Е.П. Потоцкий

Безопасность жизнедеятельности

Учебное пособие

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

Кафедра техносферной безопасности

Е.П. Потоцкий

Безопасность жизнедеятельности

Учебное пособие

Рекомендовано редакционно-издательским советом университета

Москва 2012

Рецензент д-р техн. наук, проф. *Л.С. Стрижко*

Потоцкий, Е.П.

П64 Безопасность жизнедеятельности : учеб. пособие / Е.П. Потоцкий. – М. : Изд. Дом МИСиС, 2012. – 77 с. ISBN 978-5-87623-591-6

В учебном пособии изложены методики выполнения двух домашних заданий по курсу «Безопасность жизнедеятельности». Первое – «Вентиляция производственных помещений» – предназначено для технологических направлений и специальностей, второе – «Анализ условий труда» – для всех направлений и специальностей университета. Приложения к пособию могут быть использованы при выполнении выпускных квалификационных работ, дипломных проектов и работ.

УДК 614.8.084

ОГЛАВЛЕНИЕ

Предисловие	4
Задание 1. Вентиляция производственных помещений	5
1.1. Вводная часть	
1.2. Общие положения по расчету вентиляции	6
1.3. Методика расчета аэрации производственных помещений	11
1.4. Методика расчета смешанной вентиляции помещений	16
1.5. Методика расчета вытяжного зонта	21
Задание 2. Анализ условий труда	27
2.1. Вводная часть	27
2.2. Методика выполнения задания	28
Библиографический список	30
Приложения	32
1. Классификация опасных и вредных факторов	32
2. Параметры воздуха рабочей зоны	34
3. Производственное освещение	47
4. Электробезопасность	56
5. Электромагнитные поля	57
6. Ионизирующие излучения	61
7. Шум на рабочих местах	63
8. Производственная вибрация	67
9. Ультразвук	73
10. Инфразвук	75

ПРЕДИСЛОВИЕ

Настоящее издание является переработанным вариантом аналогичного пособия [1] с учетом современной нормативной базы по безопасности жизнедеятельности.

В пособии приведены методики выполнения двух домашних заданий по курсу «Безопасность жизнедеятельности».

В первом задании изложены методики расчета аэрации, смешанной вентиляции производственных помещений и вытяжного зонта с вариантами исходных данных. По указанию преподавателя выполняется один из расчетов, возможно с использованием ЭВМ.

Второе задание содержит методические рекомендации по проведению анализа условий труда на рабочих местах. По усмотрению преподавателя либо выдаются варианты исходных данных для выполнения домашнего задания с указанием производственного помещения и выполняемых операций, либо рекомендуется провести анализ условий труда для курсового проекта, выполняемого по спецкурсу.

К оформлению заданий предъявляются обычные требования: титульный лист; содержание задания; расчеты и поясняющие рисунки по заданию 1; заполненные таблицы и расчеты – по заданию 2; выводы.

ЗАДАНИЕ 1. ВЕНТИЛЯЦИЯ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

1.1. Вводная часть

На металлургических предприятиях в производственных помещениях применяются системы естественной, механической или смешанной (обе одновременно) вентиляции. Естественная вентиляция в горячих цехах устраивается для общего воздухообмена, изменяющего состояние воздушной среды во всем помещении.

Аэрация — организованный, регулируемый, естественный воздухообмен в производственных помещениях, осуществляется с помощью теплового или совместного теплового и ветрового воздействий. Аэрация по сравнению с механической вентиляцией дает экономию энергии и капитальных затрат. Аэрацию следует применять в тех случаях, когда она обеспечивает нормируемые ГОСТ 12.1.005–88* [2] и СанПиН 2.2.4.548–96 [3] параметры микроклимата в рабочей зоне производственного помещения и допустима по технологическим условиям.

При аэрации наружный воздух в производственное помещение поступает без очистки, поэтому применяется она только в тех случаях, когда концентрация вредных веществ (пыль, газы) в наружном воздухе не превышает значения 0,3ПДК, установленного для рабочей зоны.

Воздух должен поступать непосредственно в рабочую зону аэрируемого помещения через проемы в наружных стенах на уровне 0,3...1,8 м от пола до низа проема в теплый период года и через проемы на высоте не менее 4,5 м от пола до низа проема в холодный период.

Глубину зоны действия аэрации допускается принимать не более 30 м от приточных аэрационных проемов, которые расположены в обеих продольных стенах здания, в местах, наиболее близких к источникам тепловыделений. Если источники тепловыделений находятся в непосредственной близости от стены, то приточные проемы в этой стене размещаются в разрывах между источниками.

Для обеспечения необходимой площади приточных проемов наружные продольные стены должны быть максимально свободны от пристроек.

В многопролетных зданиях (3 и более пролетов) с «холодными» пролетами допускается приток воздуха через них, если концентрация вредных веществ на кровле над этим пролетом не превышает 0,3ПДК, установленной для рабочей зоны. Расстояние между створками приточного проема и ближайшего вытяжного фонаря принимается не менее 10 м.

Оборудование, агрегаты, выделяющие теплоту, располагаются с учетом возможности проветривания проходов между ними. Расстояние между оборудованием и агрегатами по фронту распространения приточного воздуха должно быть более размера источника тепловыделения (по фронту).

Участки со значительными тепловыделениями для лучшего проветривания размещаются в крайних пролетах.

Удаление воздуха из аэрируемого помещения производится через аэрационные фонари незадуваемого типа, а также через шахты, снабженные устройствами, которые предотвращают задувание шахт ветром (дефлекторные насадки, ветрозащитные панели). Вытяжные аэрационные фонари применяются при равномерном расположении источников тепловыделений, а шахты – при сосредоточенном.

Приточные и вытяжные проемы оборудуются механизмами с дистанционным управлением для открывания (закрывания) створок.

Часто применяется смешанная вентиляция: аэрация совместно с системами механической вентиляции, которые устраиваются на постоянных рабочих местах. Механическая вентиляция в горячих цехах позволяет изменять качество воздушной среды на сравнительно небольших участках, на рабочих местах, где общеобменная вентиляция обычно не создает необходимых условий. Механическая вентиляция может быть как приточной (воздушные души и оазисы), так и вытяжной.

В последнее время в металлургических цехах все чаще применяют механическую вытяжную вентиляцию, особенно в тех случаях, когда теплогазовый факел содержит значительное количество пыли или токсичных газов. Местные вытяжные вентиляционные установки устраиваются в виде зонтов, отсосов (бортовых и кольцевых), укрытий, реже — вытяжных шкафов. Эти устройства устанавливают в непосредственной близости от источников вредных выделений и тем самым предупреждают их распространение в помещении. Применение механической вытяжной вентиляции позволяет осуществлять очистку газов от механических и токсичных примесей, а также организованный выброс через дымовую трубу на высоту, обеспечивающую рассеивание их до нормируемых концентраций.

1.2. Общие положения по расчету вентиляции

Расчетные зависимости, приведенные в этом подразделе, справедливы для всех указанных ниже видов вентиляции (аэрации и смешанной вентиляции). Под смешанной вентиляцией мы будем понимать дополнение механической вентиляции к естественной.