Помогайло А.Д. Джардималиева Г.И.

Мономерные и полимерные карбоксилаты металлов

УДК 541.64+541.49+ 547.1 ВБК 24.72 $\Pi 55$ \mathbf{P} \mathbf{H} Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 09-03-07035

Помогайло А.Д., Джардималиева Г.И. **Мономерные и поли-мерные карбоксилаты металлов.** — М.: ФИЗМАТЛИТ, 2009. — 400 с. — ISBN 978-5-9221-1174-4

Обобщены и систематизированы данные о синтезе и реакционной способности карбоксилатов металлов на основе моно- и дикарбоновых непредельных кислот с двойными и тройными связами, а именно моно- и полиядерных, а также кластерных комплексов, в реакциях раскрытия кратной связи (полимеризации, сополимеризации) и в термических превращениях. Представлены сведения об основных параметрах соединений и об их реакциях (константы скорости, активационные и термодинамические параметры, константы относительной реакционной способности и Q-e-параметры Алфрея-Прайса). Предложены основные подходы к продуктивному использованию экспериментального материала с целью поиска путей синтеза металлополимеров и наноматериалов на их основе, металлокомплексных и наноструктурированных катализаторов, а также к изучению полимераналогичных превращений с участием функциональных карбоксилатных групп.

Для специалистов в области химии высокомолекулярных соединений, физикохимиков и широкого круга специалистов в области химии.

Научный редактор: академик РАН С. М. Алдошин

ПОМОГАЙЛО Анатолий Дмитриевич ДЖАРДИМАЛИЕВА Гульжиан Искаковна

МОНОМЕРНЫЕ И ПОЛИМЕРНЫЕ КАРБОКСИЛАТЫ МЕТАЛЛОВ

Редактор Е.Б. Гугля

Оригинал-макет: Т.В. Андреева

Оформление переплета: Н.В. Гришина

Подписано в печать 30.10.09. Формат 60×90/16. Бумага офсетная. Печать офсетная.

Усл. печ. л. 25. Уч.-изд. л. 29,6. Тираж 300 экз. Заказ №

Издательская фирма «Физико-математическая литература»

МАИК «Наука/Интерпериодика»

117997, Москва, ул. Профсоюзная, 90

E-mail: fizmat@maik.ru, fmlsale@maik.ru;

http://www.fml.ru

Отпечатано в ООО «Чебоксарская типография № 1»

428019, г. Чебоксары, пр. И. Яковлева, 15

[©] ФИЗМАТЛИТ, 2009

[©] А. Д. Помогайло, Г. И. Джардималиева, 2009

ОГЛАВЛЕНИЕ

Список сокращений
Глава 1. Непредельные кислоты и карбоксилаты на их основе 19
1.1. Одно- и двухосновные карбоновые кислоты: характеристика и полимеризационные превращения 19 1.1.1. Одноосновные карбоновые кислоты с одной двойной связью 20 1.1.2. Ненасыщенные дикарбоновые (двухосновные) кислоты 22 1.1.3. Ненасыщенные карбоновые кислоты с тройной связью (ацетиленовые кислоты) 23 1.2. Синтез непредельных карбоксилатов металлов 24 1.2.1. Взаимодействие (гидро)оксидов и карбонатов металлов с непредельными карбоновыми кислотами 24 1.2.2. Взаимодействие ацетатов и других солей с непредельными карбоновыми кислотами 31 1.2.3. Реакции обмена лигандов 34 1.2.4. Получение биметаллических соединений 38 1.2.5. Золь—гель—реакции 38 1.2.6. Другие реакции 40 1.2.6. Синтез кластерсодержащих непредельных карбоксилатов 43
Литература
Глава 2. Спектральные характеристики и молекулярная структура солей непредельных карбоновых кислот
2.1. Соли монокарбоновых непредельных кислот. (Мет)акрилаты металлов 70 2.1.1. ИК-спектроскопия 70 2.1.2. Магнитные свойства 73

6 Оглавление

	2.1.3. Электронная спектроскопия 7 2.1.4. Молекулярная структура 7	
2.2.	Соли дикарбоновых кислот 8 2.2.1. Мономерные соли. 8 2.2.2. Координационные полимеры 8 2.2.3. Ферромагнитные свойства дикарбоксилатов металлов 9	32 38
2.3.	π-Комплексы карбоксилатов металлов	1
2.4.	Непредельные полиядерные μ -оксокарбоксилаты металлов 10	7
	2.4.1. ИК-спектроскопия 10 2.4.2. Масс-спектрометрия 11 2.4.3. Молекулярная структура 11	0
2.5.	Кластерсодержащие непредельные карбоксилаты	4
2.6.	Карбоксилаты металлов с непредельными лигандами	
	ацетиленового типа	6
Лит	ература	3
	ва 3. Гомо- и сополимеризация солей непредельных боновых кислот	9
3.1.	Типы инициирования	0
	Кинетические и стереохимические эффекты	
	3.2.1. Радикальная полимеризация солей щелочных и щелочно- земельных металлов и непредельных карбоновых кислот .13 3.2.2. Радикальная полимеризация (мет)акрилатов переходных металлов	37
2.2	карбоксилатов металлов	13
3.3.	Твердофазная полимеризация непредельных карбоксилатов	
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов	
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов	9
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов 14 3.3.1. Термическая полимеризация непредельных карбоксилатов s-металлов I и II групп 15 3.3.2. Термическая полимеризация непредельных карбоксилатов 15	9
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов	9 51 52
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов	9 51 52
3.3.	Твердофазная полимеризация непредельных карбоксилатов металлов	59 51 52
	Твердофазная полимеризация непредельных карбоксилатов металлов 14 3.3.1. Термическая полимеризация непредельных карбоксилатов s-металлов I и II групп 15 3.3.2. Термическая полимеризация непредельных карбоксилатов d-металлов 15 3.3.3. Твердофазная УФ- и радиационно-инициированная полимеризация 15 3.3.4. Реакционная способность непредельных карбоксилатов	9 51 52 56

Оглавление 7

	3.4.2. Реакционная способность оловосодержащих карбоксилатов
	3.4.4. Сополимеризация гетерометаллических металло-
	содержащих мономеров
	3.4.5. Кинетические закономерности
	3.4.6. Тройная сополимеризация
	3.4.7. Конденсационные процессы в синтезе металлополимеров180
Лит	ература
Глаг	ва 4. Полимераналогичные превращения в образовании
макј	рокарбоксилатов металлов
4.1.	Специфика полимеризационных превращений ненасыщенных карбоновых кислот и структура их (со)полимеров
4.2.	Особенности комплексообразования ионов металлов
	с макромолекулярными лигандами
4.3.	Связывание ионов металлов поликислотами
4.4.	Связывание ионов металлов стереорегулярными поликислотами. 210
4.5.	Особенности связывания МХ, сшитыми поликислотами 215
4.6.	Образование макрокомплексов с привитыми
	и блок-сополимерными карбоксильными фрагментами217
4.7.	Биметаллические поликомплексы
4.8.	Формирование органо-неорганических композитов 230
	Связывание МХ, природными карбоксилсодержащими
	полимерами
Лит	ература
Глаг	ва 5. Молекулярная и структурная организация макромолекулярных
	боксилатов
5.1.	Ионные агрегации и мультиплеты
	5.1.1. Получение иономеров
	5.1.2. Морфология и строение иономеров
5.2.	Морфология и топологическая структура металлополимеров 262
	5.2.1. Трехмерные сетчатые полимеры
	5.2.2. Взаимопроникающие полимерные сетки
	5.2.3. Гибридные супрамолекулярные структуры
5.3.	Основные типы разнозвенности в металло(со)полимерах 280
	5.3.1. Разнозвенность, вызванная элиминированием
	металлогруппировки в ходе полимеризации

8 Оглавление

	5.3.2. Разнозвенность, обусловленная различной степенью
	окисления <i>d</i> -металла
	5.3.3. Аномалии в цепях металлополимеров, вызванные
	многообразием химического связывания металла
	с полимеризуемым лигандом
	5.3.4. Экстракоординация как один из видов аномалий
	(пространственное и электронное строение полиэдра)285
	5.3.5. Ненасыщенность металлополимеров и их структурирование .286
	Литература
	ва 6. Основные свойства и области применения
мета	алло(со)полимеров
6.1.	Улучшение свойств полимерных материалов, основанное
	на сшивающем действии мономерных и полимерных солей 294
6.2	Радиационная стойкость, фотофизические и оптические
0.2.	свойства металло(со)полимеров
63	Водопоглощающие свойства металло(со)полимеров
	· · · · -
	Сорбционные свойства металло(со)полимеров
6.5.	Катализ макромолекулярными карбоксилатами металлов 330
	6.5.1. Каталитические реакции окисления углеводородов
	6.5.2. Реакции пероксидазного разложения
	6.5.3. Другие каталитические реакции
	Литература
Глаг	ва 7. Мономерные и полимерные карбоксилаты металлов
как	прекурсоры нанокомпозитных материалов
7 1	Ф
/.1.	Формирование и стабилизация наночастиц в присутствии макролигандов с карбоксильными функциональными группами. 348
7 0	
7.2.	Основные методы получения металлополимерных нанокомпозитов
	на основе мономерных и полимерных карбоксилатов 354
	7.2.1. Термические превращения металлокарбоксилатных
	прекурсоров
	7.2.2. Полимерные карбоксилатные гели и блок-сополимеры
	как реакторы для наночастиц
	материалов
	7.2.4. Металлополимерные пленки Ленгмюра—Блоджетт
7.3.	Металлополимерные нанокомпозитные материалы
	карбоксилатного типа
	Литература
Зак.	лючение
Ппе	лиметный указатель 301

СПИСОК СОКРАЩЕНИЙ

асас — ацетилацетон, ацетилацетонат АТRР — радиальная полимеризация с переносом атома bimH — бензимидазол bipy — дипиридил bta — бензотриазол dppf — 1,1'-бис(дифенилфосфин)ферроцен EXAFS — анализ тонкой струк-	SAXS — малоугловое рассеяние рентгеновских лучей TEM — просвечивающая электронная микроскопия tphpho — трифенилфосфиноксид VPy —винилпиридин ААм — акриламид АИБН — азо-бис-изобутиронитрил АК — акриловая кислота
туры на краю рентгеновского	АН — акрилонитрил
поглощения (протяженная тонкая	АСМ — атомно-силовая микро-
структура рентгеновского погло-	скопия
щения)	ВПС — взаимопроникающая
НТЕА — триэтиламин	сетка
I — инициатор	ГПХ — гель-проникающая хро-
imH — имидазол	матография
LDH — слоистый двойной гид-	ДМСО — диметилсульфоксид
роксид	ДМФА — диметилформамид
М — мономер	ДМЭГ — диметакрилат этилен-
$MAcr_n$ — акрилат металла	гликоля
MalA — малеиновая кислота	ДСК — дифференциальная ска-
MX_n — соединение металла	нирующая калориметрия
NIPA — N-изопропилакрила-	КМЦ — карбоксиметилцеллю-
мид	лоза
ntb — трис(2-бензимидазолил-	КЧ — координационное число
метил)амин	М.м. — молекулярная масса
phen — 1,10-фенантролин	МА — метилакрилат
salen $H_2 - N, N'$ -бис(салицилиден)-	МАК — метакриловая кислота
этилендиамин	ММА — метилметакрилат
salophH ₂ — N,N'-бис(салицил-	ММС — макромолекулярные ме-
иден)-о-фенилендиамин	таллокомплексы

MCM — металлосодержащий мономер

ПАК — полиакриловая кислота

ПАН — полиакрилонитрил

ПБ — пероксид бензоила

 ΠBX — поливинилхлорид

ПМАК — полиметакриловая кислота

ПММА — полиметилметакрилат

ПП — полипропилен

ПС — полистирол

ПТФЭ — политетрафторэтилен

ПЭ — полиэтилен

ПЭВП — полиэтилен высокой плотности

ПЭНП — полиэтилен низкой плотности

ПЭО — полиэтиленоксид

ПЭ-*пр*-ПАК — полиэтилен-*привитая* полиакриловая кислота

PCA — рентгеноструктурный анализ

Ст — стирол

СЭП — сополимер этилена с пропиленом

ТА — термический анализ

ТБОИ — ди(трибутилолово)итаконат

ТБОМ — трибутоксиоловометакрилат

ВВЕДЕНИЕ

Особенность настоящей книги состоит в том, что она посвящена лишь одной функциональной группе — металлопроизводным ненасыщенного карбоксилат-иона — $RCOO^-$, где R — радикал с кратной связью. Не является ли рассматриваемая проблема слишком узкой? Как оказалось, это огромный класс химических соединений, включающих новые типы мономеров и полимеров с интересной структурой и свойствами, необычными химическими превращениями. Область включает как природные, так и искусственные полимеры, но в особой мере — разнообразные синтетические материалы.

Напомним, что в настоящее время существуют три основных способа получения металлосодержащих полимеров на основе карбоксильных прекурсоров [1] — это взаимодействия соединений металлов (\mathbf{MX}_n) с линейными функционализованными (карбоксилсодержащими) полимерами, при которых не затрагивается основная полимерная цепь или так называемые реакции полимераналогичных превращений (\mathbf{I}) , металлополимеры, получаемые поликонденсацией соответствующих прекурсоров, в этом случае ион металла встраивается в основную цепь и его удаление из нее сопровождается коллапсом полимера (\mathbf{II}) , и, наконец, недавно развитый метод — полимеризация и сополимеризация металлосодержащих мономеров (\mathbf{III}) :

I

$$\sim \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}^- + \text{MX}_n \longrightarrow \text{COOH COOH}$$
 $\longrightarrow \sim \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}^- + \text{CH}_2 - \text{CH}^-$

Металлополимеры на основе переходных металлов, получаемые по методу **I**, **характеризуются**, **как правило**, **невысоким со**держанием связанного металла и используются, в основном, для ионообменного извлечения, концентрирования и для разделения металлов селективной экстракцией. В конденсационном методе **II** используют преимущественно дикарбоновые кислоты, в том числе и элементозамещенные (**L**) (например, карборансодержащие [2, 3]). Получение металлополимеров по методу **III**, изучение их структуры и свойств составляет основное содержание данной книги.

Карбоксилаты металлов — известный класс металлосодержащих органических соединений, которые находят широкое применение в различных областях деятельности человека, в науке и технике. Они являются составными элементами полиядерных координационных соединений, включая каталитические и биомиметические системы, и металлопротеинов, входят в состав промежуточных соединений многих метаболических процессов; специфику биохимического поведения металлоферментов и антител во многом определяет именно их карбоксилатная функция [4, 5].

По отношению к ионам металлов карбоксилат-ион может выступать в качестве моно-, би-, три- или даже тетрадентатного лиганда, проявляя множество типов координации. Например, для карбоксилатов переходных металлов одноосновных кислот установлено наличие 18 структурных функций карбоксилатной группы [6], кристаллографически выявлены 15 разных типов координации для гомолога малеат-аниона ${\rm C_2O_4^{2-}}$ [7]. Для связывания с одним атомом металла оксалат-ионы используют не более двух из четырех атомов кислорода, при этом в основном реализуются пятичленные металлоциклы, т. е., являясь потенциально тетраден-

татным, анион $C_2O_4^{2-}$ обычно выступает в роли бидентатно-циклического лиганда. В общем случае тип координации в структуре соединения зависит от большого числа факторов: природы атомов металла, наличия конкурирующих ацидо- или электронейтральных лигандов L', природы внешнесферных катионов и системы водородных связей. Это позволяет относить такие соединения к так называемым «smart» (умным) материалам. Приведем один пример: ИК - [8] и EXAFS-исследования Zn(II)-нейтрализованного иономера этиленметакриловая кислота показали [9, 10], что координационная структура иона цинка может изменяться в зависимости от внешних условий, например от температуры, наличия адсорбированной воды или давления, приложенного при 130°C к расплаву. Когда образец находится в вакууме, Zn(II)-карбоксилат предпочтительно формирует гексакоординационную структуру, которая характеризуется v_{as} (COO⁻) при 1624 и 1538 см⁻¹, но повышение давления приводит к тетракоординационной структуре с ν_{ac} (COO-) при 1585 см⁻¹. Причем даже атмосферного давления $(P = 0.1 \text{ M}\Pi \text{a})$ достаточно, чтобы значительно изменить координацию иона. Донорно-акцепторные свойства карбоновых кислот и их анионов в водных растворах оценивают по величине константы основности р K_a кислоты, делаются достаточно успешные попытки их квантово-химических расчетов (см., например, [11]). Энергии распаривания электронов двойной связи акриловой кислоты и ее кобальтовой соли, а также пути формирования переходного состояния различаются существенно [12].

ИК-спектроскопия широко используется для исследования структуры анализируемых комплексов, поскольку валентные колебания C=O чувствительны к геометрии группы COO^- и ее окружению [8]. В карбоксилатной группе COO^- двойная связь делокализована и валентное колебание CO расщепляется на асимметричную (высокочастотную) v_{as} и симметричную (низкочастотную) v_{s} составляющие. Возможны также и промежуточные симметрии в зависимости от условий координации (подробно это будет проанализировано в гл. 2). Другими методами исследования структуры металлогруппировки является определение заряда на атомах кислорода карбонильной и гидроксильной группы, сдвига сигнала атома углерода карбоксилатной группы в спектрах ЯМР ^{13}C , оценка энергии ионизации (особенно для термохимических расчетов) и др.

Принципиально проблема карбоксилатов металлов может быть разделена на две неравные части: большую и давно развиваемую, в основе которой лежат соли насыщенных карбоновых кислот,

и меньшую, сравнительно недавно получившую свое развитие — непредельные карбоксилаты. Если основополагающие сведения по синтезу, строению и свойствам насыщенных карбоксилатов металлов и их применению достаточно хорошо представлены в обзорной литературе — имеется исчерпывающая для своего времени (1983 г.) монография, не потерявшая своей актуальности и до сих пор [13], и достаточно полные, в том числе и недавние, обзоры [14–17], — то сведения о солях ненасыщенных карбоновых кислот практически не обобщались. Отрывочные данные о методах их синтеза, структуре, химическим превращениям и многочисленным применениям рассредоточены в научной и патентной литературе. Время от времени появляющиеся обзорные статьи, главы в монографиях, посвященные анализу отдельных представителей непредельных карбоксилатов, не дают целостного представления о состоянии проблемы.

Вместе с тем именно этот класс соединений в последние годы получил интенсивное развитие, связанное с возможностью применения к нему подходов химии высокомолекулярных соединений с целью получения металлосодержащих материалов нового типа. И хотя попытки обобщения методов синтеза и полимеризационных превращений отдельных представителей этого класса металлосодержащих мономеров делались неоднократно (см., например, [18-20]), включая диссертационные работы (например, [21, 22]), остается загадкой, почему до настоящего времени непредельные карбоксилаты не получили своего детального анализа, подобно их насыщенным аналогам. Не вдаваясь в историю этого вопроса, отметим, что такая задача значительно многограннее предыдущей, поскольку кратная связь вносит свою специфику во все ее аспекты в синтетическую и структурную химию (например, во многих случаях в формировании карбоксилатного узла может принимать участие и кратная связь), в реакционную способность этих соединений, придает им полимеризационную способность. Вероятно, это связано и с междисциплинарностью проблемы: синтетическая и структурная части карбоксилатов продолжают оставаться прерогативой специалистов неорганической и координационной химии, до сих пор традиционно относящих непредельные лиганды к «гадким утятам». В свою очередь, специалисты высокомолекулярной химии не столь часто разрабатывают методы синтеза и характеристики таких потенциальных экзотичных мономеров. Поскольку их интересы не всегда пересекаются в этой перспективной и динамично развивающейся области химии, то одна из целей предлагаемой монографии — существенно сблизить эти позиции.

Среди большого разнообразия солей ненасыщенных карбоновых кислот особое место занимают производные акриловой, метакриловой, кротоновой, олеиновой, фумаровой, малеиновой, ацетилендикарбоновой, винилбензойной и некоторых других, по сути являющиеся типичными представителями металлосодержащих мономеров — соединений, включающих кратную связь, способную к раскрытию, и эквивалент металла, химически связанный с органической частью молекулы [18]. Введение непредельной функции оказывает влияние на геометрическую координацию карбоксилатного лиганда. Интенсивность развития этого направления в последние годы обусловлена практической значимостью получаемых продуктов — полимеров, каждое повторяющееся звено которых включает ион металла. Это приводит к улучшению многих свойств полимеров и композиций на их основе. В последующих главах мы планируем сделать основательный анализ тех превращений, которые претерпевают непредельные карбоксилаты металлов как в ходе синтеза, так и их полимеризации и сополимеризации с мономерами традиционного типа. Здесь же лишь приведем один пример таких превращений [23]. В ходе фотополимеризации диацетиленовой кислоты $(CH_3(CH_2)_{11}C=C-C=C (CH_2)_8COOH$ на межфазной поверхности воздух-вода в присутствии дивалентных ионов металлов Ba(II) (pH 7.7), Cd(II) (pH 6.8) и Pb(II) (pH 6.0) карбоксилатная группа ацетиленовой кислоты в монослое на субфазе ионов Ba(II) и Pb(II) изменяла координацию с мостиковой на бидентатную. В то же время для Cd(II) бидентатная структура сохранялась при уменьшении молекулярной площади от 0.8 до 0.18 нм 2 /молекулу, т. е. полимеризация индуцирует более плотную упаковку карбоксильных групп в монослоях. Экспериментальные данные и теоретические расчеты свидетельствуют о том, что изменение типа координации, так называемый карбоксилатный сдвиг, является низкоэнергетическим процессом, что играет важную роль, например, в каталитических циклах металлоферментов [24]:

Прямое наблюдение карбоксилатного сдвига от бидентатно-хелатного (μ -1,1) до бидентатного-мостикового (μ -1,2) для **Z**п-карбоксилатного комплекса легко наблюдается методом ЯМР-спектроскопии 1H - ^{13}C [25].

Многообразие функций и симметрия лигандов, металло-лигандное координационное окружение, а также различные типы связей в молекулах определяют уникальные возможности для конструирования перспективных материалов на их основе. Весьма интересными в этом плане являются металлоксокластеры с непредельными карбоксилатными лигандами, представляющие собой наноструктурные элементы для получения органо-неорганических гибридных нанокомпозитов [26]. Прежде всего, это высокоорганизованные объекты со строго определенными размерами и формой, сохраняющие свое строение в конечном материале, благодаря чему достигается их гомогенное распределение в матричном пространстве и получаются монодисперсные наноструктуры. Другими словами, моно- и поликарбоксилаты металлов — объекты супрамолекулярной химии, а их полимерные пленки характеризуются улучшенными механическими [27, 28], адгезионными [29], оптическими [30], электрическими [31] и другими свойствами.

Предлагаемая книга посвящена широкому кругу вопросов, охватывающих методы синтеза, строение и свойства ненасыщенных карбоксилатов металлов, особенности их полимеризационных превращений, надмолекулярную структуру, а также свойства и характеристики образующихся металлополимеров, включая полимераналогичные превращения. Интерес к проблеме существенно возрос, когда было установлено, что такие материалы — эффективные прекурсоры металлополимерных нанокомпозитов [32], в которых карбоксилатная матрица либо продукты ее превращения являются стабилизирующими агентами, предотвращая процессы агрегации наночастиц металлов или их оксидов [33].

Как нам представляется, монография является первым, практически исчерпывающим, обобщающим исследованием в этом направлении: даже если мы и не достигли той полноты, которая постоянно была нашей целью при подготовке рукописи, то не рассмотренные в книге проблемы не носят принципиального характера.

Кого мы видим своими потенциальными читателями? Поскольку для химии карбоксилатов характерны высокие темпы развития, как и для всех междисциплинарных ключевых направлений научно-технического прогресса, быстрое накопление экспериментального материала в этой области порой затрудняет ориентацию

не только начинающих, но и активно работающих в ней исследователей. Прежде всего, книга окажется полезной для широкого круга научных и инженерно-технических работников исследовательских учреждений и промышленных предприятий. Кроме того, она станет необходимым справочным материалом преподавателям, аспирантам и студентам вузов, уже связавшим либо пожелавшим связать свою деятельность с этой увлекательной областью науки. Основываясь на результатах как собственных, более чем 25-летних исследований в этой области, так и на анализе литературных данных, мы пришли к убеждению, что необходимость появления книги, суммирующей накопленные сведения по мономерным и полимерным карбоксилатам металлов, назрела давно.

В процессе работы над книгой нам оказывали ежедневную помощь сотрудники лаборатории металлополимеров Института проблем химической физики РАН, за что мы выражаем им свою искреннюю признательность: к. х. н. С.И. Помогайло, с. н. с. Н.Д. Голубева, д. х. н. Я.И. Эстрин, а также д. х. н. А.С. Розенберг, к великому сожалению недавно скоропостижно ушедший от нас. Все замечания и пожелания будут приняты с благодарностью.

Литература

- Wöhrle D., Pomogailo A.D. Metal Complexes and Metals in Macromolecules. Synthesis, Structures and Properties. Weinheim: Wiley-VCH. 2003. 667 p.
- 2. Сергеев В.А., Бекасова Н.И., Сурикова М.А., Барышникова Е.А., Генин Я.В., Виноградова Н.К. // Докл. РАН. 1993. Т.332. С. 601.
- 3. Сергеев В.А., Бекасова Н.И., Сурикова М.А., Барышникова Е.А., Мишина Н.М., Балыкова Т.Н., Генин Я.В., Петровский П.В. // Высокомолек. соедин., А. 1996. Т. 38. С. 1292.
- 4. He C., Lippard S.J. // J. Am. Chem. Soc. 1998. V.120. P. 105.
- 5. Ruttinger W., Dismukes G.C. // Chem. Rev. 1997. V.97. P. 1.
- 6. *Порай-Кошиц М.А.* // Журн. структ. химии. 1980. Т. 21. **Р.146**.
- 7. Сережкин В. Н, Артемьева М.Ю., Сережкина Л.Б., Михайлов Ю.Н. // Журн. неорг. химии. 2005. Т.50. С. 1106.
- 8. *Nakamoto K*. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. Wiley: New York. 1986.
- 9. Hashimoto H., Kutsumizu S., Tsunashima K., Yano S. // Macromolecules. 2001. V.34. P. 1515.
- Kutsumizu S., Nakamura M., Yano S. // Macromolecules. 2001. V.34. P. 3033.
- 11. *Монахов С.Ю., Стромнова Т.А.* // Журн. общ. хим. 2007. Т.77. С. 1841.
- 12. Зюбина Т.С., Джардималиева Г.И., Помогайло А.Д. Тезисы докл. Всероссийской конф. «Современное состояние и тенденции развития металлоорганического катализа полимеризации олефинов». Черноголовка. 19–21 мая 2009 г. Изд. ИПХФ РАН, 2009. с. 94.

13. *Mehrotra R.C., Bohra R.* Metal Carboxylates. — London: Academic Press, 1983. — 396 p.

- Порай-Кошиц М.А. // Итоги науки и техники. Кристаллохимия / Под ред. Е.А. Гилинской. — 1981. — Т.15. — С. 3-129.
- 15. Deacon G.B., Phillips R.J. // Coord. Chem. Rev. 1980. V.33. P. 227.
- Писаревский А.П., Мартыненко Л.И. // Коорд. химия. 1994. Т. 20. С. 324.
- 17. Кискин М.А., Еременко И.Л. // Успехи химии. 2006. Т.75. С. 627.
- 18. *Помогайло А.Д.*, *Савостьянов В.С.* Металлосодержащие мономеры и полимеры на их основе. М.: Химия, 1988. 384 с.
- Джардималиева Г.И., Помогайло А.Д. // Успехи химии. 2008. Т. 77. С. 270.
- 20. Schubert U. // Chem. Mater. 2001. V. 13. P. 3487.
- Schlam. R.F. Structure and Reactivity of Metal Carboxylates. Thesis Dr. PhD, Brandeis University: UMI, Ann Arbor, USA. — 1998.
- 22. Джардималиева Г.И. (Со)полимеризация и термические превращения металлосодержащих мономеров как путь создания металлополимеров и нанокомпозитов. Дисс. ... докт. хим. наук. Черноголовка: ИПХФ РАН. 2009. 397 с.
- Ohe C., Ando H., Sato N., Urai Y., Yamamoto M, Itoh K. // J. Phys. Chem. B. 1999. —
 V. 103. P. 435.
- 24. LeCloux D.D., Barrios A.M., Mizoguchi T.J., Lippard S.J. // J. Am. Chem. Soc. 1998. V.120. P. 9001.
- Demšar A. Košmrlj., J., Petriček S. // J. Am. Chem. Soc. 2002. V.124. P. 3951.
- Rozes L., Steunou N., Fornasieri G., Sanchez C. // Monatsh. Chem. 2006. V.137. P. 501.
- Chen Y.C., Zhou S.X., Yang H.H. // J. Appl. Polym. Sci. 2005. V.995. P. 1032.
- Xiong M.N., Zhou S., Wu L., Wang B., Yang L. // Polymer. 2004. V.45. P. 8127.
- 29. Chou T.P., Cao G.Z. // J. Sol-Gel Sci. Techn. 2003. V.27. P. 31.
- 30. Yu Y.Y., Chen C.Y., Chen W.C. // Polymer. 2003. V.44. P. 593.
- Kagan C.R., Mitzi D.B., Dimitrakopoulos C.D. // Science. 1999. V.286. P. 945.
- Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. — 672 с.
- 33. *Pomogailo A.D., Kestelman V.N.* Metallopolymer Nanocomposites. Berlin, Heidelberg, New York: Springer, 2005. 564 p.

Непредельные кислоты и карбоксилаты на их основе

Перспективность карбоксилатов металлов рассматриваемого типа как объектов различных исследований, и прежде всего как потенциальных мономеров для получения металлополимеров, привлекает внимание широкого круга исследователей. Это, в свою очередь, инициирует разработку методов их синтеза, с тем чтобы уже на стадии химического конструирования регулировать геометрические и электронные характеристики.

Поскольку такие сведения рассредоточены в многочисленных исследованиях, справочниках, каталогах, многие из которых не всегда доступны, ниже приведены наиболее важные их характеристики.

1.1. ОДНО– И ДВУХОСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ: ХАРАКТЕРИСТИКА И ПОЛИМЕРИЗАЦИОННЫЕ ПРЕВРАЩЕНИЯ

Мы не ставили своей целью описать известные непредельные кислоты (эта задача сама по себе почти не выполнима), а лишь дать общее представление о ненасыщенных кислотах и их полимерах, чаще всего используемых для получения металлокарбоксилатов, уделив основное внимание тем представителям, которые априори склонны к полимеризационным превращениям. В книге не рассмотрены и другие непредельные гетерокислоты и их полимеры (например, винилсульфоновая, винилбензольная сульфокислоты, тио-, фосфиновые, амино- и другие кислоты). Более детальные сведения о них могут быть найдены в сравнительно доступной литературе (например, [1–3]).

Карбонильная группа (как и цианогруппа) является электроноттягивающей и существенно повышает акцепторный характер двойной связи олефина при наличии сопряжения между системами С=С и С=О. Высшие занятые молекулярные орбитали как σ -, так

и π-донорного типа анионов ненасыщенных карбоновых кислот характеризуются более низкими энергиями ионизации электронов. Увеличение числа атомов углерода в цепи анионов ненасыщенных, ароматических кислот и протяженности сопряжения приводит к увеличению их энергии ионизации.

В принципе, карбонильная группа может выступать и в качестве координационного центра (ее способность к координации меньше, чем у цианогруппы), чаще всего двойная связь олефина намного легче координируется, чем карбонильная. В большинстве комплексов с α , β -ненасыщенными кислотами они ведут себя как монодентатные π -олефиновые лиганды. Кроме того, известны случаи образования хелатов с координацией обеих групп на одном и том же атоме металла.

1.1.1. Одноосновные карбоновые кислоты с одной двойной связью

Наиболее яркими представителями одноосновных моноеновых ненасыщенных кислот являются акриловая и метакриловая кислота (и их производные) — чрезвычайно важные продукты в химии высокомолекулярных соединений. Из наиболее распространенных коммерческих синтезов акриловой кислоты выделим окислительное карбонилирование этилена, парофазное окисление пропилена, бутилена, акролеина, гидролиз этиленциангидрина, гидролиз β-пропиолактона и др. Основной метод получения — из ацетилена, окиси углерода и воды:

4 CH≡CH + 4 H₂O + Ni(CO)₄ + 2 HCl
$$\rightarrow$$

 \rightarrow 4 CH₂=CH-COOH + NiCl₂ + H₂ (1.1)

Реакция протекает с высоким выходом как при нормальном давлении (в этом случае СО вводят в виде тетракарбонила никеля), так и с газообразным карбонилом никеля (при температуре 170°С и давлении 30 атм в присутствии каталитических количеств солей никеля).

Метакриловая (2-метилпропеновая) кислота

получается газофазным окислением изобутилена, каталитическим газофазным окислением метакролеина, через промежуточное образование ацетонциангидрина и др.

Многие гомологи акриловой кислоты существуют в геометрических стереоизомерных формах, обусловленных различным расположением заместителей у двойной связи, например кротоновая (*транс*-) и изокротоновая (*цис*-) кислоты СН₃-СН=СНСООН. Кротоновая кислота содержится в кротоновом масле. Кристаллическое вещество, т. кип. 180°С, т. пл. 72°С. Изокротоновая кислота (т. кип. 169°С, т. пл. 72°С) менее устойчивая форма и при нагревании выше 100°С частично превращается в кротоновую кислоту.

Ангеликовая (транс-) и тиглиновая (цис-) кислоты

первая из которых представляет лабильную, а вторая — стабильную форму; т. кип. и т. пл. составляют 185 и 45 °C и 198 и 64.5 °C соответственно.

Цитронелловая кислота —

$$(CH_3)_2C=CHCH_2CH_2CH(CH_3)CH_2COOH$$

(т. кип. 152°С/18 мм рт. ст.), а ундециленовая кислота

$$CH_2 = CH(CH_2)_8COOH$$

образуется при вакуумной перегонке касторового масла, т. кип. $213\,^{\circ}\text{C}/100$ мм рт. ст., т. пл. $24\,^{\circ}\text{C}$.

Пальмитоолеиновая кислота —

$$CH_3(CH_2)_7CH=CH(CH_2)_7COOH;$$

маслянистая жидкость; т. кип. $223\,^{\circ}$ С/10 мм рт. ст., т. пл. $+14\,^{\circ}$ С. Эруковая и брассидиновая кислоты — геометрические изомеры

$$CH_3(CH_2)_7CH=CH(CH_2)_{11}COOH$$
,

соответственно, т. кип. и т. пл. 225/10 мм рт. ст. и 34 °C, и 256/10 мм рт. ст. и 65°C.

Среди винилбензойных карбоновых кислот наибольшее распространение получила 4-винилбензойная кислота.

Из неограниченного числа полиненасыщенных жирных кислот с двумя и тремя этиленовыми изолированными связями в молекуле, применяемых для получения карбоксилатов, нашли применение следующие: сорбиновая кислота (синтезируют окислением сорбинового альдегида, полученного конденсацией 3 молекул ацетальдегида); гераниевая кислота, которую получают из 2-метил-

пентен-2-она-6; представляют интерес и α- и β-элеостеариновые кислоты с тремя двойными связями

$$CH_3(CH_2)_3CH_2CH=CHCH_2CH=CHCH_2CH=CH (CH_2)_4COOH$$
,

низкоплавкая форма (т. пл. 47 °C) является α -изомером и при УФ-облучении перегруппировывается в высокоплавкий β -изомер (т. пл. 67°C). Таким образом, они являются *цис-транс*-изомерами, обладают особо высокими свойствами к «высыханию», как и все кислоты с тремя этиленовыми связями.

Линоленовая кислота $CH_3(CH_2CH=CH)_3(CH_2)_7CO_2H$, одна из «высыхающих» жирных кисот (т. кип. $229^{\circ}C/16$ мм рт. ст., $184^{\circ}C^{\circ}/4$ мм рт. ст., плотность 0.905 г/см³ ($20^{\circ}C$), на воздухе быстро окисляется и загустевает), а также сильно ненасыщенная арахидоновая являются жизненно необходимыми жирными кислотами. Следует также выделить дегидрогераниевую кислоту (CH_3)₂C=CHCH=CHC(CH_3)₃=COOH (т. пл. $185-186^{\circ}C$).

Практически нет сведений о связывании ионов металлов диеновыми кислотами типа $\mathrm{CH_2}\text{-}\mathrm{CH}\text{-}\mathrm{CH}\text{-}\mathrm{COOH}$ или $\mathrm{CH_3}\text{-}\mathrm{CH}\text{-}\mathrm{CH}\text{-}\mathrm{CH}\text{-}\mathrm{COOH}$.

1.1.2. Ненасыщенные дикарбоновые (двухосновные) кислоты

Важнейшими представителями этого класса β-дикарбоновых кислот являются первые члены ряда, малеиновая (т. пл. 130°С) и фумаровая (т. пл. 287°С) кислоты НООС-СН=СН-СООН, отличающиеся пространственным строением. Первая из них имеет *цис*-, вторая — *транс*-конфигурацию. Обе получаются при нагревании яблочной кислоты, но при разных температурах; в промышленности малеиновую кислоту (в виде ее ангидрида) получают каталитическим окислением бензола кислородом воздуха.

В том случае, когда с олефиновой системой сопряжены две электроноакцепторные карбонильные группы, акцепторный характер связи С=С особенно усиливается. Среди производных α,β-ненасыщенных дикарбоновых кислот малеиновый ангидрид обладает наилучшими акцепторными свойствами. Малеиновая кислота является более сильной: ее водородный атом первой карбоксильной группы легче диссоциирует, чем у фумаровой, для второй карбоксильной группы — наоборот. Константы диссоциации при 18°C составляют:

для малеиновой кислоты $pK_1 = 2.0, pK_2 = 6.23;$ для фумаровой кислоты $pK_1 = 3.03, pK_2 = 4.38.$

Для сравнения отметим, что для их насыщенного аналога, щавелевой кислоты, $\mathbf{p}K_1 = 1.46$ и $\mathbf{p}K_2 = 4.40$.

Цитраконовая, метилмалеиновая (т. пл. 91° С) и мезаконовая, метилфумаровая (т. пл. 202° С) кислоты находятся между собой в таких же отношениях, как и малеиновая и фумаровая: первая из них является *цис*-, вторая — *транс*-формой.

Итаконовая, 2-метиленянтарная (1), изомерные ей цитраконовая (2) и мезаконовая (3) кислоты чаще других используются для связывания ионов металлов, как и их полимерные аналоги. Кроме того, итаконовая кислота — перспективный кандидат для получения высокофункционализованных сополимеров, что связано с низкой стоимостью итаконовой кислоты, получаемой из возобновляемых источников (ресурсов) при ферментации микроорганизмами Aspergillus terrus.

Непредельная трехосновная пропен-1,2,3-трикарбоновая (*цис*-аконитовая) кислота HOOC-CH₂-C (COOH)=CH-COOH получается при отщеплении воды от лимонной кислоты, весьма распространена в растительном мире, содержится в сахарном тростнике, свекле, выделена из ядовитых растений *Aconitum* семейства лютиковых.

1.1.3. Ненасыщенные карбоновые кислоты с тройной связью (ацетиленовые кислоты)

Удобным способом получения ацетиленкарбоновых кислот, у которых тройная связь локализована рядом с карбоксильной группой, является взаимодействие натриевых производных ацетиленовых углеводородов (по существу, самих по себе уже являющихся карбоксилатами металлов) с углекислым газом, например по схеме

$$C_nH_{2n+1}C\equiv CNa + CO_2 \rightarrow C_nH_{2n+1}C\equiv CCOONa.$$

Простейшим представителем кислот этого типа является пропиоловая кислота НС≡ССООН, по которой весь ряд и получил название ряда пропиоловой кислоты. Жидкость с резким запахом (т. кип. 83°С/50 мм. рт. ст.; т. пл. 9°С). Ее особенностью (как будет показано в последующих главах) является возможность замещения металлом водородного атома не только карбоксильной

группы, но и в ацетиленовом остатке. Из многочисленных высших гомологов пропиоловой кислоты выделим лишь наиболее употребительные для получения соответствующих карбоксилатов: тетроловую (CH₃C \equiv CCOOH), т. кип. 203°С и гептинкарбоновую CH₃(CH₂)₄C \equiv CCOOH кислоты, а также фенилпропиоловую (C₆H₅)С \equiv CCOOH.

Карбоновые кислоты, у которых тройная связь удалена от карбоксильной группы, могут быть получены из соответствующих дибромпроизводных жирных кислот отщеплением бромистого водорода щелочью, например стеароловая кислота $CH_3(CH_2)_7C\equiv C(CH_2)_7COOH$ и ее изомер тарариновая кислота $CH_3(CH_2)_{10}C\equiv C(CH_2)_4COOH$. Выделены из растений и получены синтетическим путем целый ряд сильно ненасыщенных кислот, имеющих ацетиленовые и этиленовые связи.

Анализ различных классов органических карбоновых кислот приводит к выводу [8], что их донорно-акцепторная способность увеличивается в ряду: галогензамещенные < ароматические ≈ ненасыщенные < насыщенные кислоты. Однако этот ряд может изменяться в случае изменения длины или разветвленности карбоновой кислоты, введения других заместителей. В свою очередь состав, структура и свойства непредельных карбоновых кислот определяют основные подходы к синтезу их карбоксилатов.

1.2. СИНТЕЗ НЕПРЕДЕЛЬНЫХ КАРБОКСИЛАТОВ МЕТАЛЛОВ

Основные различия между описанными в литературе методами синтеза солей непредельных карбоновых кислот сводятся к использованию условий реакции тех или иных соединений металлов, растворителей, что и определяет способ введения лиганда.

1.2.1. Взаимодействие (гидро)оксидов и карбонатов металлов с непредельными карбоновыми кислотами

Реакция нейтрализации широко используется для получения солей непредельных карбоновых кислот. Суть метода заключается в растворении оксида, гидроксида или карбоната металла в соответствующей кислоте (обычно в водном или водно-спиртовом растворе). Целевой продукт выделяют упариванием конечного раствора до начала кристаллизации или фильтрованием осадка, если образующийся карбоксилат металла не растворим или ограниченно растворим в воде [9–16].

 Таблица 1.1

 Состав и характеристика непредельных карбоновых кислот

Кислота	Формула	Т. кип. °С/мм. рт. ст*	Т. пл., °С	pK _a (°C)	<i>d</i> ⁴ ₂₀ , г/мл (°С)	n_{20}^{D}
1	2	3	4	5	6	7
Одноосновные ненасыщенные карбоновые кислоты						
Акриловая кислота	CH ₂ =CHCOOH	139; 142/760	13	4.25 (25)	1.051; 1.045 (25)	1.4242; 1.4185
Метакриловая кислота (2-метилпропеновая кислота)	H ₂ C=C(CH ₃)COOH	163	12–16	4.66	1.015	1.431; 1.4288
Кротоновая (<i>транс</i> -2-бутеновая) кислота)	CH₃CH=CHCOOH	185 (760) 180–181	71.5 70–72	4.69 (25)	1.027 (25)	
2-Этилакриловая кислота	$H_2C=C(C_2H_5)CO_2H$	176			0.986 (25)	1.437
2-Пентеновая (<i>транс</i> -2-пентеновая) кислота	C ₂ H ₅ CH=CHCO ₂ H	106 /20	9–11		0.99 (25)	1.452
4-Пентеновая (3-винилпропионовая, алилуксусная) кислота	CH ₂ =CHCH ₂ CH ₂ COOH	83–84/12	-22.5		0.981 (25)	1.428
2-Пропилакриловая кислота	CH ₃ (CH ₂) ₂ (=CH ₂) CO ₂ H	165–188			0.951 (25)	1.441

Таблица 1.1. (Продолжение)

1	2	3	4	5	6	7
2-Октеновая кислота	CH ₃ (CH ₂) ₄ CH=CHCO ₂ H	154/22	5–6		0.944 (25)	1.4588
3-Винилбензойная кислота	H ₂ C=CHC ₆ H ₄ CO ₂ H		91–95			
4-Винилбензойная кислота (стирол- H_2 C=CHC $_6$ H $_4$ CO $_2$ H 4-карбоновая кислота)			142–144			
2-Карбоксиэтил- акриловая	CH ₂ =CHCO ₂ (CH ₂) ₂ CO ₂ H	103/19			1.214 (25)	
<i>транс</i> -3-Бензоилакри- ловая (4-оксо-4-фенил- 2-бутеновая) кислота	C ₆ H ₅ COCH=CHCO ₂ H		94–97			
2-Бромакриловая кислота [4]	2-Бромакриловая H C=C(Br)CO H		62–65			
2-Бромметил- акриловая кислота	CH ₂ =C(CH ₂ Br)COOH		70-73			
Рицинолевая ((R)- 12-гидрокси- <i>цис</i> -9- октадеценовая, 12- гидроксилолеиновая) кислота	CH ₃ (CH ₂) ₅ CH(OH)CH ₂ CH=CH (CH ₂) ₇ COOH				0.940	
10-Ундеценовая (унде- цениловая) кислота		137/2	23–25		0.912 (25)	1.449

<i>цис</i> -5-Додеценовая кислота	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₃ CO ₂ H	135/0.4		0.906 (25)	1.454
Пальмитоолеиновая					
(цис-9-гексадеценовая)	$CH_3(CH_2)_5CH=CH(CH_2)_7COOH$	162/0.6	0.5	0.895	1.457
кислота					
<i>транс</i> -Олеиновая					
(транс-9-октадецено-	$CH_3(CH_2)_7CH=CH(CH_2)_7COOH$	288/100	42–44		
вая, элаидовая) кислота					
цис-Олеиновая				0.887	
(цис-9-октадеценовая,	$CH_3(CH_2)_7CH=CH(CH_2)_7COOH$	194-195/1.2	13–14		1.459
элаиновая) кислота				(25)	
цис-11-Эйкозеновая	CH (CH) CH CH(CH) CO H		22.24	0.883	1.4606
(гондоиновая) кислота	$CH_3(CH_2)_7CH=CH(CH_2)_9CO_2H$	23–24		(25)	1.4606
Нервоновая (цис-					
15-тетракозеновая,	$CH_3(CH_2)_7CH=CH(CH_2)_{13}COOH$		42-43		
селахолевая) кислота	2 13				
Линолевая (цис, цис,				0.914	
цис-9,12,15-октадеде-	$CH_3(CH_2CH=CH)_3(CH_2)_7CO_2H$	230-232/1	-11		1.480
катриеновая кислота				(25)	
ү-Линоленовая (цис,	CH (CH) CH CH CHCH CH CH				
цис, цис-6,9,12-октаде-	CH ₃ (CH ₂) ₃ CH ₂ CH=CHCH ₂ CH=CH-				
катриеновая) кислота	-CH ₂ CH=CH(CH ₂) ₄ COOH				
<i>цис</i> -5,8,11,14,17-Эйкозо-			-54-	0.943	
пентеновая кислота (2,4-	$CH_3(CH_2CH=CH)_5(CH_2)_3CO_2H$		-54 -53		1.4977
гексадиин-1,6-диол)			-33	(25)	

Таблица 1.1. (Продолжение)

1 2		3	4	5	6	7		
Ацетиленовые карбоновые кислоты								
Пропиоловая (ацетил- карбоновая, пропио- новая кислота	НС≡ССООН	144/760; 83/50 102/200	18; 9 16–18	1.84 (25)	1.138 (25)	1.431		
2-Бутиновая (тетроло- вая) кислота СН ₃ С≡ССО ₂ Н		203-760	78–80	2,50				
2-Пентиновая кислота	$CH_3CH_2CH = CCO_2H$							
4-Пентиновая (пропаргилуксусная) кислота [5–7]	CH≡CCH ₂ CH ₂ COOH	110/30	47–53					
2-Гексиновая кислота	CH ₃ CH ₂ CH ₂ CH≡CCO ₂ H	230	54–57		0.992 (25)	1.460		
2-Октиновая кислота	CH ₃ (CH ₂) ₄ C≡CCO ₂ H	148-149/19	2–5		0.961 (25)	1.46		
Фенилпропиоловая (фенилпропиновая) кислота	C ₆ H ₅ C≡CCOOH	135-137 (возг.)	137	2.23 (25)				
Непредельные дикарбоно	вые кислоты							
Фумаровая (<i>транс</i> -бу- тендионовая) кислота	НООССН=СНСООН	3.02, 4:38	298–300 (субл.) 165,9 (субл.) /1.7					

Малеиновая (<i>цис</i> -бу- тендионовая) кислота	HOOCCH=CHCO ₂ H		137–140	1.59 (25)
Итаконовая (метилен- сукциновая) кислота	HO ₂ CCH ₂ C (=CH ₂) CO ₂ H	3.85, 5.45	165–168	1.573 (25)
цис, цис-Муконовая (цис, цис-2,4-гекса- диендионовая) кислота	НООС-СН=СН-СН=СН-СООН		194–195	
Ацетилендикарбоновая (2-бутидионовая) кислота	НООСС≡ССООН		180–187 (разл.)	
10,12-Пентакозанди- иноиковая кислота	$CH_3(CH_2)_{11}C\equiv C-C\equiv C$ $(CH_2)_8COOH$		62–63	
2-Ацетоамидакриловая(N-ацетилдегидроаланин)кислота	вая(N-ацетилдегидро- CH_2 = $C(NHCOCH_3)COOH$		185–186 (разл.)	
Моноамидмалеиновая кислота	H ₂ NCOCH=CHCO ₂ H		158–161	
Поли (<i>mpem</i> -бутил-акрилат- <i>co</i> -этилакрилат- <i>co</i> -метакриловая кислота	$ \begin{aligned} & [\text{CH}_2\text{CH } [\text{CO}_2\text{C } (\text{CH}_3)_3]_3]_x [\text{CH}_2\text{CH} \\ & (\text{CO}_2\text{C}_2\text{H}_5)]_y [\text{CH}_2\text{C } (\text{CH}_3)(\text{CO}_2\text{H})]_z \end{aligned} $			0.4 (25)

 $^{^*}$ 1 мм. рт. ст.=133.322 н/м 2

Для получения солей *s*-элементов I и II группы достаточно использовать стехиометрические количества исходных веществ с небольшим избытком кислоты [17-21]. Ввиду высокой полимеризующейся способности (мет)акрилатов щелочных металлов реакцию обычно проводят при пониженных температурах и в разбавленных растворах, нередко в присутствии специальных веществ, ингибирующих полимеризационные превращения [22–24]. Во многих случаях, когда образующиеся соли гидролизуются, необходимо использовать избыток кислоты или удалять воду путем азеотропной отгонки или связывать ее с каким-либо веществом. Так, безводные акрилат и метакрилат кальция синтезированы при 40-100 °C в углеводородных растворителях с азеотропным удалением воды и сушкой [25]. Имеются также патентные сведения о получении лантаноидных [26] или Zn[27] солей (мет)акриловой кислот в двухфазных водно-органических или органических средах. Акрилаты и метакрилаты d-элементов получают по рассматриваемому способу в спиртовых или углеводородных (бензол, толуол) суспензиях [28–33]. Использование неводных сред снижает вероятность формирования основных солей и благоприятствует получению более чистых продуктов реакции с высокими выходами (> 95% в случае акрилатов Zn(II), Co(II), Ni(II) и Cu(II) с содержанием двойных связей >94%). В случае катионов трехвалентных металлов, как например Fe(III), Cr(III) и т.д., в зависимости от условий реакции и природы исходного реагента продуктами являются соли нормального строения [34–37] или трехъядерные оксокарбоксилаты (см. разд. 2.).

Аналогичное поведение обнаруживают и дикарбоксилаты металлов. Так, малеиновая кислота при взаимодействии с оксидом цинка в водной среде выступает как одноосновная кислота с образованием смешанного комплекса ZnH(OOCCH=CHCOO)(OH)·H₂O, при тех же условиях в метаноле она ведет себя как двухосновная [21]. Методами потенциометрического титрования [38-42] и спектрофотометрического анализа [40, 43] изучено комплексообразование в системе ион металла — дикарбоновая кислота. Например, установлено, что комплексы состава 1:1 формируются для системы медь(II) — малеиновая кислота при pH 4.9-5.2 [40], а в случае таллий(III) — фумаровая или малеиновая кислота при рH 2.0–3.5 [38]. В системе ион 4*f*-элемента — итаконовая кислота при рН 3–4 сосуществуют средний $M(C_5H_4O_4)^+$ и протонированный $MH(C_5H_4O_4)^{2+}$ комплексы [41], что подтверждено препаративным выделением средних итаконатов состава $M_2(C_5H_4O_4)_3$ nH_2O (n = 3-6) и протонированных комплексов МН $(C_5H_4O_4)_7$ nH_2O (n = 1,2) [44–46]. Константы устойчивости средних комплексов

3.06±0.38 | 1.91±0.16 |

Гадолиний

Ион 4 <i>f</i> - элемента	$\lg K_{ m ML}^+$	LgK _{MHL} ²⁺	Ион 4 <i>f</i> - элемента	$\lg K_{ m ML}^+$	$\lg K_{ m MHL}^{2+}$			
Лантан	2.52±0.20	1.56±0.20	Тербий	3.05±0.22	1.87±0.12			
Церий	2.78±0.24	1.78±0.13	Диспро- зий	2.90±0.25	1.82±0.14			
Празеодим	3.02±0.19	1.91±0.22	Гольмий	2.66±0.28	1.64±0.17			
Неодим	2.95±0.24	1.98±0.12	Эрбий	3.18±0.05	1.77±0.20			
Самарий	3.10±0.23	1.96±0.11	Тулий	2.45±0.17	1.57±0.16			
Европий	3.33±0.18	1.98±0.09	Иттербий	2.62±0.18	1.61±0.17			

Таблица 1.2. Логарифмы константы устойчивости (lgK) итаконатных комплексов состава ML+ и MHL2+ [41]

выше значений $\lg K$ протонированных комплексов, что коррелирует с величинами констант диссоциации кислоты ($K_1 = (1.62 \pm 0.19) \cdot 10^{-4}$, $K_2 = (4.39 \pm 0.18) \cdot 10^{-6}$) (табл. 1.2).

Лютений

 2.80 ± 0.24

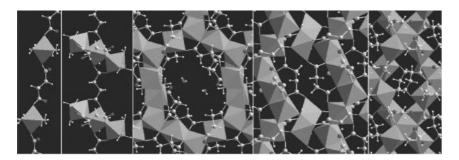
 1.65 ± 0.14

Интересным является подход, основанный на том, что исходный гидроксид металла формируется *in situ* [47], а один из получающихся продуктов является малорастворимым веществом, что способствует полному завершению реакции [48, 49]. Так, сульфат бериллия с малеиновой кислотой и Ва (ОН)₂, взятых в молярных соотношениях 1:2:1, в воде приводит к немедленному образованию осадка сульфата бария:

$$BeSO_4 + Ba (OH)_2 + C_4H_4O_4 \rightarrow BaSO_4 + Be[C_4H_2O_4] \cdot 2H_2O.$$
 (1.3)

Это пример успешного получения карбоксилатных комплексов иона бериллия (II) в кислой среде, в то время как монокарбоновые лиганды входят в координационную сферу металла лишь в щелочных или нейтральных средах с образованием оксокарбоксилатов (RCOO) $_6[\mathrm{Be}_4\mathrm{O}]$ [50].

1.2.2. Взаимодействие ацетатов и других солей с непредельными карбоновыми кислотами


Этот метод широко используется для получения насыщенных карбоксилатов металлов [51]. Его преимущества заключаются как в доступности исходных реагентов, так и в том, что выделяющиеся кислоты легколетучи и карбоновые кислоты можно брать в стехиометрических количествах. К недостаткам метода следует

отнести частое загрязнение продуктов реакции следами уксусной кислоты, а в случае солей сильных кислот замещение последних может приводить к побочным реакциям, в том числе и к полимеризационным превращениям. Для предотвращения нежелательных процессов обычно используют акцепторы протонов, например карбонат кальция или натрия [9, 52, 53], проводят реакцию в инертной атмосфере и при умеренных температурах [54].

Анализируемая реакция оказалась весьма эффективной для получения оксополиядерных (мет)акрилатов \mathbf{Mn}_{12} — важных комплексов, проявляющих свойства молекулярных магнитов и являющихся мономерными предшественниками их полимерных аналогов [55–57]. Равновесие реакции смещается при вакуумном удалении выделяющейся $\mathbf{CH}_3\mathbf{COOH}$ и повторным действием избытка непредельной кислоты достигается полное замещение (мет) акрилатными лигандами:

Нет принципиальных ограничений для синтеза по этой схеме и гетерометаллических полиядерных комплексов типа $[Mn_{10}Fe_2O_{12}(CH_2C(CH_3)COO)_{16}(H_2O)_4]$ [58].

В последние годы получили интенсивное развитие гидротермические способы, представляющие интерес для создания новых материалов с необычными структурами [58]. Такие подходы применительны преимущественно для тех дикарбоксилатных лигандов, которые малоактивны в реакциях гомополимеризации. Так, взаимодействием моногидрата ацетата Cu(II) и фумаровой кислоты в мягких условиях удается получить фумарат Cu(I), характеризующийся высокой плотностью ($\rho = 3.24 \text{ г/см}^3$) и стабильностью на воздухе [59]. Суть способа состоит в следующем: исходные реагенты помещают в автоклав при 150°C на 1.5 дня. Затем выделяют образовавшиеся кристаллы, промывают водой и сушат. С помощью этого метода получают, как правило, конденсированные продукты с двумерным или трехмерным пространственным строением (рис. 1.1) [60]. Например, лантаноидные фумаратные комплексы $[Ln_2(OOCCH=CHCOO)_3(H_2O)_4] \cdot 3H_2O$ (Ln = Sm(III) [61] и Eu(III) [62]) при одном и том же соотношении Ln: фумарат = 2:3 содержат в своем составе меньше молекул H₂O, чем в соединениях $[Ln_2(OOCCH=CHCOO)_3(H_2O)_4]$ 8 H_2O [63], полученных растворными методами при комнатной температуре. Тетраядерный комплекс фумарата Zn(II) [$Zn_4(OH)_2(OOCCH=CHCOO)_3(4,4'-bipy)_2$] [64], синтезированный аналогичным способом, проявляет доста-

Рис. 1.1. Изменение структуры карбоксилата металла с повышением температуры синтеза от низких температур (60°C слева) до высоких (250°C справа)

точно высокую термическую стабильность (до $380\,^{\circ}$ C). Следует отметить, что продукты гидротермального синтеза благодаря сочетанию сложных структур и необычных свойств нередко являются объектами супрамолекулярной химии.

В качестве исходного реагента часто используют ацетилацетонаты металлов. Особенно эффективен этот метод при получении разнолигандных комплексных соединений. Смешанные комплексы лантанидов (Nd(III), Eu(III), Gd(III) и Yb(III)) с бензоилацетоном [65] или ацетилацетоном [66, 67] и непредельными кислотами (акриловой, метакриловой, фумаровой и малеиновой) получены действием кислоты на бензоилацетонат или ацетилацетонат f-элемента в диоксане. Реакция взаимодействия трис-ацетилацетоната тербия с малеиновой кислотой [68] во всем диапазоне концентраций реагентов ((3–6)· 10^{-2} и 0.5 мол/л для соли металла и кислоты соответственно) является экзотермической ($\Delta H = -8.2\pm0.4$ кДж/моль, $\Delta G = 17.0 \pm 0.8$ кДж/моль, $\Delta S = 29.4 \pm 1.6$ Дж/К·моль, $\lg K = 2.97 \pm 0.06$, диоксан, 25°C). Изменение энтальпии может быть обусловлено целым рядом факторов, в том числе и образованием более прочной связи лигандов с ионом Tb(III) при замещении малеинат-анионом. Характерные примеры стабилизирующего влияния малеинового лиганда нередки. Кинетическими исследованиями [69] показано, например, что взаимодействие $Pd(H_2O)_4^{2+}$ с малеиновой кислотой протекает в стехиометрическом соотношении 1:1 по сложному механизму через ряд последовательных и параллельных реакций типа А В С. На первой стадии в качестве промежуточного продукта формируется катион [Pd(H₂O)₃OOCCH=CHCOOH]⁺ с константой устойчивости $K = 205\pm40~{\rm M}^{-1}$, причем он образуется в двух параллельных обратимых реакциях с участием малеиновой кислоты и гидромалеинат-аниона соответственно. На следующей стадии медленная внутримолекулярная циклизация (константа скорости $0.8\pm0.1~{\rm c}^{-1}$) или нуклеофильная атака интермедиата **В карбоксилатным лигандом или молекулой кислоты** приводит к формированию стабильного олефинового комплекса [Pd (${\rm H}_2{\rm O}$)₂OOCCH=CHCOOH]⁺.

1.2.3. Реакции обмена лигандов

Эти реакции наиболее распространены для синтеза комплексов и используются для обмена как внутрисферных, так и внешнесферных лигандов. При этом может осуществляться не только замещение лигандом молекул растворителя, но и замещение другого лиганда. Метод часто применяется для обмена *s*-элементов **I группы** на *d*-элементы и особенно эффективен в отсутствии устойчивых растворимых солей металла.

1.2.3.1. Реакции с галогенидами металлов

Моно- и дизамещенные ненасыщенные ацильные производные бис(циклопентадиенил)титана были впервые получены А.Н. Несмеяновым и сотр. [70] при взаимодействии солей (мет)акриловой кислоты с бис(циклопентадиенил)титандихлор идом. Мономеры такого типа хорошо растворяются в бензоле, ацетоне, ДМФ, пиридине, частично в ММА [71]. Общая схема их получения представлена на схеме 1.1.

Схема 1.1

Аналогичные подходы могут быть использованы для получения дикарбоксилатных производных титана [72–76]. Основным недостатком этих методов является образование большого количества мелкодисперсных трудноотделяемых хлоридов. Для решения этой проблемы представляет интерес проведение синтеза алкилортотитанатов $\text{Ti}(\mathbf{OR})_{4-n}(\mathbf{OR}')_n$ в системе, состоящей из двух несмещивающихся фаз, одна из которых является растворителем образующейся соли, другая — алкилортотитаната [77]. Известны примеры использования жидкого аммиака, растворяющего хлористый аммоний, но не растворяющего алкилортотитанат, такой прием обеспечивает хорошие выходы, но требует применения повышенного давления на всех стадиях процесса.

1.2.3.2. Реакции с алкоксидами металлов

Взаимодействие алкоксидов металлов с органическими кислотами и их ангидридами широко используется для получения карбоксилатов металлов. Реакцией нуклеофильного замещения при взаимодействии алкоксида титана(IV) с метакриловой кислотой в стехиометрическом соотношении получены $\text{Ti}(\text{OR})_3\text{OCOC}(\text{CH}_3)=\text{CH}_2$ (R=mpem-бутил, mpem-амил, mpem-этилгексил) [78]. По аналогичной схеме при взаимодействии $\text{Ti}(\text{OBu})_4$ с ангидридом кислоты в мольном соотношении 1:2 синтезирован дибутоксититанбисбутилмалеинат [79]. Если выделяющийся спирт имеет температуру кипения выше, чем кислота, или же исходный тетраалкоксид металла недоступен, реакцию проводят в две ступени:

$$CH_2 = C + Ti(OR)_4 - CH_2 = C + ROH$$

$$COOTi(OR)_3 + ROH$$

$$(1.5)$$

$$CH_{2} = C \xrightarrow{CH_{3}} + 3 \text{ HOCH}_{2}\text{CH}(CH_{2}\text{CH}_{3}) - (CH_{2})_{3} - CH_{3} \longrightarrow CH_{2} = C \xrightarrow{CH_{3}} + 3 \text{ ROH}.$$

$$CH_{2} = C \xrightarrow{CH_{3}} + 3 \text{ ROH}.$$

$$COOTi(OCH_{2}\text{CH}(CH_{2}\text{CH}_{3}) - (CH_{2})_{3} - CH_{3})_{3}$$

$$(1.6)$$

Выделяющийся спирт удаляют непрерывной отгонкой при пониженном давлении. Следует отметить, что рассматриваемые

синтезы осуществлялись в отсутствии растворителя, и довольно высокие выходы (до 97%) целевых продуктов свидетельствуют о незначительной роли побочных процессов, например полимеризационных превращений, хотя в этих условиях нельзя полностью исключать такое направление реакции. Вообще использование кислотной переэтерификации требует известной осторожности, как из-за возможности протекания и других побочных реакций (этерификация исходной кислоты выделяющимся спиртом, гидролиз титанового эфира под действием выделяющейся (латентной) воды и т.д.), так и из-за образования оксидных соединений титана $\mathrm{TiO}_x(\mathrm{OOCR})_{4-2x}$ (x=0.5 или 1) при избытке кислоты [80]. Для предотвращения таких осложнений более эффективно использование ангидридов соответствующих кислот для введения непредельных ацильных остатков в алкоксилы металлов:

$$Ti(OR)_4 + n(CH_2 = C - CO)_2O \longrightarrow CH_3$$

$$CH_3 = C - COO)_nTi(OR)_{4-n} + nCH_2 = C - COOR.$$

$$CH_3 = C - COOR = COOR$$

$$CH_3 = C - COOR$$

Использование алкоксидов металлов в качестве исходного реагента особенно важно в тех случаях, когда нужно, например, избежать координации молекулы воды, которая, как известно, вызывает тушение люминесценции у соединений f-элементов. Поэтому в отличие от стандартных способов получения комплексов f-элементов из водных растворов, предложен альтернативный способ синтеза безводного метакрилата Eu(III) из три-изо-пропоксида европия в органической среде [81]. Этот метод удобен для получения и гетеролигандных комплексов [82] (схема 1.2).

Согласно этой схеме, на первой стадии в безводной среде получают реакционноспособный алкоксид — изопропоксид Eu (III), взаимодействие которого с акриловым и β-дикетонатным лигандами в смеси органических растворителей приводит к формированию мономерного комплекса Eu(III) без внутрикоординационных молекул воды.

Eu₂O₃ — EuCl₃ —
$$R_{1}$$
 — R_{1} — R_{2} — R_{3} — R_{2} — R_{2} — R_{3} — R_{2} — R_{2} — R_{3} — R_{2} — R_{3} — R_{4} — R_{2} — R_{2} — R_{3} — R_{4} — R_{2} — R_{4} — R_{4} — R_{4} — R_{5} — R

1.2.3.3. Другие обменные реакции

Взаимодействием хлоридов или сульфатов металлов с натриевой солью соответствующей непредельной кислоты в воде получены жидкокристаллические мономерные комплексы Mg(II) и Zn(II) [83]:

$$MgCl_2 \cdot 6H_2O + 2NaO_2CR \longrightarrow Mg(O_2CR)_2 \cdot xH_2O + 2NaCl + (6 - x)H_2O,$$
(1.9)

$$R = (CH_2)_{11}OCOCH = CH_2$$
; $C_6H_3(O(CH_2)_{11}OCOCH = CH_2)_2$; $x = 0,2$).

Целевые продукты отделяют фильтрованием или извлекают экстрагированием, используя хлороформ или ацетон. По такой же схеме в среде метанола синтезированы (мет)акрилатные [84] и дикарбоксилатные [85] комплексы Mn(II). Использование аммиака в таких обменных реакциях способствует получению растворимых карбоксилатных комплексов, особенно это характерно для меди(II) [86]. В некоторых случаях исходный карбоксилат з-металла получают *in situ*. По такому способу синтезированы, например, разнолигандные комплексы европия и тербия с коричной

кислотой состава $Ln(OOCCH=CHC_6H_5) \cdot nD \cdot xH_2O$, где Ln = Eu(III), Tb(III), D = 1,10-фенантролин (phen), 2,2'-дипиридил (2,2'-dipy), бензотриазол (bta) (n = 2, x = 0), трифенилфосфиноксид (tphpho) (n = 1, x = 2) [87].

В зависимости от условий синтеза можно получать комплексы различного состава. Так, проведение реакции обмена в неводной среде приводит к формированию биядерного гидромалеината меди, сольватированного молекулами этанола, в то время как присутствие воды способствует превращению этого комплекса в моноядерный кристаллогидрат $Cu(OCOCH=CHCOOH)_2 \cdot 4H_2O$ [54]. Тенденция к гидратации ионов Cu(II) снижалась с повышением температуры реакции.

Обменной реакцией хлорида Cr(II) с натриевой солью акриловой кислоты в инертной атмосфере получен акрилат биядерного Cr(II) [88]. Соединение оказалось весьма чувствительным к кислороду, на воздухе наблюдалось его самовозгорание.

1.2.4. Получение биметаллических соединений

Одним из вариантов обменных реакций является совместный синтез гетерометаллических карбоксилатов. Типичная процедура заключается в том, что к раствору карбоксилата металла \mathbf{M}_1 добавляют соль другого металла \mathbf{M}_2 и при необходимости карбоксилатный и сопутствующий лиганды. Целевой комплекс выделяют фильтрованием или кристаллизацией. Используя такой подход, были получены гетероядерные карбоксилаты, включающие ионы d- и f-элементов [89–91]. Биметаллический малеинат $\mathrm{Cu}_x\mathrm{Zn}_{1-x}\mathrm{C}_4\mathrm{H}_2\mathrm{O}_4\cdot 2\mathrm{H}_2\mathrm{O}$ (x = 0.06) выделен из растворов малеинатов меди и цинка медленным испарением при 60°C [53]. Аналогичным способом синтезированы гетерометаллические трехъядерные кротонаты с выходом > 80% [92].

1.2.5. Золь-гель реакции

Перспективными для получения соединений рассматриваемого типа являются методы золь-гель синтеза, основанные на реакциях гидролиза $M(OR)_4$ в органической среде с последующей конденсацией образующихся продуктов, приводящей к формированию геля [93, 94]. Наличие карбоксилатной функции в молекуле алкоксида позволяет регулировать его реакционную способность и благодаря формированию латентной воды осуществлять контролируемый гидролиз и рост карбоксилат-замещенного оксометаллокластера. Примеры таких реакций многочисленны. Так, взаимодействие

алкоксида Zr(IV) или Hf(IV) с избытком метакриловой кислоты в растворе пропанола приводит к образованию полиядерного оксокарбоксилата [95, 96]. Интересно, что при попытке замещения хелатных метакрилатных групп в $Zr_4O_2(OOCC(CH_3)=CH_2)_{12}$, полученном вышеуказанным способом, на ацетилацетонатный (AcAc) лиганд происходит мономеризация полиядерного комплекса [97]:

Этот пример свидетельствует о том, что последующая модификация формирующейся о ксокластерной молекулы, по-видимому, представляется затруднительной. Показано, например, что оксокомплексы $Zr_6O_4(OH)_4(OOCR)_{12}$ и $[Zr_6O_4(OH)_4(OOCR)_{12}]_2$ (RCOO — метакрилат [95] или акрилат [98]) не переходят один в другой [99], хотя они структурно взаимосвязаны и достаточно лабильны в растворе из-за обмена карбоксилатными лигандами координационных мест. Используя обменный механизм, можно частично или полностью замещать метакрилатные лиганды $Zr_6O_4(OH)_4(OOCR)_{12}$ на нефункциональные карбоксильные группы, например, пропионовой или изомасляной кислоты [100]. В принципе, осуществлен и прямой синтез $Zr_6O_4(OH)_4(O_2CC(CH_3)=CH_2)_8(uso-бутират)_4(BuOH)$ реакцией $Zr(O^nBu)_4$ со смесью метакриловой и изомасляной кислоты. Есть примеры модификации алкоксидов металлов такими непредельными лигандами, как ангидрид итаконовой кислоты [101, 102], ацетоацетоксиэтилметакрилат [102, 103], *п*-винилбензойная и *п*-винилфенилуксусная кислоты [102].

Наряду с основным фактором, позволяющим эффективно регулировать состав и размеры формирующихся оксокластерных молекул, которым является молярное соотношение металлоалкоксид/ органическая кислота, решающую роль играет и природа алкоксида металла. При взаимодействии, например, изопропоксида Sn(IV) с различными кислотами, включая и метакриловую, при соотношении реагентов 1:1 формировался димер с гексакоординированными атомами олова, молярное соотношение между 1.4 и 2 приводило к соединениям состава $[Sn(\mu_2\text{-}OiPr)(OiPr)(O_2CR)_2]_2$ ($R = (Me) C = CH_2$, C_6H_5 , CH_3) [104]. Однако даже при $RCOOH/Sn(OiPr)_4 > 2$ не удавалось получить полиядерные оксокомплексы, конечными продуктами были полимерные образования неиденти-

фицированного строения. Максимальное соотношение карбоксилат/алкоксид титана(IV), приводящее к формированию оксокластерного соединения ${\rm Ti}_6{\rm O}_4({\rm OEt})_8({\rm OOC}({\rm Me}){=}{\rm CH}_2)_8$, равняется 1.33 [105]. При более высоких молярных значениях образуются полимерные или олигомерные структуры, как, например, в ${\rm Ti}_9{\rm O}_8({\rm OPr})_4({\rm OOC}({\rm Me}){=}{\rm CH}_2)_{16}$ [106]. Безуспешными были попытки получить оксокарбоксилатные комплексы иттрия. В условиях реакции этерификации был выделен и кристаллографически охарактеризован безводный метакрилат иттрия Y(OOCC (Me)=CH₂)₃ [107]. В то же время, смешанные оксокомплексы на основе Y(III) и ${\rm Ti}({\rm IV})$ с метакрилатными лигандами различного состава и строения синтезированы с количественными выходами [108].

Аналогичные подходы применимы и в случае гетероядерных комплексов [109–111]. Так, варьируя соотношение исходных алкоксидов Ti:Zr (1:1 или 1:2), можно получать комплексы различных составов, например ${\rm Ti_4Zr_4O_6(OBu)_4(CH_2=C(CH_3)COO)_{16}}$ и ${\rm Ti_2Zr_4O_4(OBu)_2(CH_2=C(CH_3)COO)_{14}}$ соответственно [109].

1.2.6. Другие реакции

Некоторые соли фумаровой кислоты получают каталитической изомеризацией малеинового ангидрида с последующим взаимодействием образовавшейся кислоты с соединением металла. Фумарат Fe(II), например, синтезировали исходя из малеинового ангидрида в присутствии тиомочевины [112] или НС1 [113]. Дальнейшие превращения фумаровой кислоты могут протекать по одному из вышеуказанных способов. Необычную реакцию *транс*-присоединения HCl к тройной связи непредельного лиганда с формированием хлорофумарата тригидрата меди(II) $\{[Cu\ (OOCCH=CCICOO)(H_2O)_2]\cdot H_2O\}_n$ наблюдали в водном растворе ацетилендикарбоновой кислоты и CuCl, [114, 115]. Удобным объектом для получения карбоксилатов являются основания Шиффа. При взаимодействии комплексов Fe (III) на основе тетрадентатных лигандов N, N'-бис (салицилиден) этилендиамин (salen H_2) или бис (салицилиден)-o-фенилендиамин (saloph H_2) с раствором ацетилендикарбоновой кислоты в BuOH были получены биядерные комплексы Fe(III) [{Fe (salen)}2(OOCC=CCOO)] и [{Fe (saloph)}2(OOCC=CCOO)] с дикарбоксилатными мостиками [116].

Нередки примеры использования в качестве исходных реагентов металлоорганических соединений [117–120]. Например, реакция пентафенилсурьмы с малеиновой кислотой с разрывом связи **М**–

С легко осуществляется при комнатной температуре и приводит к образованию ацильных производных Sb (V) [120]:

$$Ph_{5}Sb + HO(O)C-CH=CH-C(O)OH \longrightarrow$$

 $\longrightarrow Ph_{4}Sb-O(O)C-CH=CH-C(O)OH + PhH.$ (1.11)

Изменение мольного соотношения реагентов позволяет получать дизамещенные карбоксилаты. Следует отметить, что образующиеся продукты чувствительны к влаге воздуха и легко гидролизуются.

Карбоксилаты сурьмы (висмута) могут быть также получены одностадийно окислительной реакцией трифенилсурьмы (трифенилвисмута) с акриловой кислотой в присутствии *трет* бутилгидропероксида или пероксида водорода по схеме [121, 122]

$$Ph_3M + ROOH + 2CH_2 = CH - COOH \longrightarrow$$

 $\rightarrow Ph_3M (CH_2 = CH - COO)_2 + ROH + H_2O,$ (1.12)

M = Sb, Bi; R = t-Bu, H.

Реакция протекает легко при комнатной температуре в эфире с выходом 50-90%.

Весьма интересным оказалось взаимодействие триметилстаннанола с малеиновым ангидридом [121]. Независимо от условий реакции вместо ожидаемого монопроизводного образуется ди (триметилстанниловый эфир) малеиновой кислоты:

Такое направление реакции, вероятно, связано с димерной структурой исходного реагента. В случае арильных производных гидроксида олова наблюдается отщепление одной арильной группы и образование циклического элементоорганического диэфира малеиновой кислоты: