МИСиС

А.С. Перминов

Е.А. Шуваева

В.Ю. Введенский

Методы испытаний магнитных материалов

Лабораторный практикум

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Nº 508

Кафедра физического материаловедения

А.С. Перминов

Е.А. Шуваева

В.Ю. Введенский

Методы испытаний магнитных материалов

Лабораторный практикум

Под редакцией доктора физико-математических наук, профессора А.С. Лилеева

Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению Физическое материаловедение и специальности Стандартизация и сертификация

$\label{eq:Peq} \textbf{P} \ \textbf{e} \ \textbf{ц} \ \textbf{e} \ \textbf{h} \ \textbf{з} \ \textbf{e} \ \textbf{h} \ \textbf{T} \\ \textit{H.B. Каретникова} \ (\textbf{отд.} \ \textbf{информ.} \ \textbf{обслуживания} \ \textbf{УНУ} \ \textbf{МКиC})$

Перминов А.С., Шуваева Е.А., Введенский В.Ю.

П26 Методы испытания магнитных материалов: Лаб. практикум. – М.: МИСиС, 2006. – 70 с.

Данный практикум содержит лабораторные работы, выполнение которых основано на использовании методов, наиболее применяемых при испытании магнитных материалов. В первой работе рассматривается метод определения магнитных свойств трансформаторной стали. Во второй – приготовление кольцевого образца магнитомягкого материала, испытание которого для определения статических характеристик рассмотрено в работе 3, а динамических – в работе 4. Пятая и пестая работы посвящены испытаниям магнитотвердых материалов на гистерезисграфе и вибромагнитометре.

Содержание практикума соответствует программе курса «Методы испытаний магнитных материалов».

Предназначен для студентов специальностей 150701, 150702, 200503, а также для студентов, обучающихся по направлению «Физика» магистерской подготовки, изучающих курсы «Физические методы исследования», «Магнитомягкие материалы», «Магнитотвердые материалы», «Магнитные материалы», «Методы испытаний магнитных материалов» и «Сертификационные испытания специальных материалов».

СОДЕРЖАНИЕ

Введение
<i>Пабораторная работа № 1</i> . Испытания трансформаторных сталей5
Пабораторная работа № 2. Подготовка витого кольцевого
бразца из аморфной ленты к определению его магнитных
войств
Табораторная работа № 3. Испытание магнитомягких
иатериалов баллистическим методом31
<i>Табораторная работа № 4</i> . Испытание магнитомягких
иатериалов для определения динамических магнитных свойств41
Табораторная работа № 5. Проведение испытания для
пределения статических параметров магнитотвердого материала
а гистерезисграфе49
Іриложение А. Формулы и таблица со значениями
аспределения Стьюдента для статистической обработки
кспериментальных данных68
материалов для определения динамических магнитных свойств

ВВЕДЕНИЕ

С 1 июля 2003 года вступил в действие Федеральный закон № 183-ФЗ «О техническом регулировании», который регулирует отношения, возникающие при подтверждении соответствия – удостоверения соответствия продукции техническим регламентам, стандартам, условиям договоров. Важнейшим инструментом в деятельности по подтверждению соответствия являются испытания, которые проводят испытательные лаборатории, и от компетентности последних зависят достоверность информации и обоснованность принимаемых на её основе управляющих решений.

Испытания магнитных материалов с точки зрения базы нормативной документации являются одной из проблем – на данный момент в Российской Федерации действуют всего два стандарта на методики выполнения измерений параметров магнитных материалов: ГОСТ 8.377–80 «Государственная система обеспечения единства измерений. Материалы магнитомягкие. Методы определения статических магнитных характеристик» и ГОСТ 8.268–77 «Государственная система обеспечения единства измерений. Методика выполнения измерений при определении статических магнитных характеристик магнитотвердых материалов».

В данном практикуме рассматриваются наиболее применяемые методы определения параметров магнитных материалов – как стандартные, так и не стандартные.

Перед выполнением каждой лабораторной работы необходимо проверить на актуальность используемые нормативные документы на электронных страницах по электронным адресам: http://www.vniiki.ru, http://www.gost.ru или по Указателю «Национальные стандарты», выпускаемому издательством «Информстандарт».

Лабораторная работа № 1 ИСПЫТАНИЯ ТРАНСФОРМАТОРНЫХ СТАЛЕЙ

(4 yaca)

Цель работы – приобрести практические навыки испытаний листовых электротехнических сталей.

Задачи работы:

- изучить различные типы испытаний электротехнической стали;
- изучить требования нормативной документации к испытательному оборудованию при определении удельных потерь на перемагничивание:
- составить протокол испытания трансформаторной текстурованной стали.

1.1 Теоретическое введение

Электротехнические стали (ЭТС) – это класс магнитомягких материалов на основе сплава Fe–Si, предназначенных для изготовления магнитопроводов в электротехнических изделиях. Свойства ЭТС в значительной степени определяют характеристики, экономичность, габариты устройств и возможность их совершенствования, поэтому улучшению технологии производства и повышению характеристик ЭТС, особенно их магнитных свойств, уделяется большое внимание.

1.1.1 Общие сведения о ЭТС

ЭТС применяются преимущественно в трех видах изделий:

- а) электрические машины (генераторы и электродвигатели),
- б) трансформаторы (преимущественно силовые, работающие при низких частотах),
 - в) выключающие устройства (электромагнитные реле).

В соответствии с областью применения ЭТС подразделяют на динамные, трансформаторные и релейные. Для динамных и трансформаторных сталей требуются высокое значение индукции насыщения и малые потери на перемагничивание. Различие применений этих сталей в том, что в трансформаторных сталях направление магнитного поля неизменно, а динамные стали используются в магнитопроводах, в которых магнитный поток либо вращается, либо охватывает все направления в плоскости листа. Поэтому трансформаторные ста-

ли могут быть текстурованными. Более того, в трансформаторных сталях создание кристаллической текстуры является способом снижения магнитных потерь. В динамных сталях такой способ неприемлем, они должны быть изотропными.

Современные электротехнические стали представляют собой сплавы железа с кремнием и иногда алюминием при малом содержании углерода (углерод является вредной примесью, снижающей магнитные свойства). Добавка кремния к железу уменьшает магнитную анизотропию, препятствующую легкому перемагничиванию материала.

В электротехнических сталях увеличение массовой доли кремния снижает как константу магнитокристаллической анизотропии K_1 (с 45 кДж/м³ при 1 % до 28 кДж/м³ при 4,5 %), так и магнитострикцию насыщения λ s, что облегчает перемагничивание материала и уменьшает потери на гистерезис. Кроме того, введение кремния резко повышает удельное электрическое сопротивление

$$\rho = a + b[Si], \tag{1.1}$$

где р – удельное электрическое сопротивление, мкО·мм;

a – эмпирическая константа, a = 0,1 мкО·мм;

b – эмпирическая константа, b = 0.12 мкОм·м/%;

[Si] - массовая доля кремния, %,

вследствие чего снижаются потери на вихревые токи. Однако легирование железа кремнием приводит к нежелательному снижению индукции насыщения в соответствии с эмпирической формулой Гумлиха

$$B_s = B_s^{\text{Fe}} - C[\text{Si}], \tag{1.2}$$

где $B_{s_{-}}$ – индукция насыщения стали, Тл;

 B_s^{Fe} – индукция насыщения чистого железа, $B_s^{\text{Fe}} = 2,16 \text{ Тл}$;

C – эмпирическая константа, C = 0.048 Тл/%;

[Si] - массовая доля кремния, %.

Из-за увеличения хрупкости ЭТС при увеличении массовой доли кремния и связанных с этим трудностей обработки и использования максимальное содержание кремния в промышленно выпускаемых электротехнических сталях не превышает 4,8 %.

Различными технологическими приемами может быть достигнуто такое текстурное состояние, при котором ребро куба [001] (направление легкого намагничивания) совпадает с направлением холодной