абсолютной диэлектрической проницаемости указанных полупроводников мы будем в дальнейшем использовать приближенное значение $\epsilon \approx 10^{-12}$ Ф/см. Тогда уравнение Пуассона принимает вид

$$\operatorname{div} E = \frac{\rho(x, y, z)}{\varepsilon} \,. \tag{1.10}$$

Для одномерного случая плотность объемного заряда в твердом теле может быть представлена в виде

$$\rho = q[p(x) + N_D(x)] - n(x) - N_A(x), \qquad (1.11)$$

где $N_{\!\scriptscriptstyle D}$ – концентрация донорной примеси; $N_{\!\scriptscriptstyle A}$ – концентрация акцепторной примеси.

Все концентрации, входящие в (1.11), могут являться функциями координаты. Если для подвижных носителей это очевидно, то для концентрации доноров и акцепторов закон изменения $N_D(x)$ и $N_A(x)$ зависит от способа выращивания полупроводника.

В твердых телах явления, приводящие к нарушению электрической нейтральности, могут быть связаны с различными причинами. Например, локальный разогрев электронного газа в сильных электрических полях приводит к смещению «горячих» электронов в более «холодную» область и таким образом к возникновению объемного заряда и внутреннего поля $E_T = \alpha_{\rm T} \frac{{\rm d} T_{\rm 3}}{{\rm d} x}$, где ${\rm d} T_{\rm 3}/{\rm d} x$ — градиент электронной температуры, а $\alpha_{\rm T}$ — дифференциальная термоЭДС (электродвижущая сила), зависящая от параметров полупроводника, типа проводимости и концентрации. В результате появляется термоэлектрический ток.

В полярных кристаллах (таких как $A^{III}B^V$) взаимодействие электронов с атомами решетки (электрон-фононное взаимодействие) приводит к смещению ионов решетки друг относительно друга и к появле-

нию электрического поля $E_{ac}=lpha_{ac}rac{\mathrm{d}E}{\mathrm{d}x}$, вызывающего электрический ток (пьезоэлектрическии эффект) $J_{ac}=\sigmalpha_{ac}rac{\mathrm{d}W}{\mathrm{d}x}$, где $lpha_{ac}$ — коэффициент электромеханической связи, а $\mathrm{d}W/\mathrm{d}x$ — градиент потока звуковой энергии.

При сделанных выше ограничениях для количественного описания неравновесных процессов, протекающих в приборах на твердом теле, необходимо решать следующую систему нелинейных дифференциальных уравнений в частных производных:

$$\frac{\partial p}{\partial t} = g_p - \frac{p - p_0}{\tau_p} - \frac{1}{q} \operatorname{div} J_{p'}, \quad \frac{\partial n}{\partial t} = g_n - \frac{n - n_0}{\tau_n} - \frac{1}{q} \operatorname{div} J_{n'}; \quad (1.12)$$

$$J_p = q\mu_p pE - qD_p \operatorname{grad}(p), \quad J_n = q\mu_n nE - qD_n \operatorname{grad}(n);$$
 (1.13)

$$\operatorname{div}E = \rho / \varepsilon. \tag{1.14}$$

Эта система является полной, так как содержит пять уравнений и пять неизвестных (p, n, J_p, J_n, E) . Решение приведенных уравнений связано с большими математическими трудностями, и это часто не позволяет получить ответ в аналитической форме. Однако в каждом конкретном случае удается сделать ряд физических предположений, позволяющих существенно упростить эту задачу.

1.4. Механизмы проводимости твердых тел

1.4.1. Прохождение тока через металлический проводник

В соответствии с полярностью приложенного напряжения на рис. 1.4 показаны направления электрического поля E и проводника длиной L, плотности тока J_0 и средней скорости электронов v_F .

Прохождение постоянного тока через такой проводник связано с направленным движением электронов слева направо. Если под действием внешнего поля E электрон «входит» в проводник у левого электрода, то там образуется локальный отрицательный заряд, ко-

торый должен вызвать появление внутреннего электрического поля (1.10). Под действием этого поля соседние электроны должны сместиться вправо из области локального отрицательного заряда для его нейтрализации. В результате вдоль образца одновременно начнется смещение всей цепочки электронов и избыток заряда, вызванный «входом» одного электрона слева, будет скомпенсирован «выходом» одного электрона справа.

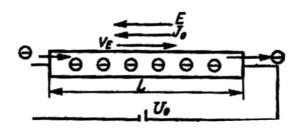


Рис. 1.4. Прохождение тока через металлический проводник

В отличие от термически равновесных электронов с концентрацией n_0 , заряд которых нейтрализован, электроны, входящие в образец при прохождении тока, являются неравновесными. Их заряд будет нейтрализован за время максвелловской релаксации τ^* . Время релаксации τ^* имеет весьма наглядную интерпретацию. Однородный проводник длиной L с удельной проводимостью σ и диэлектрической проницаемостью ε обладает емкостью $C = A\varepsilon/L$ и сопротивлением $R = L/\sigma A$ (A – площадь поперечного сечения проводника).

Если к этому образцу приложено напряжение U, то время, в течение которого поле достигнет своего стационарного значения, пропорционально постоянной времени заряда RC, т.е. $\tau^* = RC = \varepsilon/\alpha$.

Нейтрализация неравновесного объемного заряда в металлах происходит не за время «пролета» от одного конца до другого, а за время максвелловской релаксации, характеризующее скорость установления поля.

1.4.2. Прохождение тока через идеальный диэлектрик

Скорость электронов в твердом теле не может неограниченно возрастать, как в вакууме. В зависимости от механизма взаимодействия электронов с тепловыми колебаниями решетки их скорость по-

разному зависит от напряженности электрического поля. Для слабых полей, которые для наиболее распространенных полупроводников и изоляторов лежат в интервале $0 < E \le 10^2 \, \mathrm{B/cm}$, скорость линейно увеличивается с ростом поля:

$$\mathbf{v}_E = \mathbf{\mu}_0 E. \tag{1.15}$$

Для полей в интервале $10^2 < E \le 10^4$ В/см скорость определяется рассеянием на акустических колебаниях решетки. При этом подвижность убывает с ростом поля как $\mu \sim E^{-1/2}$, а скорость возрастает пропорционально $\sim E^{1/2}$, т.е.

$$\mathbf{v}_E = (\mu_0 c_0)^{1/2} E^{1/2} \tag{1.16}$$

где c_0 – скорость звука в кристалле твердого тела ($c_0 \approx 10^5$ см/с).

Когда напряженность поля превышает 10^4 В/см, скорость электронов определяется рассеянием на оптических колебаниях решетки. При этом $\mu \sim 1/E$, а скорость достигает насыщения: $\mathbf{v}_E = \mathbf{v}_S \simeq 10^7\,\mathrm{cm/c} = \mathrm{const}$. Типичная зависимость $\mathbf{v}_E = f(E)$ показана на рис. 1.5.

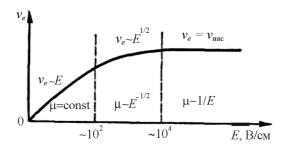


Рис. 1.5. Качественная зависимость дрейфовой скорости электронов от напряженности электрического поля

В реальном диэлектрике кроме отмеченных особенностей всегда существуют атомы посторонних примесей и механические дефекты кристаллической решетки, которые приводят к нарушению строгой периодичности потенциального поля в кристалле. Эти нарушения вызывают появление в запрещенной зоне дополнительных разрешенных уровней, которые могут выполнять роль «ловушек» или «источников»

свободных электронов. Когда электрон переходит на такой уровень в запрещенной зоне, то говорят, что он «захвачен ловушкой» и, таким образом, уже не может принимать участия в проводимости кристалла, поскольку образовавшийся при этом ион представляет собой неподвижный отрицательный заряд.

Дополнительные уровни «ловушек», которые отстоят от границ зон E_c и E_v на несколько kT, называют мелкими, а уровни, расположенные вблизи середины запрещенной зоны, — глубокими. Электропроводность изолятора сильно зависит от типа и концентрации этих уровней.

Рассмотрим механизм прохождения тока через идеальный изолятор, не содержащий «ловушек». Поэтому задача сводится к нахождению выражения для тока, протекающего через твердотельный аналог вакуума с тем лишь различием, что скорость электронов определяется теперь соотношениями (1.15) и (1.16). Тогда все рассуждения для вакуума будут справедливы и для изолятора. В результате получается выражение для плотности токов, ограниченных объемным зарядом (ТООЗ) при слабых полях:

$$J_0 \simeq \frac{\varepsilon \mu_0 c_0}{L^{5/2}} U^{3/2}, \tag{1.17}$$

Квадратичный закон для идеального диэлектрика является аналогом закона «трех вторых» для вакуумного диода и называется законом Мотта – Γ енри.

В отличие от вакуумного диода, для которого закон «трех вторых» хорошо выполняется на практике, выражение (1.17) для реального изолятора является лишь предельной формой вольтамперной характеристики (ВАХ), к которой стремится зависимость тока от напряжения, когда число инжектированных носителей значительно превышает число «ловушек» в запрещенной зоне. Захват электронов ловушками приводит к уменьшению плотности тока.

1.4.3. Прохождение тока через идеальный монополярный полупроводник

К этому классу относятся диэлектрики или полупроводники с широкой запрещенной зоной, не содержащие ловушек, в которых равновесная концентрация электронов n_0 обусловлена наличием мелких до-

норных уровней. В этом случае полупроводник можно считать чисто электронным (монополярным). Прохождение тока через такой проводник соответствует наиболее общему случаю, поскольку концентрация равновесных электронов может изменяться в очень широких пределах $(n_i < n_0 \le n_{_{\rm BMD}} \sim 10^{18}~{\rm cm}^{-3})$ и перекрывает таким образом все свойства образца от изолятора до «металла». Если в такой проводник осуществить монополярную инжекцию, то нейтрализация объемного заряда электронов может быть осуществлена одним из двух рассмотренных выше способов. С максвелловским временем релаксации $\tau^* = \varepsilon/q\mu n_0$, если $\tau^* < t_{nn}$, и с временем пролета $t_{nn} = Llv_{E'}$ если $\tau^* > t_{nn}$, указанные времена являются независимыми, и поэтому соотношение между ними может быть произвольным. Действительно, максвелловское время релаксации τ^* зависит от параметров материала ϵ , μ , n_0 и для типичных значений $\epsilon \sim 10^{-12}~\Phi/c$ м; $10 \le \mu \le 10^4~c$ м²/В с и $10^6 \le n_0 \le 10^{20} \text{см}^{-3}$ лежит в интервале $10^{-8} \le \tau^* \le 10^{-14}$ с. С другой стороны, время пролета определяется длиной образца и режимом работы и может принимать значения в интервале $10^{-7} \le t_{\rm mn} \le 10^{-12} \ {\rm c.}$ Плотность тока определяется меньшим из указанных времен, поэтому выражение удобно записать в виде

$$J_0 = \frac{\varepsilon U_0}{L\tau_0} = \frac{\varepsilon}{\tau_0} E \,, \tag{1.18}$$

где
$$\frac{1}{\tau_0} = \frac{1}{\tau^*} + \frac{1}{t_{\text{пр}}}$$
.

Тогда за время, равное τ_0 , электроны продвинутся вдоль полупроводника на расстояние $l=\nu\tau_0$ и создадут удельный неравновесный заряд, равный

$$Q_{\rm Hp} = q n_0 l = q n_0 v \tau_0 = q n_0 L \frac{\tau_0}{L} v = q n_0 L \frac{\tau_0}{t_{\rm mp}} = \varepsilon E , \qquad (1.19)$$

откуда по аналогии с металлическим проводником можно получить соотношение

$$\frac{Q_{\rm hp}}{Q_{\rm p}} = \frac{\tau_0}{t_{\rm np}}$$
 или $\frac{\overline{n}}{n_0} = \frac{n_0 l / L}{n_0} = \frac{\tau_0}{t_{\rm np}}$. (1.20)

Из (1.20) следует важное определение: отношение неравновесного (некомпенсированного) заряда $Q_{\rm Hp}=qn_0l$ или неравновесной концентрации $n=n_0l/L$ к равновесному заряду $Q_{\rm p}=qn_0L$ или равновесной концентрации n_0 равно отношению минимального времени нейтрализации τ_0 к времени пролета $t_{\rm mp}$.

Если уровень инжекции мал, т.е. $n/n_0 = \tau_0/t_{\rm np} < 1$, то $\tau_0 = \tau^*$ и нейтрализация неравновесного заряда происходит с максвелловским временем релаксации (как в металле). Однако в отличие от металлов в изоляторах и полупроводниках напряженность поля может достигать значений порядка $\sim 10^5$ В/см и, как следует из рис. 1.5, $\mu \neq {\rm const}$, поэтому $\tau^* \sim 1/\mu \neq {\rm const}$ и закон Ома не выполняется.

Поэтому зависимость $J_0(E)$ при $\tau^* < t_{\rm пp}$ соответствует кривой 2 на рис. 1.6 и повторяет в соответствующем масштабе характеристику скорость – поле на рис. 1.5.

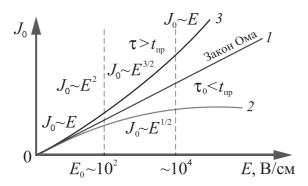


Рис. 1.6. Качественная зависимость плотности тока через полупроводник при монополярной инжекции от напряженности поля

Такую зависимость называют *сублинейной*, она указывает на уменьшение проводимости полупроводника с ростом поля за счет разогрева электронов.

Если уровень инжекции инжекции велик, т.е. $n/n_0 = \tau_0/t_{\rm np} > 1$, то $t_{\rm np} \leq \tau^*$ и нейтрализация инжектированного заряда происходит за время пролета как в вакууме или диэлектрике. В этом случае ток ограничен объемным зарядом (ТООЗ) и ВАХ становится суперлинейной (кривая 3 на рис. 1.6). Такая зависимость соответствует увеличению проводимости с ростом поля за счет роста концентрации.

При слабых полях, когда $n << n_0$, $(\tau^* << t_{\rm пp})$ нейтрализация неравновесного заряда всегда осуществляется с максвелловским временем релаксации и закон Ома выполняется (прямая I на рис. 1.6). Переход от закона Ома к квадратичному закону

$$n(x) = \frac{3}{4} \frac{U_a}{L^2} \frac{\varepsilon}{q} \left(\frac{x}{L}\right)^{-1/2}$$
 (1.21)

происходит при напряженности поля E_0 , определяемой из условия

$$J_0 = \frac{\varepsilon}{\tau^*} E_0 = \varepsilon \mu^0 \frac{U^2}{L^2} = \varepsilon \mu_0 \frac{1}{L} E_0^2, \qquad (1.22)$$

откуда

$$E_0 == \frac{L}{\mu_0 \tau^*} = \frac{q n_0 L}{\varepsilon}, \qquad (1.23)$$

где $\mu = dv/dE$ — дифференциальная подвижность, которая для некоторых полупроводников может быть отрицательной.

Легко проверить, что полученное значение напряженности поля E_0 соответствует условию $n/n_0 \approx 1$ ($\tau^* \approx t_{\rm np}$). Таким образом, переход к режиму ТООЗ или суперлинейной зависимости ВАХ происходит, когда время максвелловской релаксации становится соизмеримым со временем пролета, а неравновесная концентрация равна равновесной.

Если поле $E_0 < 10^2$ В/см, то квадратичный закон вступит в силу раньше, чем появится нелинейная зависимость подвижности от поля. Как следует из (1.22), это будет выполняться для полупроводников, удовлетворяющих условию $n_0L < 10^2 \epsilon/q \approx 10^{-9}$ см $^{-2}$.

Если $E_0 > 10^2$ В/см, то $n_0 L > 10^9$ см $^{-2}$ и квадратичный закон не наблюдается. Как показано на рис. 1.6, в этом случае зависимость тока от напряжения подчиняется закону «трех вторых», а при сильных полях переходит в линейную. Таким образом, при $\tau^* < t_{\rm np}$ ток не ограничен объемным зарядом и ВАХ располагаются под прямой I (проводимость убывает) либо стремятся к ней снизу. Когда $\tau^* > t_{\rm np}$, ток ограничен объемным зарядом и ВАХ располагаются выше прямой I (проводимость растет) или стремятся к ней сверху.

1.4.4. Произвольный случай

Если носителями тока являются электроны, а ток диффузии не оказывает существенного влияния на характер проводимости, то для дрейфового тока (1.6) справедливо выражение

$$J = qn(x)v[E(x)], \qquad (1.24)$$

где E(x) — напряженность электрического поля, обусловленная только сторонними источниками питания; n(x) — распределение концентрации электронов, принимающих участие в проводимости; v[E(x)] — средняя дрейфовая скорость электронов, которая в общем случае не равна $\mu E(x)$. Для образца с равномерным распределением примеси $N_D = n_0$ неравновесный объемный заряд электронов равен

$$\rho(x) = q \left[n(x) - n_0 \right]. \tag{1.25}$$

Здесь положительный знак в правой части соответствует положительному заряду электрона. Тогда уравнение Пуассона (1.10) для дрейфового тока примет вид

$$\frac{\partial E}{\partial x} = \frac{q}{\varepsilon} [n(x) - n_0]; \tag{1.26}$$

$$J = \left(qn_0 + \varepsilon \frac{\partial E}{\partial x} v[E(x)]\right) = \left(\rho_R + \rho_{np}\right) v[E(x)]$$
 (1.27)

где ρ_R и $\rho_{\rm np}$ – неравновесный объемный заряд носителей заряда в обратном и прямом направлении.

1.4.5. Биполярная проводимость

В твердотельных приборах возможно создать инжекцию неосновных носителей, при которой знак инжектированных носителей противоположен знаку проводимости образца. В этом случае проводимость зависит от концентрации и подвижности носителей обоих знаков и называется биполярной.

Для выяснения механизма биполярной проводимости рассмотрим прохождение тока через электронный полупроводник (рис. 1.7, a) без «ловушек» с равновесной концентрацией электронов n_0 и дырок p_0 , в который из левого контакта при x=0 осуществляется инжекция дырок с концентрацией $\Delta p(0)=p(0)-p_0$.

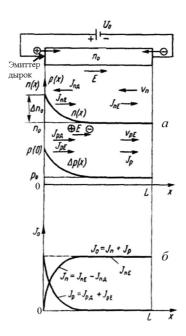


Рис. 1.7. Биполярная инжекция дырок в электронный полупроводник: a — распределение концентрации дырок и электронов; δ — распределение плотности электронного и дырочного токов

При биполярной проводимости нейтрализация заряда неосновных носителей происходит так же, в металле основными носителями — электронами, входящими через другой контакт при x=L. Нейтрализация осуществляется за время максвелловской релаксации $\tau^*=\epsilon/\sigma$, где σ — удельная проводимость полупроводника. Обычно σ < 10 (Ом·см)⁻¹, поэтому τ^* больше, чем в металлах и составляет $10^{-12}...10^{-14}$ с. После установления нейтральности в полупроводнике образуется электронно-дырочная плазма, в которой выполняется условие

$$\Delta p = p - p_0 - \Delta n = n - n_0$$
 или $\frac{\Delta p}{p_0} = \frac{\Delta n}{n_0}$. (1.28)

Неосновные носители (дырки) могут существовать в электронном полупроводнике конечное время жизни τ_p . Если бы время жизни τ_p было очень мало, так что выполнялось бы условие $\tau_p < \tau^*$, то механизм прохождения тока принципиально не отличался бы от случая

монополярной инжекции в электронный полупроводник. Действительно, когда $\tau_p < \tau^*$, инжекция дырок приводит к уменьшению (за счет «мгновенной» рекомбинации) концентрации электронов на левой границе полупроводника. В результате по сравнению со случаем монополярной инжекции изменилось бы только направление тока.

Поскольку дырки могут «жить» конечное время и $\tau_p > \tau^*$, в силу условия электронейтральности (1.28) у левой границы электронного полупроводника практически «мгновенно» (через время, равное τ^*) образуются избыточные концентрации дырок и электронов. Несмотря на то что нейтрализация дырочного заряда происходит за время τ^* , полное время установления термодинамического равновесия равно времени жизни, за которое устанавливается равновесие между дырками в валентной зоне и зарядами на примесных уровнях в запрещенной зоне. Поэтому при биполярной проводимости появляется еще одно время релаксации.

Если инжектирующим является один контакт при x=0, то согласно (1.28) существование электронно-дырочной плазмы возможно только при малом уровне инжекции $[\Delta p(0) < n_0]$, поскольку другой контакт при x=L является неинжектирующим, т.е. $\Delta n(L) < n_0$. Такая инжекция называется биполярной. Возможен также и более общий случай, когда в полупроводник или изолятор одновременно осуществляется инжекция дырок (x=0) и электронов (x=L). Такая инжекция называется двойной. В этом случае нейтральность сохраняется и при высоком уровне инжекции $[(\Delta p(0) >> n_0)]$.

Как следует из приведенного качественного рассмотрения, ток двойной инжекции может быть много больше тока монополярной или биполярной инжекции в том же полупроводнике. При этом роль контактов становится более существенной, чем в случае монополярной инжекции.

При большом уровне биполярной инжекции условие (1.28) не выполняется и нейтрализация неосновных носителей уже не может осуществляться за счет электронов зоны проводимости за время максвелловской релаксации τ^* . Поэтому так же, как в вакууме и изоляторе электрическая нейтральность устанавливается за время пролета и ток ограничен не только рекомбинацией, но и объемным зарядом, который может поддерживаться в образце при данном внешнем напряжении U_0 . В этом случае зависимость плотности тока от напряжения U_0 близка к квадратичной ($J_0 \sim U_0^2$).

На рис. 1.7 качественно представлено распределение дырок и электронов при биполярной инжекции в длинном образце, когда $L > L_{\rm a}$ ($L_{\rm a}$ — длина диффузии). Так же как в вакуумном диоде, вблизи левого контакта при $x < L_{\rm a}$ смещение плазмы в основном осуществляется за счет диффузии, а при $x > L_{\rm a}$ — за счет дрейфа. В связи с тем что коэффициент диффузии и подвижность электронов больше, чем для дырок, электроны при своем движении опережают дырки, и в объеме полупроводника возникает электрическое поле амбиполярной диффузии, которое ускоряет движение дырок и тормозит движение электронов. В результате дырки и электроны смещаются вблизи левой границы образца с одинаковым коэффициентом амбиполярной диффузии ($D_{\rm a}$):

$$D_{a} = \frac{D_{p}D_{n}(n+p)}{D_{n}n + D_{n}p},$$
(1.29)

а при $x \geq L_{_{\rm a}}$ – с одинаковой амбиполярной подвижностью $\mu_{_{\rm a}}$:

$$\mu_{a} = \frac{\mu_{p}\mu_{n}(n-p)}{\mu_{n}n + \mu_{p}p}.$$
(1.30)

Между $D_{\rm a}$ и $\mu_{\rm a}$ остается в силе соотношение Эйнштейна (1.8) и сохраняется равенство $L_{\rm a}=\sqrt{D_{\rm a}\tau}$, где $L_{\rm a}$ – диффузионная длина амбиполярной диффузии; τ – время жизни электронов и дырок в электронно-дырочной плазме.

При высоком уровне двойной инжекции, когда оба контакта являются инжектирующими, т.е. $n >> n_0$, $p >> p_0$, справедливо соотношение $p \sim n$. Тогда в силу условия нейтральности (1.28) $D_{\rm a}$ совпадает с коэффициентом амбиполярной диффузии для собственного полупроводника, а амбиполярная подвижность убывает обратно пропорционально уровню инжекции:

$$\mu_{\rm a} \simeq \frac{\mu_p \mu_n}{\mu_n + \mu_p} \frac{n_0 - p_0}{n} \sim \mu_p \frac{n_0}{\Delta n}.$$
(1.31)

Таким образом, диффузионный механизм смещения плазмы имеет место только вблизи инжектирующих контактов на длине амби-

полярной диффузии $L_{\rm a}=\sqrt{D_{\rm a}\tau}$, поэтому если образец длинный, т.е. $L>>L_{\rm a}$, то так же как в вакуумном диоде, можно считать, что плазма в интервале $L_{\rm a}< x< L$ смещается за счет дрейфа. Тогда граничное условие для инжектирующего контакта при x=0 соответствует виртуальному катоду E(0)=0 в случае биполярной инжекции и E(0)=0 для двойной инжекции.

Полный ток через полупроводник складывается из электронного и дырочного: $J_0 = J_{_{\! p}} + J_{_{\! n}} = {\rm const.}$

Как показано на рис. 1.7, a, диффузионная и дрейфовая составляющие электронного тока направлены навстречу друг другу и, следовательно, у левой границы, где градиент концентрации электронов максимальный, результирующая составляющая электронного тока $J_n = J_{nE} - J_{nR} \ (J_{nE} -$ дрейфовый ток; $J_{nR} -$ диффузионный ток носителей заряда) близок нулю, поэтому полный ток через полупроводник J_0 равен дырочному диффузионному току у левой границы, где он достигает максимального значения, или дрейфовому электронному току.

1.5. Контактные явления

Важная информация о свойствах контактов может быть получена из энергетической диаграммы. Основным правилом при построении энергетической диаграммы любого контакта является условие: в состоянии термодинамического равновесия уровень Ферми должен проходить на одной высоте независимо от свойств материалов, находящихся в контакте. Это условие непосредственно вытекает из определения уровня Ферми, который соответствует средней энергии частиц в объеме данного тела. В состоянии термодинамического равновесия эта энергия должна быть одинакова для всего кристалла.

Для построения энергетической диаграммы необходимо ввести единое начало отсчета энергии. За такое начало отсчета принимается энергия E_0 , соответствующая энергии свободного электрона, который преодолел работу выхода из данного тела и перешел в вакуум. В физике твердого тела термодинамическая, или внутренняя, работа выхода E_F отсчитывается от E_0 до уровня Ферми E_F (рис. 1.8). Для металлов $E_F = E_{_M} = {\rm const.}$ так как $E_F(0) = {\rm const.}$ Поэтому энергетическая диаграмма для металла (рис. 1.8, a) изображается в виде одной горизонтальной линии, соответствующей уровню Ферми E_F . Уровни

ниже $E_{\scriptscriptstyle F}$ заштриховывают, указывая тем самым на то, что они полностью заняты, а уровни выше $E_{\scriptscriptstyle F}$ свободны. Дно зоны проводимости $E_{\scriptscriptstyle c}$ обычно не изображают, поскольку $E_{\scriptscriptstyle {\rm cm}}$ (энергия смещения) не соответствует реальной работе выхода из металла.

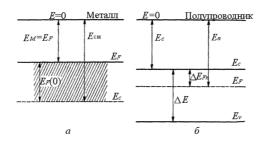


Рис. 1.8. Энергетические диаграммы: a — для металла; δ — для электронного полупроводника

В невырожденных полупроводниках (рис. 1.8, δ) ситуация существенно иная. Реальная работа выхода E_c отсчитывается от E=0 до уровня E_c и называется внешней работой выхода. В полупроводнике на уровне E_F нет электронов и поэтому термодинамическая (внутренняя) работа выхода соответствует лишь их средней энергии, но не равна реальной работе выхода E_c из полупроводника. Кроме этого, в отличие от металлов величина E_F (энергия уровня Ферми) зависит от концентрации носителей заряда, типа примеси, температуры и поэтому не является константой. В этом случае необходимо еще указывать внешнюю работу выхода E_c , которая для невырожденных полупроводников зависит только от параметров решетки. Величина E_c является постоянной для данного полупроводника и называется сродством к электрону. Одинаковые материалы имеют одинаковое сродство к электрону, для разных материалов эта величина может различаться в пределах от \sim 2 до \sim 5 эВ.

В электронике твердого тела различают три вида переходов (контактов).

- 1. Переходы (барьеры) Шоттки, образованные контактом металл полупроводник или металл изолятор.
- 2. Гомопереходы переходы, образованные между двумя полупроводниками (или изоляторами) одного типа, т.е. обладающие одинаковым сродством к электрону E_c , диэлектрической проницаемостью ε и

шириной запрещенной зоны ΔE , но легированные примесями разного типа или в разной степени.

3. Гетеропереходы, образованные между двумя различными полупроводниками (или изоляторами), имеющими разное сродство к электрону, диэлектрическую проницаемость и ширину запрещенной зоны.

Переходы, образованные между полупроводниками с одним типом проводимости (n-n; p-p), называются изотипными, а между полупроводниками с различным типом проводимости (p-n; n-p) - анизотипными.

Осуществить идеальный контакт за счет непосредственного соприкосновения двух тел невозможно, поскольку на поверхности любого твердого тела всегда имеются атомные слои, обладающие диэлектрическими или полупроводниковыми свойствами. Поэтому реальные контакты (переходы) образуются в результате довольно сложного технологического процесса.

1.6. Свойства структуры металл-диэлектрик-полупроводник

1.6.1. Энергетические диаграммы идеальной МДП-структуры

Структура металл–диэлектрик–полупроводник (МДП) представляет собой конденсатор, при приложении напряжения к которому наведенный заряд в полупроводнике не сосредоточивается на поверхности, а распространяется, спадая на некоторое расстояние вглубь кристалла [2].

Знак заряда в полупроводнике зависит от полярности приложенного напряжения. При отрицательной полярности напряжения на металле наведенный заряд в полупроводнике положительный. В дырочном полупроводнике положительный заряд обусловлен дырками, которые притянулись к поверхности, а в электронном полупроводнике — ионами доноров, от которых оттолкнулись электроны. В первом случае происходит обогащение, а во втором обеднение приповерхностного слоя основными носителями. При положительной полярности напряжения на металле, наоборот, в электронном полупроводнике происходит обогащение приповерхностного слоя электронами, а в дырочном — обеднение дырками и «обнажение» отрицательных акцепторных ионов.

Протяженность размещения совокупности подвижных зарядов в обогащенном слое называют *длиной экранирования*, или дебаевской длиной L_D , а протяженность распределения неподвижных ионных зарядов — *глубиной обедненного слоя*. Обогащенные и обедненные слои оказываются тем тоньше, чем больше концентрация примеси, а значит, и концентрация основных носителей заряда.

Если принять потенциал в объеме полупроводника равным нулю, то потенциал поверхности будет отличен от нуля благодаря наличию зарядов между объемом и поверхностью. Разность потенциалов между поверхностью и объемом называется поверхностным потенциалом ф.

К такому же эффекту создания распределенного заряда в приповерхностной области приводит наличие заряженных состояний на самой поверхности полупроводника. Поэтому в реальных МДП-структурах в отсутствие внешнего напряжения поверхностный потенциал не спадает до нуля, а имеет конечную равновесную величину ϕ_s , что обусловлено наличием заряженных поверхностных состояний, а также контактной разностью потенциалов между металлом и полупроводником. Внешнее напряжение, необходимое для того, чтобы скомпенсировать равновесный поверхностный потенциал ϕ_s , называется напряжением спрямления зон.

Наличие поверхностного потенциала соответствует изгибу энергетических зон вниз — в случае положительной полярности напряжения на металле (или донорных поверхностей состояний) и вверх — в случае отрицательного напряжения на металле (или акцепторных поверхностей состояний). Кривые зонной диаграммы являются зеркальным отображением кривой потенциала $\varphi(x)$.

Распределение потенциала в области объемного заряда можно определить с помощью уравнения Пуассона

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} = -\frac{\rho}{\varepsilon \varepsilon_0} \,, \tag{1.32}$$

где ε — диэлектрическая проницаемость; $\rho = q(p + N_D^+ - n - N_A^-)$ — объемная плотность заряда; N_D^+ и N_A^- — концентрации ионизирован-

ных примесей;
$$p=p_{\infty}\exp\left(\frac{-q\phi}{kT}\right)n=n_{\infty}\exp\left(\frac{q\phi}{kT}\right)$$
 — концентрации

подвижных носителей заряда; $p_{_{\infty}},\,n_{_{\infty}}$ – концентрации носителей заряда в объеме полупроводника.

В двух важных частных случаях, когда можно пренебречь либо концентрацией ионизированных примесей (обогащенный слой), либо концентрацией свободных носителей (обедненный слой), уравнение имеет аналитические решения. Эти случаи рассмотрены ниже.

1.6.2. Собственный полупроводник

Выберем положительную полярность напряжения на металле. Поскольку полупроводник собственный, то $n_{\infty} = p_{\infty} = n_i$ и $N_D^+ = N_A^- = 0$. Плотность заряда равна $\rho = qn_i [\exp(-q\varphi/kT) - \exp(q\varphi/kT)]$; поскольку $\sinh x = [\exp(x) - \exp(-x)]/2$, то $\rho = -2qn_i \sinh q\varphi/kT$.

Подставив это выражение в уравнение Пуассона, поделим обе части на kT/q и введем безразмерную переменную $\Phi = \frac{q \phi}{kT}$.

Уравнение примет вид

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}x^2} = \frac{\mathrm{sh}\Phi}{L_{D.}^2},\tag{1.33}$$

где $L_{D_i} = \sqrt{\frac{\epsilon \epsilon_0 kT}{2q^2 n_i}}$ — дебаевская длина в собственном полупроводнике.

Для кремния $L_{D_i}\approx 20$ мкм. Пусть в простейшем случае, $|\phi|< kT/q$, т.е. $|\Phi|<1$. В этом случае можно положить $\sinh\Phi\approx\Phi$ и уравнение Пуассона превращается в линейное дифференциальное уравнение 1-го порядка:

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}x^2} = \frac{\Phi}{L_{D_c}^2},\tag{1.34}$$

с решением $\Phi = A \exp(x / L_{D_i}) + B \exp(-x / L_{D_i})$.

Для граничных условий $\varphi(\infty) = 0$ и $\varphi(0) = \varphi$ получается

$$A = 0; B = \frac{q\varphi_S}{kT} \text{ M } \varphi(x) \approx \varphi_S \exp\left(-\frac{x}{L_{D_i}}\right). \tag{1.35}$$

Дебаевская длина — это расстояние, на котором пцотенциал уменьшается в e раз по сравнению с максимальным его значением ϕ_S на поверхности.

При обеих полярностях напряжения приповерхностный слой в собственном полупроводнике оказывается обогащенным (либо электронами, либо дырками).

1.6.3. Примесный полупроводник

Особенностью эффекта поля в примесных полупроводниках по сравнению с собственным является возможность получения как обогащенных, так и обедненных приповерхностных слоев.

Режим обогащения соответствует такой полярности приложенного напряжения, при которой основные носители притягиваются к поверхности. Этот случай близок к рассмотренному, но отличается меньшим искривлением зон, что обусловлено большей концентрацией подвижных носителей в примесном полупроводнике.

Для полупроводника n-типа при положительной полярности напряжения на металле вблизи поверхности $n > p, N_D^+, N_A^-$, тогда $\rho = -qn_\infty \exp(q\phi/kT)$ и уравнение Пуассона принимает вид

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}x^2} = \frac{\exp \Phi}{L_D^2} \,. \tag{1.36}$$

При условии $\phi_S < 2kT/q$ можно положить $\exp\Phi \approx \Phi$ и уравнение приводится к виду

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}x^2} = \frac{\Phi}{L_D^2} \,. \tag{1.37}$$

Тогда потенциал в примесном полупроводнике описывается выражением, подобным выражению для собственного полупроводника; тогда дебаевская длина имеет вид

$$L_D = \sqrt{\frac{\varepsilon \varepsilon_0 kT}{q^2 n_\infty}} \,. \tag{1.38}$$

Поскольку $n_{_{\infty}}\!\!>\!\!>\!\!n_{_{P}}$ дебаевская длина в примесных полупроводниках гораздо меньше, чем в собственных. Полагая $n_{_{\infty}}=10^{16}$ см $^{-3}$, $\epsilon=10$, получаем типичное значение для большинства полупроводников $L_{_{D}}\approx 0,04$ мкм. Как видим, поле проникает в примесные полупроводники на ничтожную глубину. Оценки $L_{_{D}}$ для металлов с концентрацией свободных носителей $10^{22}...10^{23}$ см $^{-3}$ дают десятые доли нанометра, что соответствует $1{-}2$ межатомным расстояниям. Подобная оценка хорошо иллюстрирует тот известный факт, что заряды в металле всегда сосредоточены на поверхности, внутри металла заряды и электрические поля отсутствуют.

При достаточно большом напряжении поверхностный потенциал увеличивается настолько, что уровень Ферми на приповерхностном участке окажется в пределах одной из разрешенных зон. На этом участке полупроводник вырождается и превращается в полуметалл. Тем самым структура МДП превращается в МДМ, которая представляет собой обычный конденсатор. Поскольку падение напряжения в полуметаллическом слое ничтожное, поверхностный потенциал достигает значения $\phi_{\text{smax}} = E_c - F$ для полупроводника n-типа или $\phi_{\text{smax}} = F - E_v$ для полупроводника p-типа и больше не меняется.

Режим обеднения соответствует такой полярности приложенного напряжения, при которой основные носители уходят от поверхности. В этом случае ϕ_s может иметь большие значения, чем в режиме обогащения. Выталкивание основных носителей из приповерхностного слоя вглубь полупроводника приводит к появлению некомпенсированного объемного заряда примесных ионов и возникновению потенциального барьера.

1.6.4. Приближение полного обеднения

Выясним, как потенциал и электрическое поле в таком барьере зависят от высоты барьера, напряжения смещения и концентрации примесей. Используем так называемое приближение полного обеднения, при котором предполагается, что концентрация свободных носителей у края обедненной области резко уменьшается от значения, равного их

концентрации в объеме полупроводника, до значения, пренебрежимо малого по сравнению с концентрацией доноров или акцепторов.

Граница обедненного слоя резкая и расположена на расстоянии d от поверхности. Вкладом свободных носителей заряда можно пренебоечь и считать, что при $0 < x < d \ n(x) = p(x) = 0$. Поле E и потенциал ϕ пусть будут равными нулю внутри нейтральной области полупроводника. Решая уравнение Пуассона для полупроводника p-типа, получаем выражение для толщины обедненного слоя (d) или области пространственного заряда $(O\Pi3)$:

$$d = \sqrt{\frac{2\varepsilon\varepsilon_0 |\varphi_s|}{qN_A}} \ .$$

Обычно величина d в несколько раз превышает величину L_D . Можно отметить, что L_D зависит только от свойств материалов, тогда как d зависит еще от приложенного напряжения, поскольку от него зависит потенциал ϕ_c .

Напряженность электрического поля увеличивается линейно с расстоянием от края обедненной области, а потенциал растет квадратично. Результирующий барьер параболической формы известен как барьер Шоттки.

Заряд, образовавшийся в приповерхностной обедненной области полупроводника *p*-типа, равен

$$Q_S = qN_A d = \varepsilon \varepsilon_0 E_S = \frac{2\varepsilon \varepsilon_0 \varphi_S}{d}.$$
 (1.39)

Используя полученное для d выражение, получим

$$Q_S = (2\varepsilon \varepsilon_0 q N_A \varphi_S)^{1/2} . \tag{1.40}$$

Удельная дифференциальная емкость области пространственного заряда для случая полного обеднения:

$$c_6 = \frac{dQ_S}{d\varphi} = \frac{1}{2} (2\varepsilon \varepsilon_0 q N_A)^{1/2} \frac{1}{\varphi_S^{1/2}} = \frac{\varepsilon \varepsilon_0}{d},$$
 (1.41)

т.е. имеет вид емкости плоского конденсатора с расстоянием между обкладками d.

С ростом напряжения основные носители продолжают отталкиваться от поверхности (а обедненный слой расширяется), но одновременно к поверхности притягиваются неосновные носители. Когда уровень Ферми пересечет середину запрещенной зоны, начнется образование инверсионного слоя. При $|\phi_{\scriptscriptstyle S}| > E_{\scriptscriptstyle i} - F$ уровень Ферми оказывается в той половине запрещенной зоны, которая соответствует преобладанию неосновных носителей. Дальнейшее увеличение внешнего напряжения сопровождается увеличением $|\phi_s|$ до тех пор, пока уровень Ферми не пересечет границу запрещенной зоны ($E_{\rm c}$ или E_{v}). После этого полупроводник в инверсионном слое становится вырожденным и превращается в полуметалл. Толщина инверсионного слоя составляет всего 1...2 нм, т.е. 2-4 постоянных решетки. На этом участке поле и потенциал возрастают по экспоненте к границе раздела. Поскольку падение напряжения в полуметаллическом слое ничтожное, то потенциал $|\phi_s|$ практически не меняется и сохраняет значение $|\phi_{Smax}|$, при котором образовался полуметаллический слой $|\phi_{S_{\max}}| = 2|F - E_i| \le E_{\varrho}$. Таким образом, реальное искривление зон не превышает ширины запрещенной зоны полупроводника.

1.6.5. Учет свободных носителей заряда

С учетом свободных носителей заряда суммарная плотность заряда

$$Q_S = \varepsilon \varepsilon_0 E_S = \frac{\sqrt{2\varepsilon \varepsilon_0}}{BL_D} \left[C \exp(B\varphi_S) + B\varphi_S + \exp(-B\varphi_S) \right]^{\frac{1}{2}} = \frac{\sqrt{2\varepsilon \varepsilon_0}}{BL_D} \psi_S^{1/2}, \quad (1.42)$$

где
$$C = n_0/p_0$$
, $B = q/kT$.

Учет свободных носителй заряда приводит к уточнению размеров области объемного заряда, более правильным зависимостям E(x) и $\varphi(x)$, а значит, и более правильной картине искривления энергетических зон. Как следует из расчетов, размеры области объемного заряда оказываются значительно меньше.

Зависимость плотности пространственного заряда Q_{s} от поверхностного потенциала ϕ_{S} показана на рис. 1.9.

При отрицательных ϕ_S заряд Q_S положителен, что отвечает аккумуляции дырок у поверхности. В этом случае доминирует третье слагаемое выражения ϕ_S , так что $Q_S \sim \exp\left(\frac{q \mid \phi_S \mid}{2kT}\right)$. В состоянии пло-

ских зон $\phi_S = 0$ и $Q_S = 0$. В режиме обеднения $\frac{kT}{q} > \phi_S > 0$, а заряд Q_S отрицателен. При этом доминирует второе слагаемое выражения ψ_S , так что $Q_S \sim \sqrt{\phi_S}$. Ранее полученная формула для полного обеднения есть частный случай при условии $\psi_S = B\phi_S$. При $\phi_S > kT/q$ начинает осуществляться инверсия. Сильная инверсия наступает при $\phi_S \geq 2kT/q$, когда поверхностная концентрация неосновных носителей (электронов) становится равной исходной концентрации основных носителей p_0 и в уравнении преобладает первое слагаемое выражения ψ_S , т.е. $Q_S \sim \exp\left(\frac{q\phi_S}{2kT}\right)$.

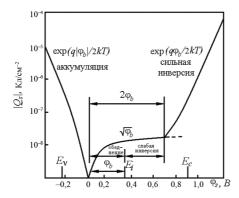


Рис. 1.9. Зависимость плотности объемного заряда от поверхностного потенциала ϕ_s для кремния p-типа с $N_{_A} = 4 \cdot 10^{15}$ см $^{-3}$; потенциал ϕ_b соответствует разности уровня Ферми и середины запрещенной зоны $E_{_i}$ в объеме полупроводника

Дифференциальная емкость области пространственного заряда полупроводника (Φ /см²) определяется выражением

$$C_{\delta} = \frac{\mathrm{d}Q_{S}}{\mathrm{d}\varphi_{S}} = \frac{\varepsilon\varepsilon_{0}}{\sqrt{2}L_{D}\psi^{\frac{1}{2}}} \left[1 - \exp(-B\varphi_{S}) + C\exp(B\varphi_{S})\right]. \tag{1.43}$$

В состоянии плоских зон, т.е. при $\phi_{\scriptscriptstyle S}=0$, величина $C_{\scriptscriptstyle \delta}$ получается при разложении экспонент в ряд и равна

$$C_{\delta}(\varphi_{S} = 0) = \frac{\varepsilon \varepsilon_{0}}{L_{D}}.$$
(1.44)

Идеальная МДП-структура предполагает:

- 1) равенство работ выхода электронов из металла и полупроводника;
- 2) отсутствие заряженных состояний в диэлектрике и на границе раздела диэлектрик-полупроводник;
 - 3) отсутствие переноса носителей через структуру.

Возьмем полупроводник p-типа. К металлу приложено положительное напряжение U>0; тогда зоны изогнуты вниз и приповерхностная область полупроводника обеднена основными носителями (рис. 1.10).

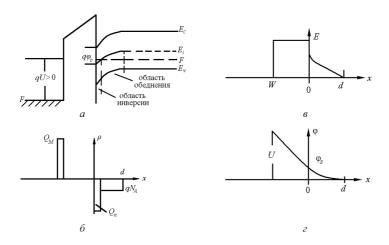


Рис. 1.10. Зонная диаграмма идеальной МДП-структуры в условиях инверсии (a); δ – распределение зарядов; ε – электрического поля; ε – потенциала

У поверхности возник тонкий инверсионный n-слой. Для обеспечения электронейтральности структуры заряд на ее металлическом электроде $Q_{\scriptscriptstyle M}$ должен быть равен сумме электронного заряда в инверсионном слое $Q_{\scriptscriptstyle n}$ и заряда ионизированных акцепторов в области обеднения полупроводника: