МИСиС

С.Ю. Богословский Л.Г. Титов

Неорганическая химия

Лабораторный практикум

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Nº 698

Кафедра общей и неорганической химии

С.Ю. Богословский Л.Г. Титов

Неорганическая химия

Лабораторный практикум

Издание 2-е, исправленное

Рекомендовано редакционно-издательским советом университета

Рецензент проф. *В.И. Москвитин*

Богословский С.Ю., Титов Л.Г.

Б73 Неорганическая химия: Лаб. практикум. – 2-е изд., испр. – М.: МИСиС, 2007. – 126 с.

В данном практикуме, являющемся переизданием пособия, выпущенного в 1991 году, приведены описания лабораторных работ по курсу неорганической химии для студентов всех специальностей института. Они включают определение основных характеристик и констант неорганических веществ и реакций (молекулярная масса, энтальпия реакции, рН раствора, и др.), а также изучение химии элементов, в первую очередь, переходных металлов. Содержание практикума максимально приближено к учебному плану.

СОДЕРЖАНИЕ

Введение	5
Лабораторная работа 1.	
Определение молекулярной массы кислорода	7
Лабораторная работа 2.	
Определение эквивалента металла	14
Лабораторная работа 3.	
Определение энтальпии реакции	19
Лабораторная работа 4.	
Скорость химической реакции и равновесие	25
Лабораторная работа 5.	
Приготовление растворов и определение их концентрации.	33
Лабораторная работа 6.	
Определение рН раствора	40
Лабораторная работа 7.	
Изучение окислительно-восстановительных реакций	50
Лабораторная работа 8.	
Изучение химических свойств галогенов	56
Лабораторная работа 9.	
Изучение свойств халькогенов	63
Лабораторная работа 10.	
Изучение свойств олова и свинца	70
Лабораторная работа 11.	
Изучение комплексных соединений	75

Лабораторная работа 12.
Изучение свойств металлов подгруппы цинка81
Лабораторная работа 13.
Изучение свойств металлов подгруппы меди87
Лабораторная работа 14.
Изучение свойств металлов семейства железа94
Лабораторная работа 15.
Изучение свойств металлов подгруппы марганца101
Лабораторная работа 16.
Изучение свойств металлов подгруппы хрома107
Лабораторная работа 17.
Изучение свойств металлов подгруппы ванадия и титана113
Приложение 1.
Давление насыщенного пара воды при различной температуре118
Приложение 2.
Константы диссоциации слабых электролитов118
Приложение 3.
Константы нестойкости комплексных частиц119
Приложение 4.
Стандартные электродные потенциалы окислительно-
восстановительных систем
Приложение 5.
Стандартные энтальпии образования ΔH^0_{298} некоторых веществ.123
Приложение 6.
Растворимость солей и оснований в воде124

ВВЕДЕНИЕ

Данный практикум представляет собой совместный труд коллектива кафедры по модернизации лабораторных работ курса неорганической химии.

Навыки и знания, формируемые с помощью практикума, соответствуют требованиям квалификационных характеристик всех специальностей института, что делает пособие универсальным для студентов 1 курса всех факультетов МИСиС.

Практикум предполагает обязательную предварительную внеаудиторную работу студента по подготовке к выполнению лабораторных работ. Студент должен: изучить теоретический материал по теме лабораторной работы, уяснить порядок проведения эксперимента, ознакомиться с требованиями техники безопасности, оформить все необходимые записи в лабораторном журнале, выполнить домашнее задание, используя приложения 5 и 6.

К навыкам работы в лаборатории следует отнести умение грамотно вести рабочий лабораторный журнал, в котором должны быть точно, полно и лаконично отражены как организация эксперимента, так и полученные результаты.

Общие требования к оформлению лабораторного журнала

1. Журналом может служить толстая тетрадь любого формата. На титульном листе необходимо написать:

Лабораторный журнал по неорганической химии
студента группы факультета
(Ф. И. О.)
Преподаватель(Ф. И. О.)

- 2. При подготовке к лабораторной работе для записей используется только левая страница разворота тетради, правая страница оставляется незаполненной и служит для рисунков, графиков, возможных исправлений и заданий преподавателя.
- 3. Каждая работа должна начинаться с новой страницы с указанием даты и названия темы. Далее записывают: цель работы, краткое теоретическое введение, план работы, описание приборов и реактивов, экспериментальные данные, результаты расчётов и выводы. После выполнения и защиты работу подписывает преподаватель.
- 4. Все результаты эксперимента следует сразу заносить в журнал. Вести записи на листочках, черновиках в лаборатории запрещается.
- 5. Для всех проведенных химических экспериментов необходимо записать уравнения реакций, причем уравнения реакций ионного обмена должны сопровождаться сокращенными ионными уравнениями, а окислительно-восстановительные реакции полуреакциями.

К работе в учебной химической лаборатории допускаются лица, знающие и безусловно выполняющие правила **техники безопасности**. Ознакомление с этими правилами проводится на вводном занятии, специфические приемы описаны в каждой работе.

При подготовке к практикуму помимо конспекта лекций рекомендуется использовать следующие основные источники:

- 1. Глинка Н. Л. Общая химия.—Л.: Химия, 1990.
- 2. Васильева З. Г., Грановская А. А., Таперова А. А. Лабораторные работы по общей и неорганической химии.—Л.: Химия, 1986.
- 3. Коржуков Н.Г., Неорганическая химия М.: МИСиС, 2001.

ЛАБОРАТОРНАЯ РАБОТА 1

Определение молекулярной массы кислорода

(2 *yaca*)

1. Цель работы

Закрепить знания основных понятий атомно-молекулярной теории и газовых законов. Овладеть приемами взвешивания на техно-химических и аналитических весах, научиться измерять объемы жидкостей и газов с помощью калиброванной химической посуды.

2. Теоретическое введение

Молекулярная масса — основная характеристика любого простого или сложного вещества. Относительной молекулярной массой вещества M_r называют массу его молекулы, измеренную в атомных единицах массы. Количество вещества, масса которого в граммах численно равна его молекулярной массе, составляет моль вещества.

Для газообразных веществ справедлив закон Авогадро: в равных объемах различных газов при одинаковых условиях содержится одинаковое число молекул. Из закона Авогадро следует, что моль любого вещества в газообразном состоянии при одинаковых условиях занимает один и тот же объем, называемый мольным объемом. Мольный объем любого газа при нормальных условиях ($T_0 = 273 \text{ K}$, $P_0 = 1,013 \cdot 10^5 \text{ Па}$) составляет $V_0 = 22,4 \text{ л}$ ($22,4 \cdot 10^{-3} \text{ м}^3$). Отсюда следует, что величину молярной и численно равной ей молекулярной массы газа можно вычислить по формуле $M_r = 22,4 \text{ m/V}_0$, где m — масса вещества, г; V_0 — объем газа в литрах, приведенный к нормальным условиям (н. у.).

Для массы m_1 исследуемого газа, занимающего некоторый объем, справедливо следующее соотношение:

$$m_1 = n \cdot M_1 \,, \tag{1}$$

где M_1 — молекулярная масса газообразного вещества; n — число его молекул в данном объеме.

Другой газ, взятый для сравнения в таком же объеме при тех же температуре и давлении, по закону Авогадро содержит такое же число молекул n, и масса его равна

$$m_2 = n \cdot M_2 \,, \tag{2}$$

где M_2 – молекулярная масса второго газа.

Разделив соотношение (1) на соотношение (2), получим

$$m_1/m_2 = M_1/M_2$$
.

Величина m_1/m_2 , равная соотношению молекулярных масс M_1/M_2 , показывает, во сколько раз первый газ тяжелее второго, и называется плотностью первого газа по второму или **относительной плотностью** D. Очевидно, что если плотность исследуемого газа определяется по водороду, то молекулярная масса газа равна

$$M = 2,016 D_{\rm H}$$
.

Из законов Шарля-Гей-Люссака и Бойля-Мариотта выводится уравнение:

$$P(V/T) = P_1(V_1/T_1) = r$$
,

где r — величина, постоянная для одной и той же массы газа, но меняющаяся с изменением его природы.

Д.И. Менделеев, с учетом закона Авогадро, получил уравнение PV = RT, применив соотношение

$$P_0(V_0/T_0) = R$$
.

Величина R называется универсальной газовой постоянной, а полученное соотношение — уравнением Клапейрона — Менделеева. Оно применимо к одному молю любого газа и для любых условий. Численное значение R можно легко рассчитать:

$$R = P_0(V_0/T_0) = 1{,}013 \cdot 10^5 \cdot 22{,}4 \cdot 10^{-3}/273 = 8{,}31$$
 Дж/К · моль.

Для v молей уравнение Клапейрона — Менделеева принимает вид

$$PV = vRT$$
.

где v может быть выражено как частное от деления массы газа m на его молярную массу, численно равную молекулярной массе газа. Тогда уравнение примет вид:

$$PV = m/M(RT)$$
,

откуда легко рассчитать молекулярную массу газообразного вещества, измерив его массу, объем, температуру и давление.

При определении давления газа, выделившегося в измеряемом объеме над водой, следует помнить, что в соответствии с законом Дальтона общее давление газа и паров воды в данном объеме равно сумме их парциальных давлений. Парциальным давлением называется давление, которым обладал бы данный газ или пар, если бы он один занимал весь объем.

3. Приборы и реактивы

Работу проводят на эвдиометре, состоящем из измерительной бюретки (вертикальная стеклянная трубка с нанесенными делениями в мл), соединенной гибким шлангом с уравнительным сосудом, который вместе с бюреткой заполняется водой. Бюретка герметично соединяется со склянкой Оствальда (пробиркой со шлифом и двумя коленами). Используют также техно-химические весы и аналитические весы, термометр, барометр, спиртовку, техническую вату, фильтровальную бумагу. Реактивом служит перманганат калия.

4. Порядок проведения работы. Указания по технике безопасности

- 4.1. С помощью техно-химических весов взвесьте на фильтровальной бумаге 0,4...0,5 г перманганата калия, навеску поместите в одно из колен склянки Оствальда, закройте ее ватой (не очень плотно!) и в присутствии преподавателя или лаборанта взвесьте склянку с перманганатом и ватой на аналитических весах. После этого укрепите склянку в штативе так, чтобы колено с перманганатом оказалось внизу. Не присоединяя склянку Оствальда, доведите с помощью уравнительного сосуда уровень воды в бюретке точно до метки "0" по нижнему мениску.
- 4.2. Присоедините склянку Оствальда и проверьте прибор на герметичность, для чего опустите уравнительный сосуд так, чтобы уровень воды в нем был ниже уровня в бюретке на 10...20 см, и в таком положении укрепите его. При опускании уравнительного сосуда уровень воды в бюретке несколько понизится. Если через 1...2 минуты дальнейшего понижения не произойдет, прибор можно считать герметичным.
- 4.3. После испытания прибора на герметичность зажгите спиртовку и нагревайте склянку Оствальда с перманганатом. Нагревание проводить, не допуская бурного разложения перманганата! Равномерно прогревая нижнее колено склянки, добейтесь начала разложения, после чего нагревайте склянку более осторожно. При нагревании происходит разложение перманганата калия с выделением кислорода:

$$2KMnO_4 = K_2MnO_4 + MnO_2 + O_2,$$

который вытесняет воду из бюретки в уравнительный сосуд. Нагревание проводите до тех пор, пока в измерительной бюретке не наберется 25...30 мл газа.

4.4. После окончания нагрева подождите 5...10 минут, чтобы газ в бюретке и склянка Оствальда охладились до комнатной температуры. Для того, чтобы давление стало равным атмосферному, при-

ведите воду в бюретке и в уравнительном сосуде к одному уровню, для чего поднимите или опустите уравнительный сосуд и закрепите его.

4.5. Определите объем выделившегося кислорода от нуля до данного уровня. Отсоедините и взвесьте склянку Оствальда на аналитических весах. Если поверхность склянки Оствальда закоптилась, перед взвешиванием тщательно оботрите ее фильтровальной бумагой. После взвешивания следует извлечь ватный тампон из склянки Оствальда, помыть ее и передать лаборанту.

5. Обработка результатов эксперимента

5.1. Результаты измерений внесите в лабораторный журнал по следующей заранее подготовленной форме:

Масса склянки Оствальда с ватой и перманганатом, m_1 , г...

Масса склянки Оствальда после эксперимента, m_2 , г...

Масса выделившегося кислорода $m_3 = m_1 - m_2$, г...

Объем выделившегося кислорода V, мл (с точностью до 0,1...0,2 мл) и м $^3...$

Температура T, °С...

Атмосферное давление, $P_{\text{атм}}$, $\Pi a...$

Давление паров воды при данной температуре P_{H2O} , Па...

(см. Приложение 1)...

Парциальное давление кислорода $P = P_{\text{атм}} - P_{\text{H}_2\text{O}}$, Па (не более трех значащих цифр)...

- 5.2. По уравнению $P_0\left(V_0/T_0\right) = P\left(V/T\right)$ вычислите объем кислорода при нормальных условиях.
- 5.3. По уравнению Клапейрона-Менделеева рассчитать массу водорода в объеме V и относительную плотность кислорода по водороду $D_{\rm H}$.
- 5.4. Вычислить молекулярную массу кислорода по формулам:

$$M_r = 22.4 \ m_3/V_0$$