
Н. Г. Куранова Г. А. Купатадзе



Часть 2 МЕТАБОЛИЗМ ПРОКАРИОТ УДК 57 ББК 28.4я73 К 92

#### Рецензент

Доцент кафедры общей генетики медицинского факультета Российского университета дружбы народов (РУДН), к.б.н. Е.В. Тарасенко

#### Куранова, Наталия Геннадьевна.

К92 Микробиология. Часть 2. Метаболизм прокариот : Учебное пособие / Н.Г. Куранова, Г.А Купатадзе. — М. : Прометей, 2017 — 100 с.

#### ISBN 978-5-906879-11-0

Пособие — вторая часть комплекта по теоритическому блоку курса микробиологии, предназначенное для получения базовых знаний, а так же углубленного изучения материала при самоподготовке. Пособие включает в себя обзор обмена веществ прокариот: типов жизни, брожения, дыхания, фотосинтеза, синтетических процессов. Особо обсуждаются процессы, свойственные только прокариотам — азотофиксация и метаногенез.

Учебное пособие для студентов и бакалавров педагогических ВУЗов, обучающихся по биологическим специальностям.

<sup>©</sup> Куранова Н. Г., Купатадзе Г. А., 2017

<sup>©</sup> Издательство «Прометей», 2017

## ОГЛАВЛЕНИЕ

| 1. | ОСНОВНЫЕ ПОНЯТИЯ4                                          |
|----|------------------------------------------------------------|
|    | 1.1. Метаболизм и типы жизни                               |
|    | 1.4. Начальные этапы окисления глюкозы                     |
|    | 1.5. Цикл Кребса и альтернативные циклы                    |
| 2. | ХАРАКТЕРИСТИКА ЭНЕРГЕТИЧЕСКИХ ПРОЦЕССОВ —                  |
|    | КАТАБОЛИЗМ ПРОКАРИОТ 21                                    |
|    | 2.1. Брожение                                              |
|    | 2.2. Дыхание                                               |
|    | 2.2.1. Общая схема процесса дыхания                        |
|    | 2.2.2. Анаэробное дыхание                                  |
|    | 2.2.3. Литотрофное дыхание — окисление                     |
|    | неорганических веществ  44    2.3. Фотосинтез  54          |
|    | 2.3. Фотосинтез                                            |
| 3. | ХАРАКТЕРИСТИКА КОНСТРУКТИВНЫХ                              |
|    | (СИНТЕТИЧЕСКИХ) ПРОЦЕССОВ — АНАБОЛИЗМ                      |
|    | ПРОКАРИОТ                                                  |
|    | 3.1. Восстановление углекислого газа и синтез углеводов 70 |
|    | 3.2. Синтез аминокислот                                    |
|    | 3.3. Синтез тетрапирролов                                  |
|    | 3.4. Синтез нуклеотидов                                    |
|    | 3.5. Синтез липидов                                        |
| 4. | ОСОБЫЕ ПРОЦЕССЫ ПРОКАРИОТ92                                |
|    | 4.1. Азотофиксация                                         |
|    | 4.2. Метаногенез                                           |
| ΡF | ЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА98                                  |

## 1. ОСНОВНЫЕ ПОНЯТИЯ

### 1.1. Метаболизм и типы жизни

Метаболизм — совокупность всех биохимических процессов, протекающих в клетке. Клеточный метаболизм складывается из двух противоположно направленных процессов:

- катаболизма (энергетического метаболизма) совокупности реакций, сопровождающихся выделением энергии и аккумулированием ее в доступной для клетки форме;
- анаболизма (конструктивного метаболизма) совокупности всех реакций биосинтеза.

Процессы катаболизма и анаболизма протекают в клетке одновременно и тесно связаны между собой. В реакциях катаболизма образуется не только энергия, но и многие промежуточные продукты, которые необходимы для синтетических процессов, в свою очередь протекание энергетических реакций не возможно без синтеза ферментов. Наиболее наглядно связымежду энергетическими и синтетическими процессами прослеживается в процессе фотосинтеза, где на первом этапе (световая фаза) происходит запасание энергии, на втором этапе (темновая фаза) — синтез органических веществ за счет накопленной энергии.

Метаболизм прокариот отличается чрезвычайным разнообразием, что связано с наличием у них мощного ферментативного аппарата.

Тесная связь энергетических и синтетических процессов в клетке находит отражение в типах жизни или типах питания. Выделение типов жизни основано на трех критериях, необходимых для осуществления метаболизма:

1. источник энергии, используемый организмами для синтеза ATФ:

- солнечный свет организмы, использующие энергию света, называются фототрофы;
  - окислительно-восстановительные реакции **хемотрофы**;
  - 2. донор электронов (водорода):
  - неорганические вещества литотрофы;
  - органические вещества органотрофы;
  - 3. источник углерода:
  - неорганический углерод (углекислый газ) автотрофы;
  - органические вещества гетеротрофы.

Перекомбинация этих критериев делает возможным наличие 8 различных типов жизни:

| Фотолитоавтотрофы     |
|-----------------------|
| Фотолитогетеротрофы   |
| Фотоорганоавтотрофы   |
| Фотоорганогетеротрофы |

Хемолитоавтотрофы Хемолитогетеротрофы Хемоорганоавтотрофы **Хемоорганогетеротрофы** 

В мире прокариот реализуются все возможные вариации типов жизни. Эукариотические же организмы могут быть отнесены всего к двум типам жизни — фотолитоавтотрофы — растения и хемоорганогетеротрофы — животные и грибы. Для обозначения типов жизни эукариот принимают сокращенные термины — автотрофы для растений и гетеротрофы для животных и грибов.

# **1.2. Субстратное** и мембранное фосфорилирование

В качестве энергетических носителей в клетке выступают высокоэнергетические соединения с фосфатной связью: аденозинтрифосфат (АТФ), урединтрифосфат (УДФ), гуанозинтрифосфат (ГТФ), пирофосфат и т.д., а также соединения с тиоэфирной связью — ацетил-коэнзим-А (ацетил-КоА). Источником энергии может служить и энергия трансмембранного потенциала, используемая прокариотической клеткой на обеспечение ряда процессов, например: движение жгутика, транспорт веществ в клетку и т.д.

Наиболее часто используемым источником энергии выступает ATФ. Синтез ATФ в клетке происходит двумя путями:

**1.** Субстратное фосфорилирование — перенос фосфата на уровне субстрата, при этом фосфатная группа переносится

на АДФ от вещества (субстрата), более богатого энергией. Реакции субстратного фосфорилирования катализируются растворимыми ферментами, не связанными с мембранными структурами, и протекают у прокариот в цитоплазме. К основным реакциям субстратного фосфорилирования относятся:

- A)1,3-дифосфоглицериновая кислота + АДФ  $\rightarrow$  3-фосфоглицериновая кислота + АТФ;
- Б) фосфоенолпируват + АД $\Phi$  ightarrow пировиноградная кислота + АТ $\Phi$ ;
  - В) ацетил- $\Phi + A \coprod \Phi \rightarrow$  ацетат  $+ A T \Phi$ .

Рассмотрим процесс субстратного фосфорилирования на примере использования 1,3-дифосфоглицерата, вещества с макроэргической связью. Энергия выделяется и запасается в результате реакции дегидрирования 3-фософоглицеринового альдегида (3-ФГА), катализируемой ферментом глицеральдегид-3-фосфатдегидрогеназой, коферментом которого выступает НАД<sup>+</sup>. Фермент имеет активные сульфгидрильные группы (SH<sup>-</sup> группы). Альдегидная группа 3-ФГА связывается с SH-группой фермента, образуется фермент-субстратный комплекс. Далее происходит перенос водорода с окисляемого субстрата на НАД+, энергия окисления запасается в макроэргической связи. Фермент переносит окисленный остаток 3-ФГА на фосфорную кислоту и восстанавливает исходную форму. Образовавшееся высокоэнергетическое соединение 1,3-дифосфоглицериновая кислота реагирует с АДФ, отдавая фосфатную группу с макроэргической связью, в результате чего синтезируется АТФ (Рис. 1).

Основными переносчиками восстановительных эквивалентов (протонов и электронов водорода) служат пиридиннуклеотиды, выступающие коферментами дегидрогеназ — никатинамидадениндинуклеотид (НАД) и никатинамидадениндинуклеотидфосфат (НАДФ). Никотинамидадениндинуклеотид (НАД) — универсальный восстановитель (ОВП НАД+/НАДН равно -0.32 В), представляет собой соединение из двух нуклеотидов, соединенных через фосфатные остатки. В состав одного нуклеотида входит рибоза, у которой в положении  $C_1$  присоединен аденин. В составе второго нуклеотида находится амид никотиновой кислоты, который и является переносчиком водорода. Фосфорилированная форма (НАДФ) содержит дополнительный остаток фосфорной кислоты в положении  $C_2$  у близлежащего к аденину сахара. Восстановление никотинамида происходит путем при-

Рис. 1. Схема субстратного фосфорилирования

Рис. 2. НАД

соединения одного атома водорода к четвертому углеродному атому в кольце и одного электрона к положительно заряженному атому азота, то есть происходит присоединение гидридиона ( ${\rm H^-}$ ). Так как НАДН является анионом, второй протон оказывается ассоциированным с восстановленным амидом. Правильное написание будет НАДН ( ${\rm H^+}$ ), но для краткости запись часто трансформируют в НАДН $_2$  или просто НАДН. Восстановленные пиридиннуклеотиды вновь окисляются при переносе от них гидрид-иона на соответствующие акцепторы (**Puc. 2**).

2. Мембранное фосфорилирование — перенос неорганического фосфата на АДФ осуществляется за счет фермента АТФ-синтетазы, расположенного в мембране и связанного с дыхательными или фотосинтетическими электрон-транспортными цепями (ЭТЦ), с помощью которых создается трансмембранный протонный потенциал. По ЭТЦ происходит перенос электронов, отщеплённых от первоначального субстрата, через последовательный ряд ферментов, расположенных в порядке понижения значения их окислительно-восстановительных потенциалов (ОВП), на конечный акцептор. Перенос электронов сопровождается перенесением протонов на внешнюю сторону мембраны. Трансмембранный потенциал обеспечивает работу АТФ-синтетазы.

Механизм мембранного фосфорилирования используется для синтеза  ${\bf AT\Phi}$  в процессах дыхания и фотосинтеза (фотофосфорилирование).

## 1.3. Организация электрон-транспортной цепи

Основные компоненты ЭТЦ, участвующие в переносе протонов и электронов:

1) Дегидратазы, катализирующие дегидрирование субстрата. Коферментами дегидрогеназ, помимо НАД и НАДФ, выступают также флавопротеиды (ФП) — флавинадениндинуклеотид (ФАД) и флавинмононуклеотид (ФМН).

**Флавопротеины** — коферменты, в состав которых входит витамин  $B_2$ , а в качестве простатической группы выступает ФМН или ФАД. ФМН — стартовый переносчик дыхательной цепи, принимая электроны и водород от НАДН/НАДФН, передает их на следующие компоненты дыхательной цепи (хиноны). ФАД выступает как сукцинатдегидрогеназа, окисляя янтарную кислоту до фумаровой кислоты в цикле Кребса.

Флавинадениндинуклеотид (ФАД) содержит рибозу, к которой в положении  $C_1$  присоединен аденин, в положении  $C_5$  присоединены два остатка фосфорной кислоты. К фосфорной кислоте присоединен пятиатомный спирт рибитол, к нему, в свою очередь, изоаллоксазин, который и подвергается восстановлению (ОВП ФАД/ФАДН $_2$ , равен -0.2 В) (Рис. 3).

Рис. 4. Структуры хинонов

диметилменахинон

- 2) Хиноны вещества не белковой природы, производные бензола, у которого два атома водорода замещены кислородом. Убихинон это хинон, с боковой изопропеновой цепью и окруженный метильными радикалами. У эукариот в митохондриях представлены убихиноны, у растений в пластидах пластохиноны. Для прокариот характерно большее разнообразие производных хинона: убихинон (кофермент Q), менахинон, диметилменахинон и др. (Рис. 4). Хиноны жирорастворимые соединения и сосредоточены в липидной фракции мембраны в большом избытке, так как они аккумулируют водород от дегидрогеназ перед переносом электронов на цитохромы. ОВП хинонов близко к нулевым значениям, так ОВП менахинона равно –0,7 В, убихинона +0,1 В.
- 3) Железо-серные белки могут переносить только электроны. Они содержат комплекс из двух или четырех атомов железа, окруженных шестью атомами серы, из которых, два атома серы неорганические сульфидные, а четыре входят в состав аминокислоты цистеина (Рис. 5). Железо-серные белки низкомолекулярные соединения, с отрицательным ОВП, значение которого находится в пределах от -0.6 В до -0.2 В. Разновидностью железо-серного белка является ферредоксин, рубредоксин и др. Дыхательные и фотосинтетические цепи содержат большое число железосерных центров, которые могут переносить один или два электрона, в зависимости от строения центра. Перенос электронов связан с изменением валентности железа.

Рис. 5. Железо-серные комплексы белков

**4) Цитохромы** — белки, содержащие в качестве активного центра переноса электронов геминовое кольцо (гем) с железом