ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

Кафедра цветных металлов и золота

А.С. Медведев П.В. Александров

Современные методы и оборудование металлургии и материаловедения

Оборудование гидрометаллургических процессов

Учебное пособие

Рекомендовано редакционно-издательским советом университета

Рецензент проф., д-р техн. наук *Ю.А. Лайнер* (ИМЕТ РАН)

Мелвелев А.С.

М42 Современные методы и оборудование металлургии и материаловедения: оборудование гидрометаллургических процессов: учеб. пособие / А.С. Медведев, П.В. Александров. – М.: Изд. Дом МИСиС, 2016. – 217 с.

ISBN 978-5-906846-02-0

Изложены общие сведения об основном и вспомогательном оборудовании, применяемом для переработки руд и концентратов по гидрометаллургическим технологиям. Приведены схемы устройств и аппаратов для перемещения жидкостей, расчеты аппаратов для выщелачивания, разделения твердой и жидкой фаз, жидкостной экстракции и ионного обмена, выпарных аппаратов, цементаторов, кристаллизаторов.

Предназначено для выполнения домашних заданий, курсовых и выпускных квалификационных работ студентами, обучающимися по направлению подготовки 22.04.02 «Металлургия». Может быть полезно инженерно-техническим работникам горно-обогатительных и металлургических предприятий.

УДК 669.2/.8

А.С. Медведев,П.В. Александров, 2016НИТУ «МИСиС», 2016

ОГЛАВЛЕНИЕ

1. Вспомогательное гидрометаллургическое оборудование	5
1.1. Трубопроводы	
1.1.1. Расчет гидравлического сопротивления трубопровода	5
1.1.2. Расчет оптимального диаметра трубопроводов	8
1.2. Устройства для перемещения жидкостей	9
1.2.1. Монтежю	9
1.2.2. Пример расчета монтежю	. 11
1.2.3. Центробежные насосы	. 13
1.2.4. Пример расчета центробежного насоса	. 20
2. Аппараты для выщелачивания	. 24
2.1. Агитаторы	. 26
2.1.1. Расчет пусковой мощности агитатора с двухлопастной	
мешалкой	. 27
2.1.2. Расчет агитатора с рамной мешалкой	.31
2.2. Пачуки	. 33
2.2.1. Расчет воздухоподающего устройства	. 38
2.2.2. Пример расчета пачука	
2.3. Барботеры	. 43
2.4. Автоклавы	. 45
2.4.1. Расчет теплового баланса автоклава	. 50
2.4.2. Механический расчет автоклава	. 55
2.5. Перколяторы	.61
2.6. Расчет прямоточного каскада реакторов для	
выщелачивания	. 64
3. Процессы и аппараты для разделения твердой и жидкой	
фаз пульпы	. 66
3.1. Отстаивание пульп	. 66
3.1.1. Расчет сгустителя-отстойника с четко выраженной	
границей раздела фаз и без нее	. 69
3.1.2. Расчет каскада сгустителей при периодической	
декантации (перекрестный ток)	.71
3.1.3. Расчет сгустителей-отстойников при противоточной	
декантации	. 72
3.1.4 Система питания сгустителя	. 74
3.2. Фильтры	
3.2.1. Фильтры периодического действия	. 76
3.2.2. Фильтры непрерывного действия	. 87

3.2.3. Расчет фильтров	92
3.2.4. Принцип выбора фильтров для угольных шламов	
3.3. Центрифуги (декантеры)	98
4. Аппараты для жидкостной экстракции	
4.1. Расчет числа ступеней экстракции при извлечении	.116
4.2. Расчет числа ступеней экстракции при разделении	. 125
4.3. Расчет экстракторов	. 143
5. Аппараты для ионного обмена	. 156
5.1. Конические колонны	
5.2. Цилиндрические колонны	. 159
5.3. Пачуки для сорбции	
5.4. Расчет каскада колонных аппаратов с неподвижным	
слоем ионита	. 161
6. Аппараты для получения чистых металлов и их соединенеий.	. 166
6.1. Выпарные аппараты	
6.2. Кристаллизаторы	. 187
6.2.1. Типы кристаллизаторов	
6.2.2. Расчет кристаллизаторов	
6.3 цементаторы	
6.3.1. Типы цементаторов и их применение	
6.3.2. Цементация на амальгамах и галламах	
6.3.3. Примеры расчета цементаторов	
Библиографический список	

1. ВСПОМОГАТЕЛЬНОЕ ГИДРОМЕТАЛЛУРГИЧЕСКОЕ ОБОРУДОВАНИЕ

Для перемещения жидкостей, газа, пара, пульп в гидрометаллургии используют трубопроводы различного диаметра, с разной шероховатостью внутренних стенок и кривизной, от чего в значительной мере зависят энергетические затраты. Эти затраты учитываются при расчетах насосов и компрессоров, обслуживающих трубопроводы.

1.1. Трубопроводы

1.1.1. Расчет гидравлического сопротивления трубопровода

Гидравлические сопротивления обусловлены сопротивлением трения и местными сопротивлениями, возникающими при изменении скорости потока по величине или направлению.

Потери давления (Δp_{π}) или напора (h_{π}) на преодоление сопротивления трения и местных сопротивлений в трубопроводах определяют по формулам

$$\Delta p_{\pi} = (\lambda l/d_3 + \Sigma \xi) \rho \ w^2/2, \tag{1.1}$$

$$h_{\rm II} = (\lambda l/d_3 + \Sigma \xi) w^2/2g, \tag{1.2}$$

где λ — коэффициент трения; l и d_3 — длина и эквивалентный диаметр трубопровода соответственно; $\Sigma \xi$ — сумма коэффициентов местных сопротивлений; ρ — плотность жидкости или газа; w — скорость потока; g — ускорение свободного падения.

Эквивалентный диаметр определяют по формуле

$$d_9 = 4s/P, \tag{1.3}$$

где s — поперечное сечение потока; P — смоченный периметр.

Формулы для расчета коэффициента трения λ зависят от режима движения и шероховатости трубопровода.

При ламинарном режиме

$$\lambda = k/\text{Re},\tag{1.4}$$

где $\text{Re} = w d_{\text{э}} \rho / \mu$ — число Рейнольдса; k — коэффициент, зависящий от формы сечения трубопровода; μ — динамическая вязкость среды.

Ниже приведены значения коэффициента k и эквивалентного диаметра d_3 для некоторых форм сечений трубопроводов:

	k	$d_{\scriptscriptstyle 9}$
Круг диаметром d	64	d
Квадрат со стороной а	57	a
Прямоугольник высотой а и і	шириной <i>b</i> :	
	<i>b>a</i> 96	2a
	$b/a = 10 \dots 85$	1,81 <i>a</i>
	$b/a = 4 \dots 73$	1,6a
	$b/a = 2 \dots 63$	1,3 <i>a</i>

В турбулентном потоке различают три зоны, для которых коэффициент λ рассчитывают по формулам:

- зона гладкого трения (2320 < Re < 10/e)

$$\lambda = 0.316 / \sqrt[4]{\text{Re}}$$
; (1.5)

- зона смешанного трения (10/e < Re < 560/e)

$$\lambda = 0.11 (e + 68/\text{Re})^{0.25};$$
 (1.6)

- зона автомодельная по отношению к Re (Re > 560/e)

$$\lambda = 0.11e^{0.25}. (1.7)$$

В формулах (1.5) – (1.7) $e = \Delta/d_3$ – относительная шероховатость трубы; Δ – абсолютная шероховатость (средняя высота выступов на поверхности трубы), ориентировочные значения которой для разных труб приведены ниже, мм:

Стальные новые	0,060,1
Стальные, бывшие в эксплуатации	0,10,2
Стальные старые, загрязненные	0,52
Чугунные новые, керамические	0,351
Чугунные старые, водопроводные	1,4
Алюминиевые гладкие	0,0150,06
Трубы из латуни, меди, свинца, стеклянные	0,00150,01
Для насыщения пара	0,2
Для пара, работающие периодически	0,5
Для конденсата, работающие периодически	

Значения коэффициентов местных сопротивлений ξ в общем случае зависят от вида местного сопротивления и режима движения жидкости. Для наиболее распространенных случаев их значения приведены ниже.

Для входа в трубу с острыми краями $\xi = 0.5$; для входа в трубу с закругленными краями $\xi = 2.0$.

Для выхода из трубы $\xi = 1.0$.

Для плавного отвода круглого сечения $\xi = AB$. Коэффициент A зависит от угла ϕ , на который изменяется направление потока в отводе, а B — от соотношения радиуса поворота трубы R_0 к внутреннему диаметру трубы d:

$$\phi$$
, град....... 20 30 45 60 90 110 130 150 180 A 0,31 0,45 0,60 0,78 1,0 1,13 1,20 1,28 1,40 R_0/d 1 2 4 6 15 30 50 R_0/d 0,21 0,15 0,11 0,09 0,06 0,04 0,03

Для колена с углом 90° («угольник») ξ зависит от диаметра трубы d: d, мм........12,5 25 37 50 ξ 2.2 2.0 1.6 1.1

Для прямоточного вентиля при полном открытии $\xi \sim f(d, \mathrm{Re})$. При $\mathrm{Re} > 3 \cdot 10^5$:

$$d$$
, MM......25 38 50 65 76 100 150 200 250 ξ 1,04 0,85 0,79 0,65 0,60 0,50 0,42 0,36 0,3

При Re< $3\cdot 10^5$ указанное в таблице значение ξ следует умножить на коэффициент k', зависящий от Re:

Для трубы с внезапным расширением $\xi \sim f(\text{Re}, F_1/F_2)$, где F_1/F_2 – соотношение площадей меньшего и большего сечений приведено в табл. 1.1.

Таблица 1.1 Коэффициенты местных сопротивлений для труб с внезапным расширением

Re	Значения ξ при F_1/F_2					
Ke	0,1	0,2	03	0,4	0,5	0,6
10	3,10	3,10	3,10	3,10	3,10	3,10
100	1,70	1,40	1,30	1.10	0,90	0,80
1000	2,00	1,60	1,20	1.05	0,90	0,60
3000	1,00	0,70	0,60	0,40	0,30	0,20
>3500	0,81	0,64	0,50	0,36	0,25	0,16

Для трубы с внезапным сужением значения ξ зависят, как и в предыдущем случае, от Re и соотношения F_1/F_2 (табл. 1.2).

Re	Значения ξ при F_1/F_2					
Ke	0,1	0,2	03	0,4	0,5	0,6
10	5,0	5,0	5,0	5,0	5,0	5,0
100	1,30	1,20	1,00	1.0	0,90	0,80
1000	0,64	0,50	0,44	0,35	0,30	0,24
10 000	0,50	0,40	0,35	0,30	0,25	0,20
>10 000	0,45	0,40	0,35	0,30	0,25	0,20

Коэффициенты местных сопротивлений для труб с внезапным сужением

Для тройников ξ определяют в зависимости от соотношения расхода жидкости в ответвлении $Q_{\text{отв}}$ к общему расходу ее в магистрали $Q_{\text{м}}$.

При оценке потерь напора в тройниках следует исходить из скорости потока в магистрали. Коэффициенты местных сопротивлений, относящиеся к магистрали ($\xi_{\rm M}$) и к ответвляющемуся трубопроводу ($\xi_{\rm OTB}$), в ряде случаев могут иметь отрицательные значения, так как при слиянии или разделении потоков возможно всасывание жидкости и увеличение напора. Значения ξ при входе потока в магистраль и выходе из нее приведены в табл. 1.3.

Таблица 1.3 Коэффициенты местных сопротивлений при входе потока в магистраль и выходе из нее

	Значения ξ при F_1/F_2					
Коэффициенты местного сопротивления	0	0,2	0,4	0,6	0,8	1,0
	Вход потока в магистраль					
$\xi_{\text{отв}}$	-1,2	-0,4	0,08	0,47	0,72	0,92
$\xi_{\scriptscriptstyle M}$	0,04	0,17	0,30	0,41	0,51	0,60
ξ	Выход потока из магистрали					
$\xi_{\text{отв}}$	0,95	0,88	0,89	0,95	1,10	1,28
$\xi_{\rm M}$	0,04	-0,08	-0,05	0,07	0,21	0,35

Для задвижек ξ зависит от диаметра трубы d:

<i>d,</i> мм 15100	175200	≥ 300
ξ0,5	0,25	0,15

1.1.2. Расчет оптимального диаметра трубопроводов

Внутренний диаметр трубопровода круглого сечения (d) рассчитывают по формуле

$$d = \sqrt{4Q/\pi w} \ . \tag{1.8}$$

Обычно расход перекачиваемой среды (Q) — жидкости или пара известен, поэтому для расчета d требуется определить скорость движения среды по трубопроводу w. Чем больше w, тем меньше d и стоимость трубопровода (включая монтаж и ремонт). Однако с увеличением скорости потока растут потери напора, что приводит к увеличению перепада давления, необходимого для перемещения среды и, следовательно, к росту затрат энергии на ее перемещение.

Оптимальный диаметр трубопровода, при котором суммарные затраты на перемещение жидкости или пара минимальны, следует находить путем технико-экономических расчетов. На практике можно исходить из следующих значений скоростей *w*, обеспечивающих близкий к оптимальному диаметр трубопровода, мм:

Жидкость	
При движении самотеком:	
вязкая	0,10,5
маловязкая	0,51,0
При перекачивании насосами:	
во всасывающих трубопроводах	0,82,0
в нагнетательных трубопроводах	1,53,0
Пар	
Перегретый	3050
Насыщенный при давлении, Па:	
больше 10 ⁵	1525
$1,0\cdot10^50,5\cdot10^5$	2040
$5,0\cdot10^42,0\cdot10^4$	4060
$2.0 \cdot 10^4 \dots 0.5 \cdot 10^4$	6075

1.2. Устройства для перемещения жидкостей

1.2.1. Монтежю

Подъем химически агрессивных жидкостей на сравнительно небольшую высоту часто проводят сжатым воздухом (или инертными газами) при помощи монтежю (от фр. monter — подниматься, jus — сок). Часто этот аппарат называют монжю или монжус. Он представляет собой бак (вертикальный или горизонтальный), к которому обычно подведены трубы для сжатого воздуха (давление до $4\cdot10^5$ Па) и форвакуума (разрежение до 10^{-3} мм рт. ст.) (рис. 1.1).

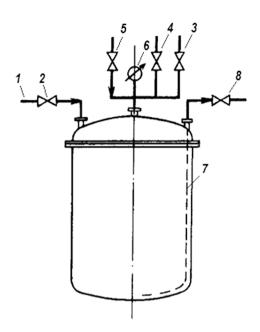


Рис. 1.1. Устройство монтежю: I – труба наполнения; 2, 3, 4, 5 – краны; 6 – манометр; 7 – труба; 8 – кран

Жидкость поступает по трубе наполнения I через кран 2 либо самотеком (тогда кран 3, соединенный с атмосферой, должен быть открыт), либо после создания в баке разрежения (тогда кран 2 и кран 4, соединяющий монтежю с вакуумным насосом, должны бать открыты, а остальные закрыты). Жидкость, заполнившая монтежю, передавливается в другую емкость (расположенную обычно на более высокой отметке) сжатым воздухом (или газом), который впускают, открывая кран 5, предварительно закрыв краны 2, 3 и 4. Поступление воздуха регулируется краном 5 по показаниям манометра 6. Жидкость поднимается по трубе 7 и через открытый кран 8 нагнетается в трубопровод. После полного или частичного опорожнения монтежю кран 5 закрывают и «спускают» давление, сообщая аппарат с атмосферой при помощи крана 3. Если из монтежю была передавлена только часть жидкости, то предварительно закрывают кран 8 на нагнетательном трубопроводе. Монтежю обычно работают периодически.

Обозначения величин, необходимых для расчета:

H – высота поднятия жидкости, м;

 ρ – плотность жидкости, кг/м³;

w – скорость движения жидкости в нагнетательном трубопроводе, м/с

 $\Sigma\xi$ — сумма всех коэффициентов местных сопротивлений нагнетательного трубопровода;

 p_0 — давление в емкости, куда из монтежю перекачивают жидкость, Πa .

Давление p, необходимое для поднятия жидкости, рассчитывают по уравнению

$$p = H\gamma + \gamma w^2 (1 + \Sigma \xi)/(2g) + p_0, \tag{1.9}$$

где

$$w = 4,43 \sqrt{\frac{p - p_0 - H\gamma}{\gamma(1 + \sum \xi)}}.$$
 (1.10)

Преимуществом монтежю перед насосами является отсутствие в них движущихся частей, которые быстро разрушаются от истирания и коррозии. Поэтому монтежю пригодны для перекачки суспензий, а также агрессивных кислот и щелочей. В последнем случае аппарат изнутри покрывают резиной или эбонитом. Производительность периодически работающих монтежю до 45 м³/ч. Их недостаток — неравномерная (толчками) подача жидкости и низкий КПД.

1.2.2. Пример расчета монтежю

Задание. Рассчитать избыточное давление, необходимое для подачи раствора аммиачных солей кобальта при температуре 20 °C с помощью монтежю в находящуюся при атмосферном давлении емкость, поднятую на высоту 5 м. Объем «передавливаемого» раствора $V = 1,05 \text{ м}^3$, плотность $\rho = 985 \text{ кг/м}^3$, продолжительность подачи раствора 7 мин, длина трубопровода 60 м. На трубопроводе имеются два отвода под углом 130° , пять отводов под углом 90° с радиусом поворота, равным шести диаметрам трубы, и два нормальных вентиля.

Расчет. Расход раствора в трубопроводе составит

$$Q = V/(60\tau) = 1,05:(60.7) = 0,025 \text{ m}^3/\text{c}.$$

Принимая внутренний диаметр трубопровода d равным 36 мм [1, с. 16], определим w:

$$w = 4Q/(\pi d^2) = 4 \cdot 0.025 : (3.14 \cdot 0.036^2) = 2.46 \text{ m/c},$$

что лежит в пределах значений оптимальных скоростей движения жидкостей в нагнетательных трубопроводах.

Определим потери на трение и местные сопротивления.

Расчетное значение критерия Рейнольдса равно

$$Re_{pac4} = \frac{wd\rho}{\mu} = \frac{2,46 \cdot 0,36 \cdot 985}{0,0012} = 72 693,$$

что соответствует турбулентному режиму. (Значения вязкости электролитов приведены в [1, с. 346].)

Примем абсолютную шероховатость внутренней поверхности трубопровода равной $\Delta = 2 \cdot 10^{-4}$ м. (Это значение взято для стальных труб, бывших в эксплуатации, см. п. 1.1.1.) Тогда

$$e = \Delta/d = 2 \cdot 10^{-4}$$
: 0,036 = 0,0056,
Re = 10/e = 10 : 0,0056 = 1780,
Re = 560/e = 560 : 0,0056 = 100 000.

Так как $1780 < Re_{pacy} < 100~000$, в трубопроводе имеет место смешанное трение. Тогда коэффициент трения λ , вычисленный по формуле (1.6), равен

$$\lambda = 0.11(0.0056 + 68 : 72 693)^{0.25} = 0.0313.$$

Используя данные, приведенные в п. 1.1.1, определим сумму коэффициентов местных сопротивлений:

- вход в трубу (принимаем с острыми краями) $\xi_1 = 0.5$;
- вентили нормальные при полном открытии $\xi_2 = 5.0$;
- отводы с углом 130° : коэффициенты A = 1,20, B = 0,09,

$$\xi_3 = AB = 0.108$$
;

- отводы с углом 90° : коэффициенты A = 1,0, B = 0,09,

$$\xi_4 = AB = 0.09;$$

- выход трубы $\xi_5 = 1$.

Тогда

$$\Sigma \xi = \xi_1 + 2\xi_2 + 2\xi_3 + 5\xi_4 + \xi_5 = 0.5 + 2 \cdot 5.0 + 2 \cdot 0.108 + 5 \cdot 0.09 + 1 = 12.161.$$

Потерянный напор в трубопроводе рассчитаем по формуле (1.2):

$$h_{\text{II}} = (0.0313 \cdot \frac{60}{0.036} + 12.161) \cdot \frac{2.46^2}{2.9.81} = 19.84 \text{ M}.$$

Необходимый напор (избыточное давление) для перемещения раствора определяем по формуле (1.9)

$$p = (\frac{2,46^2}{2 \cdot 9.81} + 19,84 + 5) \cdot 985 = 24770 \text{ kg/m}^2 = 2,48 \cdot 10^5 \text{ Ha}.$$

1.2.3. Центробежные насосы

В центробежных насосах всасывание и нагнетание жидкости происходит благодаря центробежной силе, возникающей при вращении заключенного в корпусе колеса с лопатками (рис. 1.2). В чугунном корпусе *I* спиралевидной формы вращается вал *2*, приводимый в движение непосредственно от электродвигателя или от трансмиссии. На валу закреплено рабочее колесо (импеллер) *3*, имеющее лопатки *4*. Корпус насоса имеет два штуцера: один, к которому присоединен всасывающий трубопровод *5*, расположенный на осевой части корпуса и сообщающий с пространством внутренней окружности колеса; второй находится на боковой части корпуса и соединен с нагнетательным трубопроводом *6*.

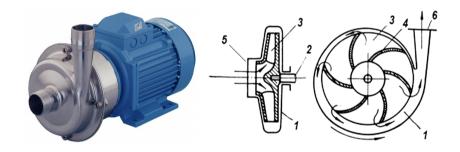


Рис. 1.2. Общий вид и устройство центробежного насоса: I – корпус; 2 – вал; 3 – рабочее колесо (импеллер); 4 – лопатки; 5 – всасывающий трубопровод; 6 – штуцеры

Рабочее колесо может быть, как закрытого типа (имеющее передний и задний диски, см. рис. 1.2), так и открытого (без переднего диска). Для перекачки пульп чаще всего используют импеллеры закрытого типа, имеющие большой КПД и меньше подверженные износу, в то время как импеллеры открытого типа используют тогда, когда существует угроза блокировки колеса крупными частицами или при перекачке пенных продуктов.

Чтобы залить насос жидкостью перед пуском и предотвратить опорожнение всасывающего трубопровода при остановке насоса, предусмотрен приемный клапан. Для предотвращения обратного слива жидкости и защиты насоса от гидравлического удара при внезапной остановке служит обратный клапан, обычно устанавливаемый в напорном трубопроводе.

Если внутреннее пространство кожуха заполнить жидкостью, то при вращении колеса его лопатки приводят находящуюся в колесе жидкость во вращательное движение. Развивающаяся при этом центробежная сила отбрасывает жидкость от центра к периферии колеса, откуда она выбрасывается в корпус и поступает в нагнетательный трубопровод. При вращении колеса жидкость непрерывно выталкивается из насоса и засасывается из бассейна или резервуара в насос. Таким образом, в центробежном насосе всасывание и нагнетание жидкости протекает равномерно и непрерывно.

Давление, развиваемое центробежной силой в насосе и определяющее высоту нагнетания, зависит от скорости вращения рабочего колеса. Оно тем больше, чем быстрее вращается колесо.

В зависимости от высоты поднятия жидкости (H) различают насосы низкого (H < 20 м вод. ст.), среднего (H от 20 до 50 м вод. ст.) и высокого давления (H > 50 м вод. ст.).

Высота поднятия жидкости одним рабочим колесом ограничена. Поэтому насосы среднего и высокого давления изготавливают с несколькими рабочими колесами, соединенными друг с другом последовательно. По числу рабочих колес, соединенных последовательно в одном корпусе, насосы делят на одноступенчатые и многоступенчатые. В свою очередь, одноступенчатые насосы бывают тихоходные (число оборотов вращения рабочего колеса в минуту n=60), нормальные (n=60-150) и быстроходные (n=15-350).

Типы насосов

Под воздействием абразивных перекачиваемых пульп рабочие элементы насоса подвергаются износу (рис. 1.3), поэтому в определенных условиях эксплуатации проточные части насоса могут быть выполнены из полиуретана или резины.

Рис. 1.3. Износ рабочего колеса насоса под воздействием абразивной пульпы

Весьма распространенный насос – одноступенчатый горизонтальный с односторонним всасыванием. В качестве конструкционных материалов для изготовления такого насоса применяют кислотоупорные чугуны, нержавеющие стали, сурьмянистый свинец и керамику. Внутренние части насоса защищают (гуммируют) от коррозии эбонитом или резиной.

На рис. 1.4 показан кислотоупорный насос, состоящий из чугунной станины I, к которой при помощи чугунного фланца 2 крепится на болтах корпус 3, изготовленный из ферросилиция. Массивный консольный вал 4 центрирован в шарикоподшипниках 5. Роль добавочного подшипника для вала около рабочего колеса выполняет сальник 6. Часть вала, соприкасающаяся с кислотой, защищена втулкой 7. Рабочее колесо закреплено на валу при помощи шпонки и натяжной гайки 8. С другой стороны, оно тщательно пришлифовано к соприкасающейся с ним торцевой поверхности втулки 7. Насос имеет сальник с мягкой набивкой (асбестовый шнур, пропитанный кислотостойким составом). На втулке рабочего колеса имеется крыльчатка 9, при помощи которой кислота отводится от сальника к всасывающему патрубку насоса. Сальник и весь корпус вынесены вперед за пределы фундаментной плиты, чтобы предотвратить попадание на нее капель кислоты. Насос имеет прямой привод от электродвигателя через эластичную муфту и монтируется с ним на одной плите. Насосы такого типа имеют производительность от 1 до $110 \text{ м}^3/\text{ч}$.

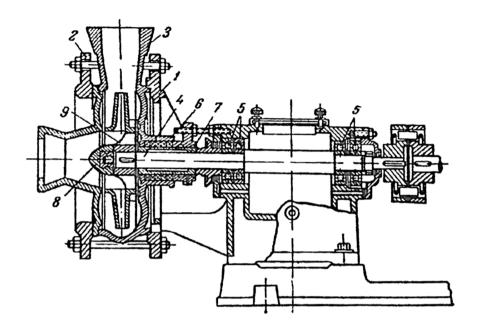


Рис. 1.4. Кислотоупорный центробежный насос: I – станина; 2 – фланец; 3 – корпус; 4 – вал; 5 – шарикоподшипники; 6 – сальник; 7 – втулка; 8 – гайка; 9 – крыльчатка

Разновидность бессальникового насоса — центробежный насос с вертикальным валом (рис. 1.5). Корпус насоса состоит из нижней I и верхней 2 частей. На последней укреплен вертикальный вал 3. На нижнем конце вала находится рабочее колесо 4, погруженное в жидкость (например, кислоту, тетрахлорид титана и др.). Жидкость поступает через штуцер 5 и находится все время на некоторой высоте, но не достигает подшипников. На случай внезапной остановки насоса корпус снабжен переливным штуцером 6, соединенным с питающим баком. Производительность насоса $10...15 \, \text{м}^3/\text{ч}$, высота подачи $22 \, \text{м}$. Насос приводится в действие непосредственно от электродвигателя, установленного на крышке насоса. Достоинство конструкции — отсутствие сальников, что исключает попадание едкой жидкости в подшипники и протечки ее в производственное помещение. Недостаток этих насосов — малый КПД.

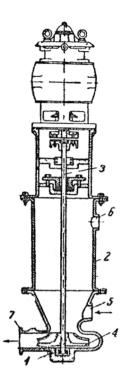


Рис. 1.5. Насос с вертикальным валом: 1 – нижняя часть корпуса; 2 – верхняя часть корпуса; 3 – вал; 4 – рабочее колесо; 5 – всасывающий штутцер; 6 – переливающий штутцер; 7 – нагнетательный штутцер

Описания других насосов содержатся в книгах [2, 3].

Проходя по каналу рабочего колеса, жидкость совершает сложное движение. С одной стороны, она движется вдоль канала внутри рабочего колеса к его наружной окружности, т.е. в радиальном направлении, а с другой – в направлении вращения колеса.

Обозначения:

 w_1 и w_2 – скорости движения жидкости во всасывающем и нагнетательном трубопроводах, м/с; w_1^1 и w_2^1 — скорости жидкости при входе и выходе из канала ло-

патки, м/с;

 r_1 и r_2 – внутренней и наружной окружности колеса, м;

 F_1 и F_2 – сечения канала лопатки при входе и выходе жидкости, м²; n — число оборотов колеса в минуту.

Объем жидкости, проходящей через канал в секунду:

$$V_{\rm c} = F_1 w_1^{\ 1} = F_2 w_2^{\ 1}.$$

В центробежных насосах сечение канала на внешней окружности колеса F_2 всегда больше сечения канала на внутренней окружности F_1 , поэтому $w_2^{\ 1} < w_1^{\ 1}$. Скорости $w_1^{\ 1}$ и $w_2^{\ 1}$ жидкость имела бы в том случае, если бы коле-

Скорости w_1^1 и w_2^1 жидкость имела бы в том случае, если бы колесо находилось в состоянии покоя. При вращении колеса жидкость получает окружную скорость, м/с, равную:

- на внутренней окружности колеса

$$u_1 = \frac{2\pi r_1 n}{60}$$
;

- на наружной окружности колеса

$$u_2 = \frac{2\pi r_2 n}{60} .$$

Абсолютные скорости жидкости при входе в колесо (v_1) и выходе из колеса (v_2) являются равнодействующими радиальной и окружной скоростей и могут быть найдены по правилу сложения скоростей.

Рассмотрим скорости жидкости на входе в рабочее колесо и выходе из него (рис. 1.6). Построив параллелограмм скоростей, находим скорость v_1 в точке A при входе жидкости в рабочее колесо и скорость v_2 в точке B при выходе жидкости из рабочего колеса.

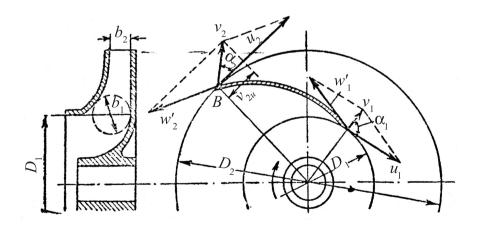


Рис. 1.6. Скорости жидкости в рабочем колесе насоса

Чтобы жидкость поступала в колесо без толчков, приводящих к большим потерям напора, она должна подаваться на лопатку рабочего колеса под углом α_1 . Для этого в большинстве случаев лопатки делают не прямыми, а загнутыми назад, причем угол α_1 берут равным 90° . Во избежание потерь напора из-за толчков жидкость должна покидать лопатку под углом α_2 ($\alpha_2 = 10...15^\circ$). При переходе жидкости из канала в кожух происходит падение скорости, вследствие чего кинетическая энергия превращается в потенциальную энергию давления, которое необходимо для поднятия жидкости на заданную высоту H, определяемую из уравнения

$$H = \frac{{v_2}^2 - {v_1}^2}{2g} + \frac{u_2 - u_1}{2g} + \frac{({w_1}^1)^2 - ({w_2}^1)^2}{2g}.$$
 (1.11)

Из параллелограмма скоростей при входе и выходе (см. рис. 1.6) следует:

$$(w_1^1)^2 = u_1^2 + v_1^2 - 2u_1v_1\cos\alpha_1,$$

$$(w_2^1)^2 = u_2^2 + v_2^2 - 2u_2v_2\cos\alpha_2.$$

Подставив эти значения в уравнение (1.11), получим

$$H = \frac{u_2 v_2 \cos \alpha_2 - u_1 v_1 \cos \alpha_1}{g}.$$

При $\alpha_1 = 90^{\circ} \cos \alpha_1 = 0$ и

$$H = \frac{u_2 v_2 \cos \alpha_2}{g} = \frac{u_2 v_{2u}}{g},$$

где $v_{2u} = v_2 \cos \alpha_2$ — проекция абсолютной скорости жидкости при выходе из насоса на направление ее окружной скорости.

Расчетная величина H является теоретическим напором для идеальной жидкости и колеса насоса с бесконечно большим числом лопаток. Фактическая высота подъема жидкости меньше теоретической вследствие гидравлических сопротивлений в самом насосе.

Правильный расчет насоса имеет критическое значение, поскольку если насос рассчитан и подобран неправильно, это приводит к кратному возрастанию эксплуатационных затрат при работе насоса при недогрузе или перегрузе.

1.2.4. Пример расчета центробежного насоса

Обычно определяют напор, создаваемый насосом, и мощность двигателя при заданном расходе жидкости. По этим характеристикам выбирают соответствующий насос по каталогу [3].

Задание. Подобрать насос для перекачки воды при температуре $20~^{\circ}\mathrm{C}$ из открытой емкости в аппарат, работающий под избыточным давлением $\Delta P = 0,1$ МПа. Расход воды $Q = 1,2 \cdot 10^{-2}\,\mathrm{m}^3/\mathrm{c}$, высота подъема $H_{\text{пол}} = 15~\mathrm{m}$. Длина трубопровода на линии всасывания $l_{\text{вс}} = 10~\mathrm{m}$, на линии нагнетания $l_{\text{наг}} = 40~\mathrm{m}$. На линии нагнетания имеются два отвода под углом 120° , десять отводов под углом 90° с радиусом поворота, равным шести диаметрам трубы, и два нормальных вентиля. На всасывающем участке трубопровода установлено два прямоточных вентиля, имеется четыре отвода под углом 90° с радиусом поворота, равным шести диаметрам трубы.

Проверить возможность установки насоса на высоте 4 м над уровнем воды в емкости.

Расчет

Выбор трубопровода

Для всасывающего и нагнетательного трубопроводов примем одинаковую скорость течения воды, равную 2 м/с. Тогда по формуле (1.8) внутренний диаметр трубопровода равен

$$d = \sqrt{4Q/(\pi w)} = \sqrt{4 \cdot 1, 2 \cdot 10^{-2} : (3,14 \cdot 2)} = 0,087 \text{ m}.$$

Выбираем стальную трубу с толщиной стенки 5 мм. Тогда при внутреннем диаметре 87 мм внешний диаметр равен 92 мм. Из табл. 1.4 выбираем трубу с внешним диаметром 95 мм и толщиной стенки 5 мм.

С учетом исправления фактическая скорость воды в трубе с внутренним диаметром 90 мм и заданным расходом будет равна

$$w = 4Q/(\pi d^2) = 4 \cdot 1.2 \cdot 10^{-2} : (3.14 \cdot 0.09^2) = 1.89 \text{ m/c}.$$

Определение потерь на трение и местные сопротивления Начнем с определения критерия Рейнольдса:

Re =
$$wd\rho/\mu = 1.89 \cdot 0.09 \cdot 998:(1.005 \cdot 10^{-3}) = 168 900$$
,

где 998 — плотность воды при 20 °C, кг/м³; μ — динамическая вязкость, H·c/m^2 . (Данные о вязкости некоторых жидкостей приведены в [1, с. 346].

Наружный	Толщина	Материал	Наружный	Толщина	Материал
диаметр, мм	стенки, мм		диаметр, мм	стенки, мм	
14	2	У,Н	90	4	У,Н
14	2,5	Н	90	5	У,Н
14	3	У	89	4	У
16	2	У	89	4,5	Н
18	2	У,Н	89	6	У
18	3	У,Н	95	4	У,Н
20	2	Н	95	5	У
20	2,5	У	108	4	У
22	2 3	У,Н	108	5	У
22	3	У	108	6	Н
25	2	У,Н	133	4	У
25	3	У	133	6	Н
32	3	Н	133	7	У
32	3,5	У	159	4,5 5	У
38	2	У,Н	159	5	У
38	3	H	159	6	Н
38	4	У	159	7	У
45	3,5	H	194	6	У
45	4	У	194	10	У
48	3	H	219	6	У
48	4	У	219	8	У
56	3,5	H	245	7	У

Данные для выбора труб

Примечание: У – углеродистая сталь, Н – нержавеющая сталь.

57

2,5

Значение Re говорит о том, что режим течения жидкости в трубе турбулентный.

245

Примем абсолютную шероховатость внутренней стенки трубы равной $\Delta = 2 \cdot 10^{-4}$ м. Тогда относительная шероховатость

$$e = \Delta/d = 2 \cdot 10^{-4}$$
: 0,09 = 0,0022.

Для определения коэффициента трения λ , используя выражения (1.5) и (1.6), вычислим значения 10/e и 560/e. Они равны соответственно 4545 и 255 545. Поскольку $4545 < (\text{Re} = 168\ 900) < 255\ 545$, расчет λ ведем для случая смешанного трения по формуле (1.6):

$$\lambda = 0.11(e + 68/\text{Re})^{0.25} = 0.11(0.0022 + 68.168900)^{0.25} \approx 0.025.$$

Определим сумму коэффициентов местных сопротивлений. Для всасывающей линии:

– вход в трубу принимаем с острыми краями $\xi_1 = 0.5$: