П.С. ГЕВОРКЯН

ВЫСШАЯ МАТЕМАТИКА

ИНТЕГРАЛЫ, РЯДЫ, ТФКП, ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям и специальностям в области экономики и управления, техники и технологии

УДК 517.52+53+37+91 ББК 22.16 Г 27

Геворкян П. С. Высшая математика. Интегралы, ряды, ТФКП, дифференциальные уравнения. Ч. 2.-M.: ФИЗМАТЛИТ, 2007.-272 с. — ISBN 978-5-9221-0710-5.

Настоящая книга вместе с другой книгой автора, «Высшая математика. Основы математического анализа», охватывает весь комплекс вопросов, которые изучаются в рамках курса «Высшая математика» в высших учебных заведениях, за исключением вопросов линейной алгебры и аналитической геометрии. Она содержит следующие разделы высшей математики: «Криволинейные и поверхностные интегралы. Элементы теории поля», «Ряды», «Дифференциальные уравнения» и «Теория функции коплексного переменного».

Для студентов инженерно-технических и экономических специальностей вузов, а также для изучающих в том или ином объеме высшую математику.

Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям и специальностям в области экономики и управления, техники и технологии.

Рецензенты: д.ф.-м.н., проф. Петрушко И. М., д.ф.-м.н., проф. Смирнов Ю. М.

ОГЛАВЛЕНИЕ

Предисловие	8
Глава 1. Кратные интегралы	Ć
§ 1.1. Задача об объеме цилиндрического бруса. Определение двойного интеграла	(
§ 1.2. Задача о вычислении массы тела. Определение тройного интеграла	11
§ 1.3. Свойства двойных интегралов. Теоремы существования	13
§ 1.4. Приведение двойного интеграла к повторному	16
§ 1.5. Вычисление тройного интеграла	19
§ 1.6. Замена переменных в двойном интеграле	21
§ 1.7. Двойной интеграл в полярных координатах	24
§ 1.8. Замена переменных в тройном интеграле	25
§ 1.9. Тройной интеграл в сферических координатах	26
§ 1.10. Тройной интеграл в цилиндрических координатах	28
Глава 2. Криволинейные и поверхностные интегралы.	
Элементы теории поля	30
§ 2.1. Скалярные и векторные поля. Линии и поверхности уровня	30
§ 2.2. Криволинейные интегралы первого рода	32
§ 2.3. Вычисление криволинейного интеграла первого рода	34
§ 2.4. Криволинейные интегралы второго рода	35
§ 2.5. Вычисление криволинейного интеграла второго рода. Связь с криволинейным интегралом первого рода	38
§ 2.6. Формула Грина	4
§ 2.7. Площадь поверхности	43
§ 2.8. Поверхностные интегралы первого рода	46

§ 2.9. Поверхностные интегралы второго рода	47
§ 2.10. Вычисление поверхностного интеграла второго рода	49
§ 2.11. Поток вектора через ориентированную поверхность	51
§ 2.12. Формула Гаусса-Остроградского. Дивергенция	52
§ 2.13. Формула Стокса	54
§ 2.14. Линейный интеграл от вектора. Циркуляция. Ротор	57
§ 2.15. Потенциальное поле	59
§ 2.16. Соленоидальное поле	64
Глава 3. Числовые ряды	66
§ 3.1. Понятие числового ряда. Сходящиеся и расходящиеся	
ряды	66
§ 3.2. Действия с рядами. Основные свойства	68
§ 3.3. Остаток ряда. Необходимое условие сходимости ряда	71
§ 3.4. Положительные ряды. Теоремы сравнения рядов	73
§ 3.5. Признак Даламбера	77
§ 3.6. Признак Коши	79
§ 3.7. Интегральный признак Коши	81
§ 3.8. Знакочередующиеся ряды. Теорема Лейбница	85
§ 3.9. Абсолютно и условно сходящиеся ряды	87
§ 3.10. Переместительное свойство абсолютно сходящегося ряда. Теорема Дирихле	89
§ 3.11. О перестановке членов условно сходящегося ряда. Теорема Римана	91
Глава 4. Функциональные ряды	95
§ 4.1. Функциональные последовательности. Сходимость и равномерная сходимость	95
§ 4.2. Функциональные ряды. Сходимость и равномерная схо- димость	98
§ 4.3. Достаточный признак Вейерштрасса о равномерной сходимости функционального ряда	100
§ 4.4. Непрерывность суммы функционального ряда	101
§ 4.5. Почленное интегрирование функциональных рядов	104
§ 4.6. Почленное дифференцирование функциональных рядов	105

Оглавление 5

Глава 5. Степенные ряды
§ 5.1. Степенные ряды. Теорема Абеля. Радиус сходимости
§ 5.2. Равномерная сходимость и непрерывность суммы сте-
пенного ряда
§ 5.3. Дифференцирование и интегрирование степенных рядов
§ 5.4. Разложение функций в степенные ряды. Ряд Тейлора
§ 5.5. Разложение некоторых элементарных функций в ряд Маклорена
Глава 6. Ряды Фурье
§ 6.1. Предварительные сведения о периодических функциях
§ 6.2. Тригонометрическая система. Ортогональность тригонометрической системы
§ 6.3. Тригонометрические ряды. Ряды Фурье
§ 6.4. Разложение в ряд Фурье четных и нечетных функций
$\S 6.5$. Ряды Фурье для $2l$ -периодических функций
Глава 7. Дифференциальные уравнения
§ 7.1. Дифференциальные уравнения. Общие понятия
§ 7.2. Дифференциальное уравнение первого порядка. Поле направлений. Метод изоклин
направлений. Метод изоклин
направлений. Метод изоклин § 7.3. Задача Коши. Общее решение. Теорема Коши § 7.4. Простейшие дифференциальные уравнения. § 7.5. Дифференциальные уравнения с разделяющимися переменными § 7.6. Однородные дифференциальные уравнения. § 7.7. Линейные уравнения § 7.8. Уравнение Бернулли § 7.9. Дифференциальные уравнения в полных дифференциальные уравнения в полных дифференциальях.
направлений. Метод изоклин § 7.3. Задача Коши. Общее решение. Теорема Коши § 7.4. Простейшие дифференциальные уравнения. § 7.5. Дифференциальные уравнения с разделяющимися переменными § 7.6. Однородные дифференциальные уравнения. § 7.7. Линейные уравнения § 7.8. Уравнение Бернулли § 7.9. Дифференциальные уравнения в полных дифференциальные уравнения в полных дифференциальные.

§ 7.14. Линейные дифференциальные уравнения высших поряд- ков	168
§ 7.15. Линейная зависимость и линейная независимость системы функций. Определитель Вронского	169
§ 7.16. Структура общего решения линейного однородного дифференциального уравнения	173
§ 7.17. Структура общего решения линейного неоднородного дифференциального уравнения	177
§ 7.18. Метод вариации произвольных постоянных Лагранжа	178
§ 7.19. Линейные однородные дифференциальные уравнения n -го порядка с постоянными коэффициентами	180
§ 7.20. Линейные неоднородные дифференциальные уравнения n -го порядка с постоянными коэффициентами	18
Глава 8. Системы дифференциальных уравнений	191
§ 8.1. Системы дифференциальных уравнений. Основные по-	
нятия	19
§ 8.2. Интегрирование нормальных систем дифференциальных уравнений	194
§ 8.3. Системы линейных дифференциальных уравнений. Тео- рема Коши	19
§ 8.4. Линейная зависимость и линейная независимость вектор-функций. Определитель Вронского	19
§ 8.5. Структура общего решения линейных систем дифференциальных уравнений	19
§ 8.6. Линейные однородные системы дифференциальных уравнений с постоянными коэффициентами	20
Глава 9. Теория функции комплексного переменного	20
§ 9.1. Понятие функции комплексного переменного	20′
§ 9.2. Предел и непрерывность функции комплексного переменного	208
§ 9.3. Производная функции комплексного переменного	21
§ 9.4. Условия Коши–Римана	21
§ 9.5. Аналитические функции	21
§ 9.6. Гармонические функции	21
§ 9.7. Геометрический смысл модуля производной	21

Оглавление 7

§ 9.8. Геометрический смысл аргумента производной. Конформные отображения	217
§ 9.9. Основные элементарные функции комплексного переменного	219
§ 9.10. Интегрирование функций комплексного переменного. Основные свойства	224
§ 9.11. Интегральная теорема Коши	227
§ 9.12. Формула Ньютона-Лейбница	231
§ 9.13. Интегральная формула Коши	232
§ 9.14. Ряды с комплексными членами	235
§ 9.15. Степенные ряды	237
§ 9.16. Ряд Тейлора	238
§ 9.17. Ряд Лорана	241
§ 9.18. Изолированные особые точки и их классификация	245
§ 9.19. Классификация особых точек. Случай бесконечно уда-	
ленной точки	250
§ 9.20. Понятие вычета. Теорема о вычетах	252
§ 9.21. Вычисление вычетов	255
§ 9.22. Применение вычетов к вычислению интегралов	258
Предметный указатель	265

Светлой памяти своего отца школьного учителя математики Самвела Павловича Геворкяна посвящает автор эту книгу

ПРЕДИСЛОВИЕ

Данная книга вместе с нашей другой книгой, изданной под названием «Высшая математика. Основы математического анализа», охватывают весь комплекс вопросов, которые изучаются в рамках курса «Высшая математика» для инженернотехнических специальностей высших учебных заведений, за исключением раздела «Линейная алгебра и аналитическая геометрия», который готовится к печати в виде отдельной книги.

В предлагаемой книге нашли отражение следующие разделы высшей математики: «Кратные интегралы» (гл. 1), «Криволинейные и поверхностные интегралы. Элементы теории поля» (гл. 2), «Ряды» (главы 3–6), «Дифференциальные уравнения» (главы 7 и 8) и «Теория функции комплексного переменного» (гл. 9).

В книге даются ссылки на предыдущую книгу: *Геворкян П. С.* Высшая математика. Основы математического анализа. — M.: Физматлит, 2004.

Автор выражает глубокую благодарность профессору И. М. Петрушко́ за ценные замечания при написании глав 3–6.

Москва, март, 2006 г.

П.С. Геворкян

Глава 1

КРАТНЫЕ ИНТЕГРАЛЫ

§ 1.1. Задача об объеме цилиндрического бруса. Определение двойного интеграла

Подобно тому, как задача о площади криволинейной трапеции привела к понятию определенного интеграла, задача об объеме цилиндрического бруса приводит к понятию двойного (определенного) интеграла.

$$z = f(x, y) \tag{1.1}$$

— непрерывно-дифференцируемая и положительная функция двух переменных, определенная на ограниченном подмножестве (S) плоскости ${f R}^2.$

Рассмотрим тело (V), которое сверху ограничено поверхностью (1.1), снизу плоскостью z=0, а с боков — цилиндрической поверхностью, проходящей через границу γ плоского множества (S), с образующей, параллельной оси Oz (рис. 1.1). Требуется найти объем V тела (V), который представляет собой цилиндрический брус.

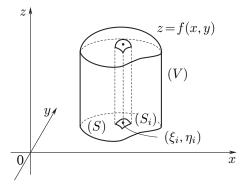


Рис. 1.1

Для решения этой задачи прибегнем к обычному в интегральном исчислении приему: разобьем множество (S) с помощью сети кривых на элементарные части $(S_1), (S_2), ..., (S_n)$. Возникают цилиндрические столбики $(V_1), (V_2), ..., (V_n)$ с основаниями $(S_1), (S_2), ..., (S_n)$. Объединение этих цилиндрических столбиков совпадает с телом (V). Мы предполагаем, что все плоские фигуры $(S_1), (S_2), ..., (S_n)$ квадрируемы, т.е. имеют площади, которые соответственно обозначим через $S_1, S_2, ..., S_n$.

Теперь в каждой фигуре (S_i) возьмем произвольную точку (ξ_i,η_i) и заметим, что

$$f(\xi_i, \eta_i)S_i$$

есть приближенное значение объема столбика (V_i) . Следовательно, приближенное значение объема всего тела (V) будет

$$\sum_{i=1}^{n} f(\xi_i, \eta_i) S_i.$$

Диаметр множества (S_i) обозначим через d_i :

$$d_i = \sup_{P, P' \in (S_i)} \rho(P, P'),$$

где ho(P,P') — расстояние между точками $P,P'\in (S_i)$. Положим

$$d = \max\{d_i, i = 1, \dots, n\}.$$

Теперь объем тела (V) естественно определить как предел

$$V = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) S_i.$$
 (1.2)

Если отвлечься от задачи об объеме цилиндрического бруса, то вышеизложенным способом приходим к понятию двойного интеграла от функции z=f(x,y) по области (S).

Определение 1.1.1. Если существует предел

$$\lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) S_i$$

независимо от выбора точек $(\xi_i, \eta_i) \in (S_i)$ и независимо от разбиения множества (S) на элементарные части, то он называется

 $\ensuremath{\mathit{двойным}}$ интегралом функции z=f(x,y) по области (S) и обозначается

$$\iint\limits_{(S)} f(x,y) \, dS,$$

или

$$\iint\limits_{(S)} f(x,y) \, dx \, dy.$$

В этом случае говорят также, что функция z=f(x,y) интегрируема на множестве $(S)\subset \mathbf{R}^2$, которое называется областью интегрирования. Величина dS (или $dx\,dy$) называется элементом площади, а x и y называются переменными интегрирования.

Понятие двойного интеграла позволяет полученную выше формулу (1.2) переписать в виде

$$V = \iint\limits_{(S)} f(x, y) \, dS. \tag{1.3}$$

§ 1.2. Задача о вычислении массы тела. Определение тройного интеграла

Пусть дано некоторое тело (V) в трехмерном пространстве ${\bf R}^3$. Предположим, что известна плотность $\rho(x,y,z)$ распределения массы в каждой точке M(x,y,z) тела (V). Требуется определить всю массу m тела (V).

Для решения этой задачи разобьем тело (V) на n частей $(V_1),\ (V_2),\ ...,\ (V_n)$ и выберем в каждой из этих частей по точке $M_i(\xi_i,\eta_i,\zeta_i)$. Теперь предположим, что плотность во всех точках части (V_i) приближенно равна плотности $\rho(\xi_i,\eta_i,\zeta_i)$. Тогда масса m_i части (V_i) приближенно равна

$$\rho(\xi_i, \eta_i, \zeta_i)V_i,$$

где V_i — объем части (V_i) . Следовательно, масса m всего тела (V) приближенно будет

$$m \approx \sum_{i=1}^{n} \rho(\xi_i, \eta_i, \zeta_i) V_i.$$

Максимальный из всех диаметров частей $(V_1), (V_2), ..., (V_n)$ обозначим через d. Тогда точное значение массы m тела (V) вычислится следующим образом:

$$m = \lim_{d \to 0} \sum_{i=1}^{n} \rho(\xi_i, \eta_i, \zeta_i) V_i.$$
 (1.4)

Итак, поставленная задача о вычислении массы тела полностью решена. Если отвлечься от этой задачи и рассматривать произвольную функцию f(x,y,z) вместо функции плотности $\rho(x,y,z)$, то вышеизложенным способом мы придем к понятию тройного интеграла функции f(x,y,z) по телу (V).

Определение 1.2.1. Если существует предел

$$\lim_{d\to 0} \sum_{i=1}^n f(\xi_i, \eta_i, \zeta_i) V_i.$$

независимо от выбора точек (ξ_i,η_i,ζ_i) и независимо от разбиения множества (V) на элементарные части, то он называется *тройным интегралом* функции u=f(x,y,z) по множеству (V) и обозначается

$$\iiint\limits_{(V)} f(x,y,z) \, dV,$$

или

$$\iiint\limits_{(V)} f(x,y,z)\,dx\,dy\,dz.$$

В этом случае говорят также, что функция u = f(x, y, z) интегрируема на множестве (V).

Теперь полученную выше формулу (1.4) для вычисления массы тела можем представить в виде

$$m = \iiint\limits_{(V)} \rho(x, y, z) \, dV.$$

Замечание 1.2.1. Во всех рассуждениях, сделанных выше, мы предположили, что все множества $V, V_1, V_2, ..., V_n$ кубируемы, т. е. имеют объемы. Для этого достаточно было потребовать, чтобы границы всех этих элементарных частей представляли собой гладкие или кусочно-гладкие поверхности.

§ 1.3. Свойства двойных интегралов. Теоремы существования

Теорема 1.3.1. Справедливо равенство

$$\iint\limits_{(S)} dS = S,\tag{1.5}$$

где S площадь фигуры (S).

Доказательство непосредственно следует из определения двойного интеграла.

Теорема 1.3.2. Пусть функции f(x,y) и $\varphi(x,y)$ определены на одном и том же множестве (S) плоскости ${f R}^2$ и на этом множестве имеют двойные интегралы. Тогда справедлива формула

$$\iint_{(S)} [Af(x,y) \pm B\varphi(x,y)] dS = A \iint_{(S)} f(x,y) dS \pm B \iint_{(S)} \varphi(x,y) dS,$$
(1.6)

 $\epsilon \partial e A u B - nocmoянные числа.$

Доказательство. Согласно определению двойного интеграла имеем

$$\iint_{(S)} [Af(x,y) \pm B\varphi(x,y)] dS = \lim_{d \to 0} \sum_{i=1}^{n} [Af(\xi_i, \eta_i) \pm B\varphi(\xi_i, \eta_i)] S_i =$$

$$= A \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) S_i \pm B \lim_{d \to 0} \sum_{i=1}^{n} \varphi(\xi_i, \eta_i) S_i =$$

$$= A \iint_{(S)} f(x,y) dS \pm B \iint_{(S)} \varphi(x,y) dS.$$

Следующие две теоремы доказываются аналогично соответствующим теоремам для функции одной переменной.

Теорема 1.3.3. Пусть функция f(x,y) определена на квадрируемом подмножестве (S) плоскости ${f R}^2$. Предположим, что

множество (S) некоторой кусочно-гладкой кривой разложено на два квадрируемые подмножества (S') и (S''). Тогда из существования двойного интеграла функции f(x,y) по области (S) следует существование двойных интегралов этой функции в обоих областях (S') и (S''), и обратно. При этом имеет место разложение

$$\iint_{(S)} f(x,y) \, dS = \iint_{(S')} f(x,y) \, dS' + \iint_{(S'')} f(x,y) \, dS''. \tag{1.7}$$

Теорема 1.3.4. Пусть $f(x,y) \leqslant \varphi(x,y)$ для всех $(x,y) \in (S)$ и существуют двойные интегралы функций f(x,y) и $\varphi(x,y)$ по (S). Тогда справедливо равенство

$$\iint\limits_{(S)} f(x,y) \, dS \leqslant \iint\limits_{(S)} \varphi(x,y) \, dS. \tag{1.8}$$

Теорема 1.3.5. Справедлива формула

$$\left| \iint\limits_{(S)} f(x,y) \, dS \right| \leqslant \iint\limits_{(S)} |f(x,y)| \, dS. \tag{1.9}$$

Доказательство. Рассмотрим очевидное двойное неравенство

$$-|f(x,y)| \leqslant f(x,y) \leqslant |f(x,y)|.$$

Применяя формулу (1.8) к этим неравенствам, получим

$$-\iint\limits_{(S)} |f(x,y)| dS \leqslant \iint\limits_{(S)} f(x,y) dS \leqslant \iint\limits_{(S)} |f(x,y)| dS,$$

что равносильно неравенству (1.9).

Теорема 1.3.6 (о среднем). Пусть функция двух переменных z=f(x,y) определена и интегрируема на замкнутом множестве $(S)\subset {\bf R}^2$. Тогда существует такая точка $(\xi,\eta)\in (S)$, что

$$\iint\limits_{(S)} f(x,y) dS = f(\xi,\eta) S. \tag{1.10}$$

еде S - площадь фигуры (S).

Доказательство. Наименьшее и наибольшее значения функции z=f(x,y) на замкнутом множестве $(S)\subset {\bf R}^2$, которые существуют согласно известной теореме Вейерштрасса, обозначим через m и M соответственно. Тогда

$$m \leqslant f(x, y) \leqslant M \tag{1.11}$$

для всех точек $(x, y) \in (S)$.

Из неравенства (1.11), учитывая теорему 1.3.4, получим

$$\iint\limits_{(S)} m \, dS \leqslant \iint\limits_{(S)} f(x,y) \, dS \leqslant \iint\limits_{(S)} M \, dS,$$

откуда в силу теоремы 1.3.1 имеем

$$mS \leqslant \iint\limits_{(S)} f(x,y) \, dS \leqslant MS,$$

или

$$m \leqslant \frac{1}{S} \iint\limits_{(S)} f(x, y) dS \leqslant M.$$

Учитывая последнее двойное неравенство, согласно известной теореме Больцано–Коши можем найти такую точку $(\xi,\eta)\in (S)$, что

$$f(\xi, \eta) = \frac{1}{S} \iint_{(S)} f(x, y) dS,$$

откуда и получаем формулу (1.10).

Теорема доказана.

Теперь сформулируем две *теоремы существования двойного* интеграла.

Теорема 1.3.7. Всякая непрерывная в области (S) функция z = f(x,y) интегрируема.

Теорема 1.3.8. Если функция z = f(x,y) ограничена и имеет разрывы только лишь на конечном числе гладких кривых области (S), то она интегрируема.

Напомним, что *областью* называется открытое и связное подмножество плоскости.

Замечание 1.3.1. Все теоремы этого параграфа, с соответствующими поправками, справедливы и для тройных интегралов.

§ 1.4. Приведение двойного интеграла к повторному

Пусть функция двух переменных z=f(x,y) определена на прямоугольнике

 $\Delta = [a, b] \times [c, d],$

т. е. на множестве точек $(x,y) \in \mathbf{R}^2$, которые удовлетворяют условию

 $a \leqslant x \leqslant b$, $c \leqslant y \leqslant d$,

где a < b, а c < d.

Теорема 1.4.1. Пусть для функции f(x,y) существует двойной интеграл

 $\iint_{\Lambda} f(x,y) \, dx \, dy$

и также при каждом фиксированном $x \in [a,b]$ существует обычный интеграл

$$I(x) = \int_{c}^{d} f(x, y) \, dy.$$

Тогда существует повторный интеграл

$$\int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) \, dy \right\} dx \equiv \int_{a}^{b} dx \int_{c}^{d} f(x, y) \, dy$$

и выполняется равенство

$$\iint_{\Lambda} f(x,y) \, dx \, dy = \int_{a}^{b} dx \int_{c}^{d} f(x,y) \, dy. \tag{1.12}$$

Доказательство. Разобьем стороны прямоугольника на части с помощью точек

$$a = x_1 < x_2 < \dots < x_n = b$$

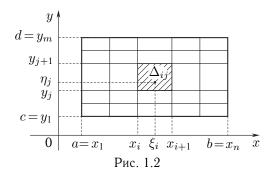
И

$$c = y_1 < y_2 < \dots < y_m = d.$$

Тогда прямоугольник Δ разобьется на элементарные прямоугольники

$$\Delta_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}],$$

$$i = 1, \dots, n-1$$
 и $j = 1, \dots, m-1$.



Заметим, что соответствующую разбиению Δ_{ij} интегральную сумму двойного интеграла $\int\limits_{\Delta} f(x,y)\,dx\,dy$ можно представить

в следующем виде:

$$\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} f(\xi_i, \eta_j) \Delta x_i \Delta y_j,$$

где $\Delta x_i = x_{i+1} - x_i, \ \Delta y_j = y_{j+1} - y_j, \ \text{a} \ (\xi_i, \eta_j) \in \Delta_{ij}$ (рис. 1.2). Следовательно,

$$\iint_{\Delta} f(x,y) \, dx \, dy = \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_j \to 0}} \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} f(\xi_i, \eta_j) \Delta x_i \Delta y_j =$$

$$= \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_j \to 0}} \sum_{i=1}^{n-1} \left\{ \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_j \to 0}} \sum_{j=1}^{m-1} f(\xi_i, \eta_j) \Delta y_j \right\} \Delta x_i =$$

$$= \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_j \to 0}} \sum_{i=1}^{n-1} \left\{ \int_{c}^{d} f(\xi_i, y) \, dy \right\} \Delta x_i = \int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) \, dy \right\} dx =$$

$$= \int_{a}^{b} dx \int_{c}^{d} f(x, y) \, dy,$$

что и требовалось доказать.

Замечание 1.4.1. Оказывается, для выполнения условия последней теоремы, а, стало быть, и формулы (1.12), достаточно потребовать непрерывность функции f(x,y) на прямоугольнике Δ . В этом случае справедлива также формула

$$\iint_{\Delta} f(x,y) \, dx \, dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y) \, dx, \tag{1.13}$$

а значит, и равенство

$$\int_{a}^{b} dx \int_{c}^{d} f(x, y) \, dy = \int_{c}^{d} dy \int_{a}^{b} f(x, y) \, dx. \tag{1.14}$$

Таким образом вычисление двойного интеграла сводится к вычислению повторного интеграла.

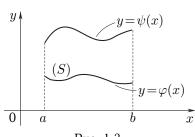


Рис. 1.3

Теперь предположим, что функция f(x,y) определена и непрерывна на множестве $(S) \subset \mathbb{R}^2$, которое ограничено глад-кими кривыми

$$y = \varphi(x), \quad y = \psi(x),$$

 $(\varphi(x) \leqslant \psi(x), \quad a \leqslant x \leqslant b)$

и прямыми x = a и x = b (рис. 1.3.). Тогда, аналогично

последней теореме, доказывается формула

$$\iint\limits_{(S)} f(x,y) \, dx \, dy = \int\limits_a^b dx \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) \, dy. \tag{1.15}$$

Пример 1.4.1. Вычислить площадь S фигуры (S), ограниченной эллипсом (рис. 1.4)

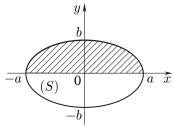


Рис. 1.4

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Согласно теореме 1.3.1 имеем

$$S = \iint_{(S)} dx \, dy.$$

Для вычисления последнего двойного

интеграла применим формулу (1.12):

$$S = \iint_{(S)} dx \, dy = 2 \int_{-a}^{a} dx \int_{0}^{\frac{b}{a}\sqrt{a^{2}-x^{2}}} dy = \frac{2b}{a} \int_{-a}^{a} \sqrt{a^{2}-x^{2}} \, dx =$$

$$= \frac{4b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} \, dx = \frac{4b}{a} \int_{0}^{\pi/2} \sqrt{a^{2}-a^{2}\sin^{2}t} \quad a\cos t \, dt =$$

$$= 4ab \int_{0}^{\pi/2} \cos^{2}t \, dt = 2ab \int_{0}^{\pi/2} (1+\cos 2t) \, dt = 2ab \left(t + \frac{1}{2}\sin 2t\right) \Big|_{0}^{\pi/2} = \pi ab.$$

Выше была произведена замена переменной $x = a \sin t$.

§ 1.5. Вычисление тройного интеграла

Пусть функция u=f(x,y,z) определена и непрерывна на множестве $(V)=[x_1,x_2]\times[y_1,y_2]\times[z_1,z_2]$, который представляет собой параллелепипед (рис. 1.5). Как и в случае двойного интеграла, можно доказать, что справедлива следующая формула вычисления тройного интеграла функции u=f(x,y,z) по множеству (V):

$$\iiint\limits_{(V)} f(x,y,z) \, dx \, dy \, dz = \int\limits_{x_1}^{x_2} dx \int\limits_{y_1}^{y_2} dy \int\limits_{z_1}^{z_2} f(x,y,z) \, dz. \tag{1.16}$$

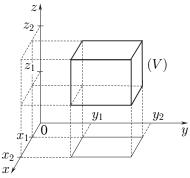
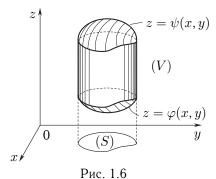


Рис. 1.5

Пусть теперь функция u = f(x, y, z) определена и непрерывна



на теле (V), имеющем форму цилиндрического бруса, ограниченного снизу поверхностью z= $= \varphi(x,y)$, сверху — поверхностью $z=\psi(x,y)$, а с боков — цилиндрической поверхностью с образующими, параллельными оси Oz. Проекцию тела (V) на координатную плоскость Oxy обозначим через (S) (рис. 1.6). Тогда справедлива формула

$$\iiint\limits_{(V)} f(x,y,z) \, dx \, dy \, dz = \iint\limits_{(S)} dx \, dy \int\limits_{\varphi(x,y)}^{\psi(x,y)} f(x,y,z) \, dz. \tag{1.17}$$

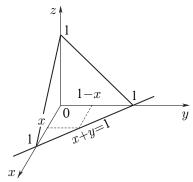


Рис. 1.7

Пример 1.5.1. Вычислить объем V тела (V), ограниченного плоскостями $x=0,\ y=0,\ z=0$ и x+y+z=1 (рис. 1.7).

Искомый объем равняется тройному интегралу

$$V = \iiint\limits_{(V)} dx \, dy \, dz,$$

который вычислим по формуле (1.17):

$$V = \iiint_{(V)} dx \, dy \, dz = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} dz = \int_{0}^{1} dx \int_{0}^{1-x} (1-x-y) \, dy =$$

$$= \int_{0}^{1} dx \left[(1-x)y - \frac{y^{2}}{2} \right] \Big|_{0}^{1-x} = \frac{1}{2} \int_{0}^{1} (1-x)^{2} \, dx =$$

$$= \frac{1}{2} \int_{0}^{1} (x-1)^{2} \, d(x-1) = \frac{1}{2} \left. \frac{(x-1)^{3}}{3} \right|_{0}^{1} = \frac{1}{6}.$$

§ 1.6. Замена переменных в двойном интеграле

Пусть функция z = f(x,y) определена на области (D) с кусочно-гладкой границей. Рассмотрим двойной интеграл

$$\iint\limits_{(D)} f(x,y) \, dx \, dy \tag{1.18}$$

и в нем произведем замену переменных

$$x = a\xi + b\eta,$$

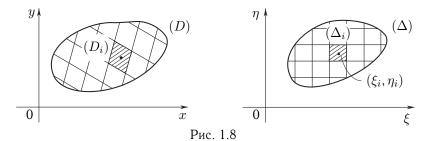
$$y = c\xi + d\eta,$$
 (1.19)

где

$$J = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \neq 0.$$

Наша задача состоит в том, чтобы выяснить, как видоизменится двойной интеграл (1.18) при замене переменных (1.19).

Предположим, что преобразование, обратное к (1.19), отображает область (D) с кусочно-гладкой границей в область (Δ) также с кусочно-гладкой границей (рис. 1.8).



На плоскости $O\xi\eta$ рассмотрим квадратную сетку со стороной длины h. Этой сеткой область (Δ) разобьется на части (Δ_i) , $i=1,\ldots,n$. С помощью преобразования (1.19) получим соответствующее разбиение (D_i) , $i=1,\ldots,n$, области (D), где каждое (D_i) представляет собой некоторый параллелограмм («полный» или «неполный»). Докажем, что

$$D_i = |J|\Delta_i, \tag{1.20}$$

где D_i и Δ_i — площади (D_i) и (Δ_i) соответственно.

Квадрат (Δ_i) определяется двумя векторами (h,0) и (0,h). Преобразованием (1.19) эти векторы отображаются в векторы (ah,ch) и (bh,dh) соответственно, которые и определяют

параллелограмм (D_i) . Следовательно, площадь этого параллелограмма вычисляется по формуле

$$D_i = \left| \begin{array}{cc} ah & bh \\ ch & dh \end{array} \right| = h^2 \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = h^2 |J| = |J| \Delta_i.$$

Теперь вычислим двойной интеграл:

$$\iint_{(D)} f(x,y) dx dy = \lim_{h \to 0} \sum_{i=1}^{n} f(x_i, y_i) D_i =$$

$$= \lim_{h \to 0} \sum_{i=1}^{n} f(a\xi_i + b\eta_i, c\xi_i + d\eta_i) |J| \Delta_i =$$

$$= \iint_{(\Delta)} f(a\xi + b\eta, c\xi + d\eta) |J| d\xi d\eta.$$

Таким образом мы получили следующую формулу замены переменных в двойном интеграле в случае линейного преобразования (1.19):

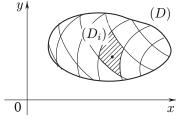
$$\iint\limits_{(D)} f(x,y) \, dx \, dy = \iint\limits_{(\Delta)} f(a\xi + b\eta, c\xi + d\eta) |J| \, d\xi \, d\eta. \tag{1.21}$$

Теперь в двойном интеграле (1.18) произведем произвольную замену переменных:

$$x = \varphi(\xi, \eta),$$

$$y = \psi(\xi, \eta).$$
 (1.22)

Предположим, что функции $\varphi(\xi,\eta)$ и $\psi(\xi,\eta)$ задают взаимнооднозначное отображение области (Δ) плоскости $O\xi\eta$ на область (D) плоскости Oxy. Предположим также, что эти функции имеют непрерывные частные производные в области (Δ) (рис. 1.9).



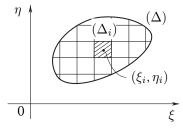


Рис. 1.9

В этом случае очевидно, что квадратному разбиению (Δ_i) , $i=1,\ldots,n$, области (Δ) с помощью преобразования (1.22) будет соответствовать разбиение $(D_i),\ i=1,\ldots,n$, области (D), где каждое (D_i) уже представляет собой криволинейный параллелограмм. Площадь D_i криволинейного параллелограмма (D_i) вычисляется по формуле

$$D_i = |J(\xi_i, \eta_i)| \Delta_i, \tag{1.23}$$

где $(\xi_i, \eta_i) \in \Delta_i$ — некоторая точка, а

$$J(\xi_i, \eta_i) = \begin{vmatrix} \frac{\partial \varphi(\xi_i, \eta_i)}{\partial \xi_i} & \frac{\partial \varphi(\xi_i, \eta_i)}{\partial \eta_i} \\ \frac{\partial \psi(\xi_i, \eta_i)}{\partial \xi_i} & \frac{\partial \psi(\xi_i, \eta_i)}{\partial \eta_i} \end{vmatrix}$$

— определитель Якоби преобразования (1.22) в точке (ξ_i, η_i) (доказательство формулы (1.23) не приводим).

Теперь мы можем вычислить двойной интеграл

$$\iint_{(D)} f(x,y) dx dy = \lim_{h \to 0} \sum_{i=1}^{n} f(x_i, y_i) D_i =$$

$$= \lim_{h \to 0} \sum_{i=1}^{n} f(\varphi(\xi_i, \eta_i), \psi(\xi_i, \eta_i)) |J(\xi_i, \eta_i)| \Delta_i =$$

$$= \iint_{(\Delta)} f(\varphi(\xi, \eta), \psi(\xi, \eta)) |J(\xi, \eta)| d\xi d\eta.$$

Итак, мы получили формулу замены переменных в двойном интеграле в общем случае:

$$\iint\limits_{(D)} f(x,y) \, dx \, dy = \iint\limits_{(\Delta)} f(\varphi(\xi,\eta), \psi(\xi,\eta)) |J(\xi,\eta)| \, d\xi \, d\eta. \tag{1.24}$$

Замечание 1.6.1. Формула (1.21) является частным случаем формулы (1.24), поскольку определитель Якоби преобразования (1.19) есть определитель $J=\left| \begin{array}{cc} a & b \\ c & d \end{array} \right|.$

§ 1.7. Двойной интеграл в полярных координатах

Рассмотрим частный случай замены переменных, который часто применяется при вычислениях двойных интегралов. Это — замена декартовых координат x и y полярными координатами r и φ .

Как мы знаем (см. «Высшая математика. Основы математического анализа», § 7.3) преобразование полярных координат в прямоугольные декартовы осуществляется формулами

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$
 (1.25)

Вычислим определитель Якоби преобразования (1.25):

$$J(r,\varphi) = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r \geqslant 0.$$

Теперь предположим, что функция z = f(x,y) определена и непрерывна в области (D), которая ограничена лучами

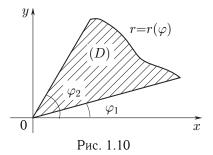
 $arphi=arphi_1,\;arphi=arphi_2$ и непрерывной кривой

$$r = r(\varphi),$$

где $\varphi_1 \leqslant \varphi \leqslant \varphi_2$ (рис. 1.10).

Применяя формулу (1.24) замены переменных в двойном интеграле получим следующую формулу вычисления двойного интеграла в полярных координатах:

(1.26)



 $\iint\limits_{\langle D \rangle} f(x,y) \, dx \, dy = \int\limits_{\langle C \rangle}^{\varphi_2} d\varphi \int\limits_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) \, r \, dr.$

Пример 1.7.1. Вычислить двойной интеграл

$$\iint\limits_{x^2+y^2\leqslant R^2} e^{x^2+y^2} dx \, dy.$$

Произведем замену переменных (1.25), т. е. перейдем к полярным координатам и применим формулу (1.26). Тогда получим

$$\iint_{x^2+y^2 \leqslant R^2} e^{x^2+y^2} dx \, dy = \int_0^{2\pi} d\varphi \int_0^R e^{r^2} r \, dr = \frac{1}{2} \int_0^{2\pi} \left(e^{R^2} - 1 \right) \, d\varphi =$$

$$= \frac{1}{2} \left(e^{R^2} - 1 \right) \varphi \Big|_0^{2\pi} = \pi \left(e^{R^2} - 1 \right).$$

§ 1.8. Замена переменных в тройном интеграле

Пусть функция u = f(x, y, z) определена и непрерывна в трехмерной области (D) с кусочно-гладкой границей. Произведем произвольную замену переменных:

$$x = \varphi(\xi, \eta, \zeta),$$

$$y = \psi(\xi, \eta, \zeta),$$

$$z = \chi(\xi, \eta, \zeta)$$
(1.27)

в тройном интеграле

$$\iiint\limits_{(D)} f(x, y, z) \, dx \, dy \, dz, \tag{1.28}$$

где предполагаем, что функции $\varphi(\xi,\eta,\zeta)$, $\psi(\xi,\eta,\zeta)$ и $\chi(\xi,\eta,\zeta)$ задают взаимно-однозначное отображение некоторой области (Δ) пространства $O\xi\eta\zeta$ на область (D) пространства Oxyz. Предположим также, что эти функции имеют непрерывные частные производные в области (Δ).

В сделанных предположениях справедлива следующая формула замены переменных в тройном интеграле:

$$\iiint_{(D)} f(x, y, z) dx dy dz =
= \iiint_{(\Delta)} f \left[\varphi(\xi, \eta, \zeta), \psi(\xi, \eta, \zeta), \chi(\xi, \eta, \zeta) \right] |J(\xi, \eta, \zeta)| d\xi d\eta d\zeta, \quad (1.29)$$

где

$$J(\xi,\eta,\zeta) = \begin{vmatrix} \frac{\partial \varphi(\xi,\eta,\zeta)}{\partial \xi} & \frac{\partial \varphi(\xi,\eta,\zeta)}{\partial \eta} & \frac{\partial \varphi(\xi,\eta,\zeta)}{\partial \zeta} \\ \frac{\partial \psi(\xi,\eta,\zeta)}{\partial \xi} & \frac{\partial \psi(\xi,\eta,\zeta)}{\partial \eta} & \frac{\partial \psi(\xi,\eta,\zeta)}{\partial \zeta} \\ \frac{\partial \chi(\xi,\eta,\zeta)}{\partial \xi} & \frac{\partial \chi(\xi,\eta,\zeta)}{\partial \eta} & \frac{\partial \chi(\xi,\eta,\zeta)}{\partial \zeta} \end{vmatrix}$$

является определителем Якоби преобразования (1.27).

Доказательство формулы (1.29) аналогично доказательству соответствующей формулы (1.24) для двойного интеграла.

§ 1.9. Тройной интеграл в сферических координатах

Пусть в трехмерном пространстве ${f R}^3$ задана прямоугольная декартова система координат Oxyz. $C \phi$ ерические, или полярные, координаты в пространстве связаны с прямоугольными декартовыми координатами следующими формулами:

$$\begin{cases} x = r \cos \theta \cos \varphi, \\ y = r \cos \theta \sin \varphi, \\ z = r \sin \theta, \end{cases}$$
 (1.30)

где
$$0 \leqslant r < +\infty$$
, $-\pi/2 \leqslant \theta \leqslant \pi/2$, $0 \leqslant \varphi < 2\pi$.

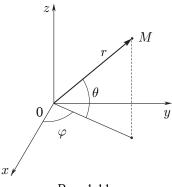


Рис. 1.11

Геометрический смысл сферических координат (r, φ, θ) точки M ясен из рис. 1.11: r есть длина радиус вектора \overrightarrow{OM} , θ — угол между этим вектором и его проекцией на плоскость Oxy, а φ — угол между указанной проекцией и положительным направлением оси Ox, отсчитываемый от этой оси против часовой стрелки.

Вычислим определитель Якоби преобразования (1.30):

$$J(r, \varphi, \theta) = \begin{vmatrix} \cos \theta \cos \varphi & -r \cos \theta \sin \varphi & -r \sin \theta \cos \varphi \\ \cos \theta \sin \varphi & r \cos \theta \cos \varphi & -r \sin \theta \sin \varphi \\ \sin \theta & 0 & r \cos \theta \end{vmatrix} = r^2 \cos \theta.$$

Следовательно, при переходе к сферическим (полярным) координатам подынтегральная функция тройного интеграла умножится на $r^2\cos\theta$.

Пример 1.9.1. Вычислить тройной интеграл

$$\iiint\limits_{(D)} xyz\,dx\,dy\,dz,$$

где (D) — область точек с положительными координатами, ограниченная плоскостями $x=0,\,y=0,$ z=0 и сферой $x^2+y^2+z^2=1.$

Введем сферические координаты по формулам (1.30). Тогда нетрудно заметить, что область (D) определяется следующими неравенствами (см. рис. 1.12):

$$\begin{aligned} &0\leqslant r\leqslant 1,\\ &0\leqslant \varphi\leqslant \frac{\pi}{2},\\ &0\leqslant \theta\leqslant \frac{\pi}{2}. \end{aligned}$$

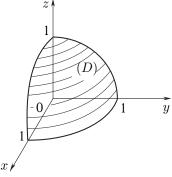


Рис. 1.12

Согласно формуле (1.29) имеем

$$\iiint_{(D)} xyz \, dx \, dy \, dz = \int_{0}^{\pi/2} d\varphi \int_{0}^{\pi/2} d\theta \int_{0}^{1} r^{5} \cos^{3}\theta \sin\theta \cos\varphi \sin\varphi \, dr =$$

$$= \int_{0}^{\pi/2} \left(-\cos^{3}\theta \right) \, d\cos\theta \int_{0}^{\pi/2} \left(-\cos\varphi \right) \, d\cos\varphi \int_{0}^{1} r^{5} dr =$$

$$= \frac{\cos^{4}\theta}{4} \Big|_{0}^{\pi/2} \cdot \frac{\cos^{2}\varphi}{2} \Big|_{0}^{\pi/2} \cdot \frac{r^{6}}{6} \Big|_{0}^{1} = \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{48}.$$