Материаловедение

Сплавы Fe-С

Сборник задач

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

Кафедра физического материаловедения

Материаловедение

Сплавы Fe-С

Сборник задач

Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению Металлургия

Москва 2013

Рецензент д-р. физ.-мат. наук, проф. *Л.М. Капуткина*

Авторы: Р.И. Малинина, Е.А. Шуваева, О.А. Ушакова, А.С. Перминов, В.Ю. Введенский

ISBN 978-5-87623-678-4

На основе изучения метастабильной и стабильной диаграмм состояния Fe–C рассматриваются методы решения типовых задач по структурообразованию железоуглеродистых сплавов (технического железа, сталей и чугунов). Сборник задач разработан в соответствии с требованиями федеральных государственных образовательных стандартов высшего профессионального образования.

Предназначен для студентов направлений подготовки бакалавров 150100, 150400, 221400, 221700 и 220700, изучающих дисциплины «Материаловедение», «Материаловедение и качество металлопродукции», «Структура металлов», «Металловедение и технология конструкционных материалов» для самостоятельной работы при подготовке к семинарам и практическим занятиям, контрольным работам, а также при выполнении домашних заданий.

УДК 669.017

ОГЛАВЛЕНИЕ

Предисловие	
1. Диаграммы состояния и структура сплавов Fe-С	6
1.1. Стабильное и метастабильное равновесие	
1.2. Стабильная и метастабильная диаграммы Fe-С	7
1.3. Правила расстановки фаз на диаграмме состояния	9
1.4. Фазы в системе Fe-С	10
1.5. Правило концентраций	11
1.6. Правило рычага	11
1.7. Обозначения критических точек	11
1.8. Классификация сплавов Fe-С	13
1.9. Структурные составляющие сплавов Fe-С после отжига	15
1.10. Реальные микроструктуры и их схематичное изображение	17
1.11. Содержания связанного и свободного углерода	21
2. Методика решения задач с использованием диаграмм	
Fe-C и Fe-Fe ₃ C	23
2.1. Описание фазовых превращений	23
2.2. Построение кривых термического анализа	27
2.3. Прогнозирование микроструктуры сплава заданного состава	
по диаграмме состояния	31
2.4. Определение названия сплава по микроструктуре	
или химическому составу	34
2.5. Определение химического состава фаз и структурных	
составляющих по составу сплава	35
2.6. Расчет относительного количества фаз	36
2.7. Расчет относительного количества фаз разного происхождения	
2.8. Определение теплового эффекта превращения	38
2.9. Расчет относительного количества структурных	
составляющих	38
2.10. Определение состава сплава по заданному количеству	
фазовых или структурных составляющих	47
2.11. Построение графиков зависимостей	48
3. Домашнее задание (задачи)	
Библиографический список	67

ПРЕДИСЛОВИЕ

Изучение темы «Структурообразование сплавов Fe-С» является традиционным для всех учебных курсов материаловедческой направленности независимо от того, является ли этот курс большим или малым по числу учебных часов. Связано это не только с несомненной практической важностью сталей и чугунов для современной промышленности, но и с тем, что на примере системы Fe-C удается разобрать большое число вопросов, имеющих значение и для сплавов других систем, включая цветные металлы и сплавы, а также неметаллические материалы. Кристаллизация и полиморфные превращения, фазовые переходы первого и второго рода, перитектическое, эвтектическое и эвтектоидное трехфазные превращения, выделение вторичных и третичных кристаллов, стабильное и метастабильное равновесия – далеко не полный перечень тем, которые удобно рассматривать на примере диаграммы Fe-C. Этой диаграмме и железоуглеродистым сплавам особое внимание в учебной литературе уделяется также благодаря большому разнообразию видов термической обработки, впервые предложенных для сталей и в дальнейшем с успехом опробованных на материалах другого химического состава. Примеры для сплавов Fe-С также часто используются при изложении механических и физических свойств материалов, а также большого числа технологических свойств, таких как свариваемость, жидкотекучесть и т.д.

В сборнике представлены задачи по теме «Структурообразование сплавов Fe—С». Вопросам, включенным в этот раздел, как правило, уделяется большое внимание при изучении традиционных металловедческих курсов. Это обстоятельство объясняется не только важностью сталей и чугунов как традиционных материалов, но и тем, что существует много общих проблем структурообразования, которые на примере данной группы сплавов могут быть перенесены и на другие материалы. В состав сборника включены только те задачи, в которых рассматриваются нелегированные сплавы системы Fe—С в отожженном состоянии. Это позволяет тем не менее охватить все вопросы по данным сплавам, которые рассматриваются на семинарах и практических занятиях.

Авторы ориентировались на типичные трудности, возникающие у студентов, изучающих материаловедение, старались избегать сложных и запутанных формулировок. В отличие от других сборников в данном приведено до 100 вариантов условий каждой задачи, что дает возможность преподавателю, избежав повторений, составить множе-

ство вариантов из равнозначных по сложности задач. Авторы полагают, что при решении задач студентам целесообразно пользоваться литературой, список которой приведен в конце.

Сборник может быть рекомендован как для проведения аудиторных занятий, так и для самостоятельной подготовки студентов и при решении домашних заданий.

Авторы не ставили себе целью рассмотреть все возможные задачи. Так, в данном сборнике нет задач по атомной структуре фаз и по кинетике фазовых превращений. Отсутствуют задачи по формированию микроструктуры в сильно неравновесных условиях, в том числе в результате закалки и отпуска, а также по влиянию легирования на структурообразование. Круг задач сознательно сужен, чтобы оставить для подробного разбора лишь диаграмму состояния Fe—С и микроструктуру сплавов этой системы в отожженном состоянии.

При написании сборника авторы стремились придерживаться нескольких правил. Во-первых, большая часть теоретического материала представлена в виде примеров решения задач. Во-вторых, в условие каждой задачи включен только один вопрос, чтобы студент решение своей задачи собирал из примеров как в конструкторе (принцип сборки). В-третьих, при наличии двух вариантов решения описываются оба (принцип всесторонности). В-четвертых, если в решении задач разного типа используется одно и то же положение, то это положение приводится в теоретическом введении или каждый раз повторяется. Ссылки на другие задачи допускаются только в рамках одного раздела. Таким образом, реализован принцип самодостаточности описания решения отдельной задачи, который можно сформулировать так: не обязательно читать все пособие, чтобы разобраться в решении конкретной задачи.

В заключение авторы выражают надежду, что данный сборник задач поможет в работе как преподавателей, так и студентов. У преподавателей появится возможность управления самостоятельной работой студентов путем выдачи общих или индивидуальных заданий для подготовки к семинару. Кроме того, возникает возможность изменения сценария проведения семинаров, резко сокращая объем излагаемого теоретического материала и обращая основное внимание на решение задач. Авторы надеются, что усилится обратная связь преподавателя со студентами и станет возможной более индивидуальная работа преподавателя, так как у подготовленных студентов появятся свои вопросы и можно сосредоточиться на их обсуждении. У студентов же появится возможность самостоятельно проработать темы семинаров, выполнить домашнее задание и лучше подготовиться к коллоквиуму (контрольной работе) по структурообразованию в сплавах Fe—C.