МИСиС

Ю.Д. Ягодкин Т.А. Свиридова

Атомное строение фаз

Кристаллохимия твердых растворов и промежуточных фаз. Структура аморфных, квазикристаллических и нанокристаллических материалов

Курс лекций

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Nº 127

Кафедра физического материаловедения

Ю.Д. Ягодкин Т.А. Свиридова

Атомное строение фаз

Кристаллохимия твердых растворов и промежуточных фаз. Структура аморфных, квазикристаллических и нанокристаллических материалов

Курс лекций

Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям Физика металлов и Наноматериалы

Рецензент докт. хим. наук, проф. *М.В. Астахов*

Ягодкин Ю.Д., Свиридова Т.А.

Я27 Атомное строение фаз. Кристаллохимия твердых растворов и промежуточных фаз. Структура аморфных, квазикристаллических и нанокристаллических материалов: Курс лекций. – М.: МИСиС, 2007. – 107 с.

Рассмотрены структура твердых растворов, факторы, определяющие растворимость в первичных твердых растворах, термодинамика их образования, процессы атомного упорядочения. Проведен кристаллохимический анализ часто встречающихся промежуточных фаз, включая условия их образования и особенности атомного строения.

Подробно рассмотрена структура аморфных, квазикристаллических и нанокристаллических материалов.

Курс лекций рекомендован студентам, обучающимся по специальностям 210602 «Наноматерилы» и 150702 «Физика металлов».

ОГЛАВЛЕНИЕ

Введение	4
1. Кристаллохимия твердых растворов	5
1.1. Типы твердых растворов	5
1.2. Закон Вегарда	11
1.3. Термодинамика твердых растворов	13
1.4. Факторы, определяющие растворимость	
в первичных твердых растворах. Правила Юм-Розери.	
Диаграмма Даркена – Гурри	22
1.5. Влияние электронной концентрации на растворимость	
элементов	23
1.6. Атомное упорядочение. Сверхструктуры на основе	
ГЦК, ОЦК и ГП решеток	33
1.7. Атомное упорядочение как фазовый переход	
I или II рода. Правило звезды	39
1.8. Термодинамика процессов упорядочения.	
Статистическая теория Брэгга, Вильямса, Горского	43
1.9. Ближний атомный порядок	48
2. Кристаллохимия промежуточных фаз	51
2.1. Фазы Юм-Розери (электронные соединения)	52
2.2. Соединения типа σ-FeCr и родственные им фазы	56
2.3. Фазы Лавеса	61
2.4. Другие фазы с простыми стехиометрическими	
соотношениями	69
2.5. Фазы с алмазоподобной решеткой	74
2.6. Фазы внедрения	
3. Структура расплавов и аморфных твердых сплавов	82
4. Структура квазикристаллических материалов	
5. Структура нанокристаллических материалов	
Библиографический список	

ВВЕДЕНИЕ

Одной из основных дисциплин, изучаемых студентамиметаллофизиками, а также студентами, обучающимися по новой специальности «Наноматериалы», является «Атомное строение фаз». Этот курс, ранее называвшийся «Физика металлов», читается студентам уже несколько десятков лет. В становлении данного курса главную роль сыграли проф. Я.С.Уманский и проф. Ю.А.Скаков. Их учебник «Физика металлов» [1], изданный в 1978 г. и удостоенный впоследствии Государственной премии, до настоящего времени является одним из основных для студентов. Наряду с этим учебником при изучении данного курса целесообразно использовать монографии [2, 3]. Однако и они были изданы более чем 20 лет назад.

В то же время развитие науки и педагогической практики требует написания новой учебно-методической литературы по данному курсу. В связи с этим за последние годы были выпущены два учебных пособия [4,5], которые, несомненно, помогут студентам в освоении курса и, прежде всего, в выполнении практических работ и изучении материала семинарских занятий.

Целью данного курса лекций является систематизация и анализ изучаемых вопросов с позиций современного развития науки. Он максимально приближен к содержанию читаемых сегодня лекций и включает в себя, наряду с новыми разделами, посвященными, в частности, структуре квазикристаллических и нанокристаллических материалов, более полное и детальное описание ряда существенных вопросов физики твердых растворов и промежуточных фаз.

Отметим, что во второй части курса «Атомное строение фаз» рассматриваются атомные механизмы кристаллизации и фазовых превращений в твердом состоянии. Предполагается, что эти вопросы будут описаны в следующем издании курса лекций. А сейчас для их изучения необходимо использовать существующую литературу [1-5].

Хочется также обратить внимание на то, что для освоения данного курса необходимы знания по изучаемым ранее предметам, прежде всего, по металлографии, физической химии и, конечно, по кристаллографии и рентгенографии. Литературу по последним двум курсам, в частности, учебник [6] и учебное пособие [7], также необходимо использовать для успешного освоения курса «Атомное строение фаз».

Авторы выражают искреннюю благодарность проф. А.Н. Иванову за обсуждение рукописи.

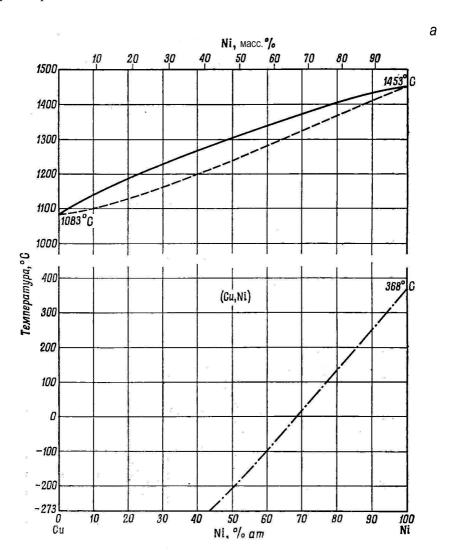
1. КРИСТАЛЛОХИМИЯ ТВЕРДЫХ РАСТВОРОВ

1.1. Типы твердых растворов

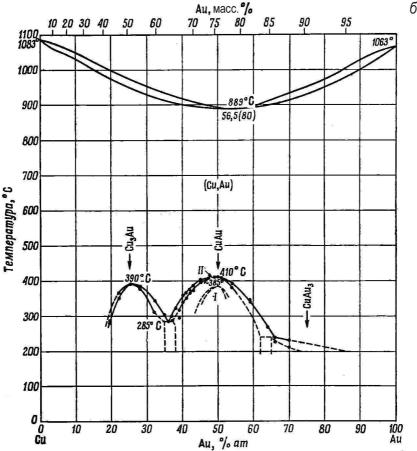
Твердыми растворами принято называть такие твердые фазы, содержание компонентов в которых может изменяться в определенных пределах (в пределах области гомогенности). Таким образом, можно говорить, что твердые растворы — это фазы переменного состава. Очевидно, что в пределах области гомогенности кристаллическая структура фазы (ее структурный тип) сохраняется¹.

По протяженности области гомогенности твердые растворы делятся на растворы с *ограниченной* и *неограниченной* растворимостью компонентов. В последнем случае принято говорить также о непрерывном ряде твердых растворов. Например, неограниченная растворимость компонентов наблюдается в системе Cu–Ni (рис. 1.1,a), в системе Cu–Au непрерывный ряд твердых растворов образуется лишь при высоких температурах (рис. 1.1,b), а в системе Ti–Zr непрерывный ряд твердых растворов при высоких температурах имеет ОЦК решетку (b-фаза), а при низких – b-ГП решетку (b-фаза) (рис. b-фаза). Непрерывный ряд твердых растворов может образовываться и между химическими соединениями, например, между NaCl и KCl или между TiC и TiN.

Твердые растворы на основе чистых элементов принято называть *первичными*. Кроме того, очевидно, могут сосуществовать твердые растворы на основе химических соединений.


По типу расположения атомов растворяемого элемента твердые растворы делятся на растворы *замещения*, внедрения и вычитания. В первом случае атомы растворяемого элемента замещают (статистически) атомы растворителя в узлах решетки. При этом число атомов в элементарной ячейке не меняется, но в пределах области гомогенности твердого раствора изменяется вероятность нахождения данного компонента в узле решетки.

В случае статистического замещения атомов вероятность встретить в данном узле атом компонента A равна его атомной доле в твердом растворе


 $^{^1}$ Для полного описания кристаллической структуры твердого раствора необходимо знать вероятность нахождения данного компонента (p) в определенной кристаллографической позиции решетки (в определенной правильной системе точек). Причем величина p может меняться в достаточно широких пределах, а в случае двухкомпонентного непрерывного ряда твердых растворов она варьируется от 0 до 1.

$$c_A = N_A/N, \tag{1.1}$$

где N_A и N_- число атомов типа A и общее число атомов в твердом растворе.

В случае двухкомпонентного твердого раствора, очевидно, что

$$n_A = c_A n, \quad n_B = c_B n, \quad c_A + c_B = 1, \quad n_A + n_B = n,$$
 (1.2)

где n_A , n_B и n — число атомов типа A и B и общее число атомов в элементарной ячейке, c_A и c_B – атомные доли компонентов A и B в твердом растворе.

Твердые растворы замещения образуются компонентами с достаточно близкими атомными (ионными) радиусами.

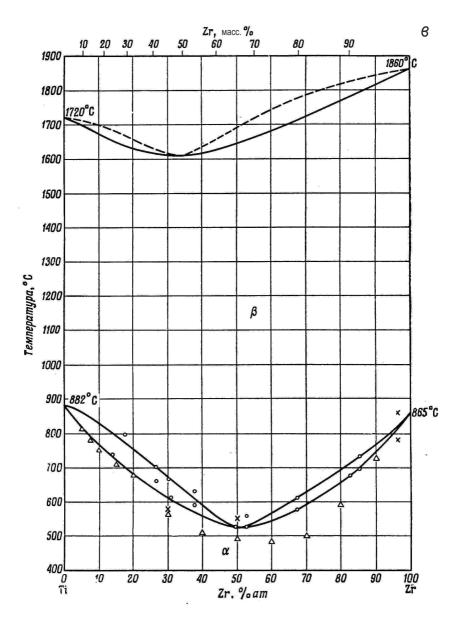


Рис.1.1. Диаграммы состояния сплавов систем Cu-Ni (a), Cu-Au (δ) и Ti-Zr (ϵ)

На рис. 1.2 представлены зависимости числа атомов A и B (n_A и n_B соответственно), а также общего числа атомов в элементарной ячей-ке (n) двухкомпонентного твердого раствора замещения элемента B в элементе A.

При формировании твердого раствора внедрения атомы растворяемого элемента (например, элемента B) статистически размещаются («внедряются») в межатомных (межузельных) порах решетки растворителя. Изменение числа атомов A и B, а также общего числа атомов в элементарной ячейке (n) двухкомпонентного твердого раствора внедрения элемента B в элементе A, показано на рис. 1.3. Твердые растворы внедрения обычно образуются в том случае, когда атомы компонентов сильно различаются по атомным размерам. Например, в заметных количествах растворяются в переходных металлах по типу внедрения H, C, B, N. Известны также растворы внедрения на основе химических соединений (например, раствор Ni в соединении NiSb).

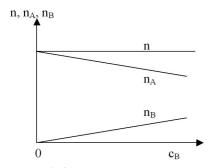


Рис.1.2. Зависимости числа атомов компонентов и общего числа атомов в элементарной ячейке двухкомпонентного твердого раствора замещения элемента B в элементе A

компонентов и общего числа атомов в элементарной ячейке двухкомпонентного твердого раствора замещения внедрения B в элементе A

В случае двухкомпонентного твердого раствора внедрения элемента B в A, очевидно, что

$$n_A = c_A n = \text{const}, \quad n_B = c_B n, \quad c_A + c_B = 1, \quad n_A + n_B = n.$$
 (1.3)

Твердые растворы вычитания образуются только на основе химических соединений. В таких растворах некоторые позиции атомов (ионов) в решетке оказываются незанятыми (образуются так называемые структурные вакансии), т.е. количество атомов данного сорта