Бобылев Ю.В. Кузелев М.В.

Нелинейные явления при электормагнитных взаимодействиях электронных пучков с плазмой

УДК 533.9 ББК 22.338 Б72

Р Н Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 09-02-07022д

Бобылёв Ю.В., Кузелев М.В. **Нелинейные явления при** электромагнитных взаимодействиях электронных пучков с плазмой. — М.: ФИЗМАТЛИТ, 2009. — 456 с. — ISBN 978-5-9221-1193-5.

Представлено современное состояние нелинейной теории взаимодействия электронных пучков с плазмой. Основное внимание уделено излучательным пучковым неустойчивостям типа коллективного и одночастичного эффектов Черенкова, а также процессам вынужденного рассеяния плазменных и электромагнитных волн на пучках. Методами разложения траекторий и импульсов частиц по степеням поля исследованы нелинейные стадии неустойчивостей, стабилизирующиеся нелинейными сдвигами частот пучковых и плазменных волн. Нелинейные явления, связанные с захватом частиц и опрокидыванием волн, исследованы численными методами. Рассмотрена также нелинейная теория неустойчивостей плазмы, электроны которой движутся относительно неподвижного ионного фона.

Рассмотрены нелинейные электромагнитные явления в пространственно неоднородных электронном пучке и плазме. Изложена также квантовая теория черенковских пучковых неустойчивостей в изотропных средах.

Для научных работников, аспирантов и студентов старших курсов, специализирующихся в области электродинамики плазмы, плазменной электроники, физики нелинейных волновых процессов и компьютерной физики.

ISBN 978-5-9221-1193-5

© ФИЗМАТЛИТ, 2009
© Ю. В. Бобылев, М. В. Кузелев, 2009

оглавление

Предисловие	7
Глава 1. Описание динамики заряженных частиц в нелинейной теории бесстолкновительной плазмы	9
1.1. Кинетическое и гидродинамическое описания	9
1.2. Решение задачи Коши для линейного дифференциального уравне- ния первого порядка с помощью первых интегралов	14
1.3. Решение задачи Коши методом интегрирования по начальным данным	17
1.4. Начальная задача Коши для уравнения Власова и метод интегри- рования по начальным данным	21
1.5. Особенности граничной задачи для уравнения Власова и ее реше- ние методом интегрирования по начальным данным	25
1.6. Метод интегрирования по начальным данным и неоднородные ки- нетические уравнения	30
1.7. Примеры решения начальных и граничных задач для уравнения Власова методом интегрирования по начальным данным	31
1.8. Многожидкостная гидродинамика и интегрирование по начальным данным	36
Глава 9 Нелинейная теория взаимолействия нерелятивистского	
электронного пучка с плазмой	43
2.1. Основные уравнения нелинейной теории	43
2.2. Линейное приближение.	48
2.3. Цилиндрическая пучково-плазменная система	52
2.4. Численное моделирование взаимодействия нерелятивистского элек- тронного пучка с плазмой	55
2.5. Метод разложения траекторий	67
2.6. Нелинейная динамика коллективного эффекта Черенкова	73
2.7. Резонансное возбуждение гармоник при коллективном эффекте Черенкова. Нелинейные спектры ленгмюровских волн	78
2.8. Метод неполного численного моделирования. Нелинейная теория одночастичного эффекта Черенкова	85

4	Оглавление

Глава 3. Нелинейная динамика неустойчивости плазмы с током	92 92
3.2. Линейный анализ.	94
3.3. Численное моделирование неустойчивости плазмы с током в режи- ме сильного взаимодействия	96
3.4. Нелинейная динамика неустойчивости плазмы с током в прибли- жении кубичной нелинейности. Режим слабого взаимодействия	99
3.5. Влияние постоянной составляющей электрического поля на дина- мику тока в плазме при неустойчивости Бунемана	104
Глава 4. Релятивистские нелинейные уравнения взаимодействия прямолинейного электронного пучка с плазмой. Непотенциаль- ная линейная теория	110
4.1. Вывод основных нелинейных уравнений релятивистской теории че- ренковской пучковой неустойчивости в плазме	110
4.2. Частные случаи нелинейных уравнений релятивистской теории че- ренковской пучковой неустойчивости в плазме	117
4.3. Дисперсионное уравнение линейной теории	121
в плазменных волноводах	123
Глава 5. Релятивистская нелинейная теория пучково-плазменно- го взаимодействия в режиме коллективного эффекта Черенкова	135
5.1. Нелинейные уравнения высокочастотной черенковской неустойчи- вости плотного релятивистского электронного пучка в плазме, опи- сываемой в линейном приближении	135
5.2. Нелинейная динамика высокочастотной неустойчивости в прибли- жении кубической нелинейности. Метод разложения импульсов	137
5.3. Нелинейные уравнения низкочастотной черенковской неустойчиво- сти плотного релятивистского электронного пучка в плазме	148
5.4. Нелинейная динамика низкочастотной неустойчивости в приближе- нии кубической нелинейности	152
Глава 6. Нелинейная теория высокочастотной черенковской неустойчивости плотного релятивистского электронного пучка в плотной нелинейной плазме. Режим коллективного	
ВЗАИМОДЕЙСТВИЯ	160
6.2. Разложение траекторий и импульсов электронов с точностью до	100
нелинейности третьего порядка	162
6.3. Нелинейная динамика коллективного черенковского взаимодей- ствия релятивистского электронного пучка с плотной нелинейной плазмой в приближении кубической нелинейности	168

Оглавление	5
1 лава 7. Компьютерное моделирование неустойчивостей реляти- вистских электронных пучков в плазме	180
71 Формулировка залачи Основные нелинейные уравнения	180
7.2. Олночастичный режим	184
7.3 Коллективный режим Формирование и распал «солитонополобных»	101
структур	188
7.4. Численное моделирование неустойчивости релятивистского пучка в плазме, развивающейся в одночастичном режиме вблизи порога	196
Глава 8. Нелинейная динамика параметрических неустойчиво- стей при коллективном эффекте Черенкова	205
8 1 Неличейные уравнения трехволнового взаимолействия и их личей-	200
ный анализ	205
8.2. Разложение траекторий с точностью до нелинейности третьего порядка — нерелятивистское приближение	217
8.3. Нелинейная динамика распадной и взрывной неустойчивостей в нерелятивистском случае	221
8.4. Аналитическая релятивистская теория процессов рассеяния в при- ближении кубической нелинейности	230
8.5. Релятивистский эффект энергетической фазировки при вынужденном рассеянии электромагнитных волн на электронном пучке	241
8.6. Четырехволновое рассеяние электромагнитных волн на релятивист- ском пучке	245
Глава 9. Релятивистская теория рассеяния линейно поляризован-	
ных электромагнитных волн на незамагниченном пучке элек-	951
	201
9.1. Перелятивистская нелинеиная теория	251
9.2. Релятивистские нелинейные уравнения	207
9.5. Линеиная теория и механизмы нелинеиной стаоилизации	200
9.4. Разложение траектории и импульсов в коллективном режиме	209
	274
а пава 10. использование метода интегрирования по начальным данным для описания неоднородных плазменных образований	277
10.1. Кинетическое описание нелинейной динамики поперечно- неоднородного плазменного потока (слиппинг-неустойчивость).	
Случай плоской геометрии	277
10.2. Кинетическое описание нелинейной динамики многокомпонентной заряженной плазмы. Случай цилинлрической геометрии	294
10.3. Возбуждение волн в неоднородной плазме	328

6	Оглавление

Глава II. Квантовая теория черенковских пучковых неустойчиво- стей в плазме	350
11.1. Черенковское излучение продольных ленгмюровских волн. Нерелятивистская теория	350
11.2. Черенковское излучение продольных ленгмюровских волн в релятивистском случае	368
11.3. Черенковское излучение поперечных электромагнитных волн	374
Глава 12. Спонтанное и вынужденное излучение электронного	
пучка конечной длительности	382
12.1. Черенковское излучение электронного слоя в одномерной плазме	382
ных волн в изотропной плазме	407
12.3. Теория черенковского излучения прямолинейным пучком поперечных волн в изотропном диэлектрике	413
12.4. Черенковское излучение прямолинейным пучком поперечно-	401
продольных волн в анизотропнои плазме	421
12.5. Черенковское излучение прямолинейным пучком ионно-звуковых волн в неизотермической плазме	426
12.6. Аномальный эффект Доплера	428
Дополнение Д1. Методы решения дифференциальных уравне-	
ний с кубическими нелинейностями	436
Д1.1. Нелинейное уравнение Шредингера	436
Д1.2. Системы двух нелинейных уравнений	437
Дополнение Д2. Граничные условия излучения для нестацио-	
нарных задач электродинамики ограниченной плазмы	445
Список литературы	453

Предисловие

В последние десятилетия в связи с успехами в создании и практическом применении мощных электронных пучков проводятся интенсивные теоретические исследования в области физики пучков заряженных частиц. Многочисленные и весьма успешные результаты этих исследований впечатляют. Созданы не только новые научные направления, например, плазменная релятивистская СВЧ электроника, но и дополнены новыми разделами традиционные области — физика плазмы, теория волн, физическая кинетика и другие. Особо должны быть отмечены достижения в исследовании нелинейных явлений в пучках заряженных частиц. Объем журнальных теоретических работ по нелинейной физике электронных и ионных пучков весьма обширен. При этом наблюдается многообразие подходов, определенная несогласованность в терминологии, большое число взаимодополняющих, дублирующих, а иногда и не согласующихся результатов. Что же касается обобщающих трудов, посвященных систематическому изложению хотя бы какого-то одного аспекта пучковой физики, то их сравнительно немного. Настоящая монография призвана частично устранить этот пробел. В ней изложено современное состояние нелинейной физики электронных пучков в той ее части, которая посвящена электромагнитным взаимодействиям пучков с плазмой. Под электромагнитными взаимодействиями в основном понимаются многочисленные пучково-плазменные неустойчивости, при которых происходит возбуждение и излучение электромагнитных волн в плазме.

Теоретический анализ механизмов взаимодействия пучков заряженных частиц с плазмой показал, что в зависимости от параметров пучка и плазмы и их геометрии пучково-плазменные неустойчивости развиваются в различных режимах, включая одночастичный и коллективный вынужденные эффекты Черенкова, аномальный эффект Доплера, эффекты томсоновского и рамановского излучения и рассеяния. Оказалось, что многие из указанных неустойчивостей стабилизируются при достаточно слабой нелинейности пучка и плазмы. Это свидетельствует о том, что связь пучковой и плазменной подсистем определяется неким малым параметром, и делает возможным аналитическое описание нелинейной динамики соответствующих режимов пучково-плазменных неустойчивостей. Именно разработке, изложению и использованию аналитических методов описания нелинейной динамики электронных пучков в плазме, в том числе и релятивистских, посвящена значительная часть настоящей монографии. Однако при многих пучково-плазменных взаимодействиях развиваются столь интенсивные нелинейные процессы, что описание их аналитическими методами оказывается невозможным. Исключить такие процессы из рассмотрения значит нарушить целостность исследуемой проблемы. Поэтому в монографии обсуждаются наиболее важные и интересные результаты компьютерного моделирования нелинейных явлений во взаимодействующих электронном пучке и плазме.

В основу настоящей монографии, опирающейся на классические результаты и известные методы физики электронных пучков и электродинамики плазмы, положены оригинальные результаты, полученные авторами при исследовании электромагнитных взаимодействий электронных пучков с плазмой и плазменными системами и нашедшие практические применения в плазменной электронике и радиофизике. Главы 1–9 и Дополнения написаны авторами совместно, гл. 10–12 написаны Кузелевым М.В. При работе над гл. 12 использованы материалы обзора, написанного совместно с А.А. Рухадзе, которому авторы выражают глубокую благодарность. Авторы надеются, что монография будет полезна и интересна специалистам, работающим в областях физики плазмы, плазменной электроники, теории волн и электродинамики, а также аспирантам и студентам соответствующих специальностей университетов.

Глава 1

ОПИСАНИЕ ДИНАМИКИ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЛИНЕЙНОЙ ТЕОРИИ БЕССТОЛКНОВИТЕЛЬНОЙ ПЛАЗМЫ

1.1. Кинетическое и гидродинамическое описания

Основными методами теоретического описания динамики заряженных частиц бесстолкновительной плазмы являются метод кинетического уравнения Власова и метод многожидкостной гидродинамики. Напомним ключевые положения названных методов и обрисуем характер рассматриваемых ниже теоретических проблем.

Наиболее общее описание плазмы достигается с помощью кинетического уравнения. Метод кинетического уравнения использует вероятностный подход. При этом вводится функция распределения частиц сорта α

$$f_{N_{\alpha}}\left(t,\mathbf{r}_{1},\ldots,\mathbf{r}_{s},\ldots,\mathbf{r}_{N_{\alpha}},\mathbf{p}_{1},\ldots,\mathbf{p}_{s},\ldots,\mathbf{p}_{N_{\alpha}}\right),$$
(1.1.1)

характеризующая распределение координат \mathbf{r}_s и импульсов \mathbf{p}_s всех N_α частиц соответствующего сорта. Такая функция распределения зависит от очень большого числа переменных, поэтому описание, основанное на распределении (1.1.1), является слишком подробным и сложным. Однако если частицы не взаимодействуют между собой (т.е. не сталкиваются), то их можно рассматривать как независимые. Тогда, в соответствии с теоремой умножения вероятностей независимых событий, функцию распределения N_α частиц можно представить в виде произведения

$$f_{N_{\alpha}}\left(t,\mathbf{r}_{1},\ldots,\mathbf{r}_{s},\ldots,\mathbf{r}_{N_{\alpha}},\mathbf{p}_{1},\ldots,\mathbf{p}_{s},\ldots,\mathbf{p}_{N_{\alpha}}\right) = \prod_{s=1}^{N_{\alpha}} f_{\alpha}\left(t,\mathbf{r}_{s},\mathbf{p}_{s}\right).$$
 (1.1.2)

Здесь $f_{\alpha}(t, \mathbf{r}, \mathbf{p})$ — одночастичная функция распределения частиц сорта α , определяющая плотность вероятности нахождения частицы в момент времени t в точке \mathbf{r} , \mathbf{p} фазового пространства. При этом выражение

$$f_{\alpha}\left(t,\mathbf{r},\mathbf{p}\right)d\mathbf{r}\,d\mathbf{p}\tag{1.1.3}$$

определяет вероятность того, что частица в момент времени t находится в элементе объема $d\mathbf{r} d\mathbf{p}$ фазового пространства около точки \mathbf{r}, \mathbf{p} . Здесь $d\mathbf{r} = dx dy dz$ и $d\mathbf{p} = dp_x dp_y dp_z$ — элементы объемов в конфигурационном и импульсном пространствах соответственно. Функцию распределения принято нормировать так, что

$$\int_{\{|\mathbf{r}|<\infty, |\mathbf{p}|<\infty\}} f_{\alpha}(t, \mathbf{r}, \mathbf{p}) \, d\mathbf{r} \, d\mathbf{p} = \mathcal{N}_{\alpha}, \qquad (1.1.4)$$

поэтому величина (1.1.3) является на самом деле не вероятностью, а вероятностью, умноженной на полное число частиц соответствующего сорта N_{α}. То есть при такой нормировке (1.1.3) есть просто число частиц сорта α , находящихся в момент времени t в элементе объема $d\mathbf{r} d\mathbf{p}$ около точки \mathbf{r}, \mathbf{p} .

Получим уравнение, которому удовлетворяет одночастичная функция распределения $f_{\alpha}(t, \mathbf{r}, \mathbf{p})$. В произвольный момент времени t_0 число частиц в элементе объема $d\mathbf{r}_0 d\mathbf{p}_0$ около произвольной точки $\mathbf{r}_0, \mathbf{p}_0$ по определению есть $f_{\alpha}(t_0, \mathbf{r}_0, \mathbf{p}_0) d\mathbf{r}_0 d\mathbf{p}_0$. Частица, находившаяся в момент t_0 в точке $\mathbf{r}_0, \mathbf{p}_0$, в момент времени t перейдет в точку фазового пространства $\mathbf{r} = \mathbf{r}(t)$ и $\mathbf{p} = \mathbf{p}(t)$, где $\mathbf{r}(t), \mathbf{p}(t)$ — уравнения траектории в фазовом пространстве. Траектория определяется из уравнений движения

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{p}}{dt} = e_{\alpha} \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{v} \cdot \mathbf{B} \right] \right\}, \quad (1.1.5)$$

дополненных начальными условиями $\mathbf{r}(t_0) = \mathbf{r}_0$, $\mathbf{p}(t_0) = \mathbf{p}_0$. Здесь **Е** и **В** — напряженность электрического и индукция магнитного полей, а **v** — скорость частицы.

При движении вдоль траектории, вообще говоря, трансформируются элемент фазового объема и функция распределения:

$$d\mathbf{r}_0 d\mathbf{p}_0 \to d\mathbf{r} d\mathbf{p}, \quad f_\alpha (t_0, \mathbf{r}_0, \mathbf{p}_0) \to f_\alpha (t, \mathbf{r}(t), \mathbf{p}(t)).$$

Но поскольку частицы не уничтожаются и не рождаются (рекомбинация и ионизация отсутствуют) и не сталкиваются друг с другом (столкновения эквивалентны рождению и уничтожению частиц в пространстве импульсов), полное число их в элементе фазового объема сохраняется, то есть

$$f_{\alpha}\left(t, \mathbf{r}(t), \mathbf{p}(t)\right) d\mathbf{r} d\mathbf{p} = f_{\alpha}\left(t_{0}, \mathbf{r}_{0}, \mathbf{p}_{0}\right) d\mathbf{r}_{0} d\mathbf{p}_{0} = \text{const.}$$
(1.1.6)

Далее, из теоремы Лиувилля о сохранении фазового объема следует, что

$$d\mathbf{r} \, d\mathbf{p} = d\mathbf{r}_0 \, d\mathbf{p}_0. \tag{1.1.7}$$

Равенство (1.1.7) означает, что якобиан преобразования от переменных \mathbf{r}_0 , \mathbf{p}_0 к переменным \mathbf{r} , \mathbf{p} равен единице, если преобразование осуществляется при помощи решений системы (1.1.5). Тогда из (1.1.6) и (1.1.7) получаем, что вдоль фазовой траектории частицы функция распределения постоянна:

$$f_{\alpha}\left(t,\mathbf{r}(t),\mathbf{p}(t)\right) = \text{const.}$$
(1.1.8)

Дифференцируя равенство (1.1.8) по времени, получим

$$\frac{df_{\alpha}}{dt} = \frac{\partial f_{\alpha}}{\partial t} + \frac{\partial f_{\alpha}}{\partial \mathbf{r}} \frac{d\mathbf{r}}{dt} + \frac{\partial f_{\alpha}}{\partial \mathbf{p}} \frac{d\mathbf{p}}{dt} = 0.$$
(1.1.9)

Подставляя далее (1.1.5) в (1.1.9), приходим окончательно к следующему кинетическому уравнению для одночастичной функции распределения:

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \frac{\partial f_{\alpha}}{\partial \mathbf{r}} + e_{\alpha} \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{v} \cdot \mathbf{B} \right] \right\} \frac{\partial f_{\alpha}}{\partial \mathbf{p}} = 0.$$
(1.1.10)

Уравнение (1.1.10) называется кинетическим уравнением Власова. Такое уравнение должно быть записано для каждого сорта заряженных частиц α , составляющих плазму. Плотность тока и плотность заряда определяются при помощи функции распределения формулами

$$\rho_{\alpha}(t, \mathbf{r}) = e_{\alpha} \int f_{\alpha}(t, \mathbf{r}, \mathbf{p}) d\mathbf{p},$$

$$\mathbf{j}_{\alpha}(t, \mathbf{r}) = e_{\alpha} \int \mathbf{v} f_{\alpha}(t, \mathbf{r}, \mathbf{p}) d\mathbf{p},$$

$$\mathbf{j} = \sum_{\alpha} \mathbf{j}_{\alpha}, \quad \rho = \sum_{\alpha} \rho_{\alpha}.$$
(1.1.11)

Формулы (1.1.11) подразумевают нормировку функции распределения на плотность частиц:

$$\int f_{\alpha} d\mathbf{p} = n_{\alpha}, \qquad (1.1.12)$$

что согласуется с (1.1.4), поскольку $\int n_{\alpha} d\mathbf{r} = N_{\alpha}$.

Независимыми переменными в уравнении (1.1.10), т.е. аргументами функции распределения являются t, \mathbf{r} , и \mathbf{p} . Скорость же \mathbf{v} независимой переменной не является, а выражается через импульс по известной формуле релятивистской механики

$$\mathbf{v} = c \frac{\mathbf{p}}{\sqrt{m_{\alpha}^2 c^2 + p^2}}.$$
 (1.1.13)

В нерелятивистском случае $p^2 \ll m_{\alpha}^2 c^2$ и $\mathbf{p} = m_{\alpha} \mathbf{v}$, где m_{α} — масса покоя частицы сорта α .

Кинетическое уравнение (1.1.10) совместно с выражениями (1.1.11) и уравнениями для векторов электромагнитного поля образуют полную систему уравнений, описывающих согласованное движение частиц плазмы с возникающими при этом электромагнитными полями. В связи с этим уравнение (1.1.10) называют еще кинетическим уравнением с самосогласованным полем в бесстолкновительном пределе.

Менее общим, но более простым, является гидродинамический метод описания плазмы. Получение гидродинамических уравнений сво-

дится к отысканию замкнутой системы для моментов функции распределения частиц сорта α , определяемых следующими формулами:

$$N_{\alpha} (\mathbf{r}, t) = \int f_{\alpha} (t, \mathbf{r}, \mathbf{p}) d\mathbf{p},$$

$$N_{\alpha} (\mathbf{r}, t) \cdot \mathbf{V}_{\alpha} (\mathbf{r}, t) = \int \mathbf{v} f_{\alpha} (t, \mathbf{r}, \mathbf{p}) d\mathbf{p},$$

$$N_{\alpha} (\mathbf{r}, t) \cdot \mathbf{P}_{\alpha} (\mathbf{r}, t) = \int \mathbf{p} f_{\alpha} (t, \mathbf{r}, \mathbf{p}) d\mathbf{p}.$$
(1.1.14)

Здесь N_{α} , \mathbf{V}_{α} и \mathbf{P}_{α} -гидродинамические плотность, скорость и импульс частиц сорта α . Применим к кинетическому уравнению (1.1.10) операторы интегрирования по импульсу $\int \Im d\mathbf{p}$ и $\int \mathbf{p}\Im d\mathbf{p}$, где символом \Im обозначена левая часть уравнения (1.1.10). В результате получим уравнения (см. также § 1.8)

$$\frac{\partial N_{\alpha}}{\partial t} + \nabla \left(N_{\alpha} \mathbf{V}_{\alpha} \right) = 0,$$

$$\frac{\partial \mathbf{P}_{\alpha}}{\partial t} + \left(\mathbf{V}_{\alpha} \nabla \right) \mathbf{P}_{\alpha} + \frac{1}{N_{\alpha}} \frac{\partial}{\partial r_{j}} \mathbf{\Pi}_{\alpha j} = e_{\alpha} \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{V}_{\alpha} \cdot \mathbf{B} \right] \right\},$$

(1.1.15)

где $j=\{x,y,z\},\,r_x=x,\;r_y=y,\;r_z=z$ –декартовы координаты, а

$$\mathbf{\Pi}_{\alpha j}\left(\mathbf{r},t\right) = \int \left(\mathbf{p} - \mathbf{P}_{\alpha}\left(\mathbf{r},t\right)\right) \left(v_{j} - V_{\alpha j}\left(\mathbf{r},t\right)\right) f_{\alpha}\left(t,\mathbf{r},\mathbf{p}\right) d\mathbf{p} \quad (1.1.16)$$

— так называемый тензор давления. В уравнениях (1.1.15) использованы общепринятые обозначения для дифференциальных операторов:

$$\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k},$$

$$(\mathbf{V}_{\alpha} \nabla) = V_{\alpha x} \frac{\partial}{\partial x} + V_{\alpha y} \frac{\partial}{\partial y} + V_{\alpha z} \frac{\partial}{\partial z}.$$
 (1.1.17)

Интегрирование кинетического уравнения (1.1.10) по импульсам при получении (1.1.15) проводилось с учетом обращения функции распределения f_{α} в нуль при $|\mathbf{p}| \to \infty$.

Первое из уравнений (1.1.15) есть уравнение непрерывности, второе — уравнение движения. Оно, однако, не является замкнутым, так как содержит тензор (1.1.16), пока еще не выраженный через гидродинамические величины (1.1.14). Проблема получения уравнений гидродинамики как раз и состоит в том, чтобы выразить (1.1.16) через гидродинамические величины (1.1.14). В общем случае проблема эта чрезвычайно сложна, но для холодной системы заряженных частиц решается достаточно просто.

Пусть выполнено неравенство

$$V_{T_{\alpha}} \ll \frac{\lambda}{\tau},\tag{1.1.18}$$

где $V_{T_{\alpha}}$ — тепловая скорость частиц сорта α , λ — характерный размер, а τ — характерное время некоторого процесса. Если справедливо неравенство (1.1.18), то за время развития процесса частицы успевают

сместиться с тепловой скоростью на расстояния, много меньшие характерного пространственного размера. При этом систему частиц можно считать холодной и представить ее функцию распределения в виде

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = N_{\alpha}(\mathbf{r}, t) \,\delta\left(\mathbf{p} - \mathbf{P}_{\alpha}(\mathbf{r}, t)\right). \tag{1.1.19}$$

Интегрирование выражения (1.1.19) показывает, что соотношения (1.1.14) выполняются автоматически, а тензор давлений (1.1.16) равен нулю: Π_{α} (**r**, *t*) = 0.

Таким образом, для холодной системы заряженных частиц замкнутая система уравнений гидродинамики записывается в виде

$$\frac{\partial N_{\alpha}}{\partial t} + \nabla \left(N_{\alpha} \mathbf{V}_{\alpha} \right) = 0,$$

$$\frac{\partial \mathbf{P}_{\alpha}}{\partial t} + \left(\mathbf{V}_{\alpha} \nabla \right) \mathbf{P}_{\alpha} = e_{\alpha} \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{V}_{\alpha} \cdot \mathbf{B} \right] \right\}.$$
(1.1.20)

Второе уравнение системы (1.1.20) — уравнение движения, также называемое уравнением Эйлера, обычно записывают не через гидродинамический импульс \mathbf{P}_{α} , а через гидродинамическую скорость \mathbf{V}_{α} . Учитывая, что связь между \mathbf{V}_{α} и \mathbf{P}_{α} такая же, как и в (1.1.13), можно уравнение движения преобразовать к виду

$$\frac{\partial \mathbf{V}_{\alpha}}{\partial t} + (\mathbf{V}_{\alpha} \nabla) \mathbf{V}_{\alpha} = \frac{e_{\alpha}}{m_{\alpha}} \sqrt{1 - \frac{V_{\alpha}^2}{c^2}} \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{V}_{\alpha} \cdot \mathbf{B} \right] - \frac{1}{c^2} \mathbf{V}_{\alpha} \left(\mathbf{V}_{\alpha} \mathbf{E} \right) \right\}.$$
(1.1.21)

В нерелятивистском случае последнее уравнение упрощается:

$$\frac{\partial \mathbf{V}_{\alpha}}{\partial t} + (\mathbf{V}_{\alpha}\nabla)\mathbf{V}_{\alpha} = \frac{e_{\alpha}}{m_{\alpha}}\left\{\mathbf{E} + \frac{1}{c}\left[\mathbf{V}_{\alpha}\cdot\mathbf{B}\right]\right\}.$$
 (1.1.22)

Уравнения непрерывности и движения (1.1.20) должны быть записаны для каждого сорта заряженных частиц α . Плотность тока и плотность заряда определяются при помощи гидродинамических величин формулами

$$\mathbf{j} = \sum_{\alpha} \mathbf{j}_{\alpha} = \sum_{\alpha} e_{\alpha} N_{\alpha} \mathbf{V}_{\alpha}, \quad \rho = \sum_{\alpha} \rho_{\alpha} = \sum_{\alpha} e_{\alpha} N_{\alpha}. \quad (1.1.23)$$

Гидродинамику, основанную на уравнениях (1.1.20), называют многожидкостной гидродинамикой холодной плазмы без столкновений. Уравнения (1.1.20) совместно с выражениями (1.1.23) и уравнениями для векторов электромагнитного поля образуют полную систему уравнений, описывающих согласованное движение частиц с возникающими и изменяющимися при этом движении электромагнитными полями.

Гидродинамическое описание является менее общим, чем описание, основанное на кинетическом уравнении Власова. Более того, некоторые процессы даже в холодных плазме и пучке рассмотренной гидродинамикой вообще не описываются. Дело в том, что представление функции распределения в виде (1.1.19) предполагает, что скорость $V_{\alpha}(\mathbf{r},t)$ является однозначной функцией координат. В физике электронных

пучков часто рассматриваются процессы, при которых однозначность поля скоростей $\mathbf{V}_{\alpha}(\mathbf{r},t)$ нарушается. К таким процессам относятся опрокидывание волны, захват частиц, образование виртуального катода, разогрев и ряд других. Подобные явления могут быть адекватно описаны только в рамках кинетического уравнения Власова, которым мы и будем преимущественно пользоваться в дальнейшем.

Наибольший интерес представляет решение уравнения Власова в постановках начальной и граничной задач. При решении начальной задачи (задача с начальными условиями) и граничной задачи (задача с граничными условиями или задача инжекции) для уравнения Власова естественным образом выделяется одна независимая переменная, полностью определяющая временную или пространственную эволюцию функции распределения. Такую переменную будем в дальнейшем называть «эволюционной» переменной. Для начальной задачи это время t, для граничной задачи — пространственная координата вдоль оси перпендикулярной плоскости инжекции (в дальнейшем для определенности z). Обе данные задачи могут быть сформулированы как задачи Коши для уравнения Власова, что в свою очередь позволяет построить единый математический формализм их решения.

По своей структуре уравнение (1.1.10) является линейным однородным дифференциальным уравнением в частных производных первого порядка. В теории уравнений с частными производными существует традиционный метод решения таких уравнений, основанный на использовании первых интегралов. Основные положения данного метода, а также трудности, с которыми приходится сталкиваться при его практической реализации, рассматриваются в следующем параграфе.

1.2. Решение задачи Коши для линейного дифференциального уравнения первого порядка с помощью первых интегралов

Будем исходить из следующего линейного однородного уравнения в частных производных первого порядка:

$$Y_1 \frac{\partial f}{\partial x_1} + Y_2 \frac{\partial f}{\partial x_2} + \dots + Y_n \frac{\partial f}{\partial x_n} = 0, \qquad (1.2.1a)$$

где x_i (i = 1, 2, ..., n) — независимые переменные, а $Y_i = Y_i(x_1, x_2, ..., x_n)$ — заданные функции. Задача Коши для уравнения (1.2.1а) ставится как задача нахождения такого решения этого уравнения $f(x_1, x_2, ..., x_n)$, которое при фиксированном значении одного из аргументов (например, x_1) обращается в заданную функцию остальных аргументов. Запишем это в виде

$$f(0, x_2, x_3, \dots, x_n) = f_0(x_2, x_3, \dots, x_n), \qquad (1.2.2a)$$

условившись здесь и далее в качестве «эволюционной» переменной задачи Коши выбирать x_1 и решать задачу в области $x_1 > 0$. Поскольку переменная, по которой решается задача Коши, является выделенной, подчеркнем это специальными обозначениями:

$$x = x_1, \quad Y = Y_1, \quad \mathbf{q} = \{x_2, x_3, \dots, x_n\}, \quad \mathbf{G} = \{Y_2, Y_3, \dots, Y_n\}.$$
(1.2.3)

Перепишем в новых обозначениях уравнение (1.2.1а) и начальное условие (1.2.2а):

$$Y\frac{\partial f}{\partial x} + \mathbf{G}\frac{\partial f}{\partial \mathbf{q}} = 0, \quad x > 0, \tag{1.2.16}$$

$$f(0, \mathbf{q}) = f_0(\mathbf{q}),$$
 (1.2.26)

где $f = f(x, \mathbf{q}), Y = Y(x, \mathbf{q}), \mathbf{G} = \mathbf{G}(x, \mathbf{q}).$

Согласно теории уравнений с частными производными первого порядка общее решение уравнения (1.2.16) строится по следующей схеме:

1. Составляется характеристическая система уравнений для уравнения (1.2.16). Ее можно записать либо в симметричной форме ¹):

$$\frac{dx}{Y} = \frac{d\mathbf{q}}{\mathbf{G}},\tag{1.2.4}$$

либо в эквивалентном виде нормальной системы n-1 уравнений:

$$\frac{d\mathbf{q}}{dx} = \frac{\mathbf{G}}{Y}.\tag{1.2.5}$$

2. Определяется первый интеграл системы (1.2.4):

$$\Psi\left(x,\mathbf{q}\right) = \mathbf{C},\tag{1.2.6}$$

где С — произвольная постоянная (вектор размерности n-1, как и все встречающиеся в этом разделе векторные величины). Если вместо (1.2.4) используется векторное уравнение (1.2.5), то записывается его общее решение

$$\mathbf{q} = \mathbf{Q}\left(x, \mathbf{C}\right),\tag{1.2.7}$$

зависящее от произвольной постоянной. Далее (1.2.7) разрешается относительно С, что снова приводит к соотношению вида (1.2.6).

3. Первый интеграл (1.2.6) подставляется в произвольную дифференцируемую функцию Ф, что и дает общее решение уравнения (1.2.16)

$$f(x, \mathbf{q}) = \Phi(\Psi(x, \mathbf{q})). \qquad (1.2.8)$$

Еще раз отметим, что если решение характеристической системы получено в форме (1.2.7), то в начале необходимо выразить C через xи q, то есть найти соотношение (1.2.6), а уже затем подставить Cв произвольную функцию и получить (1.2.8).

¹) Векторную запись \mathbf{a}/\mathbf{b} следует понимать как систему равенств $a_2/b_2 = a_3/b_3 = \dots$

Построение решения задачи Коши для уравнения (1.2.16) происходит по описанной выше схеме поиска общего решения. При этом целесообразно исходить из характеристической системы (1.2.5) в нормальной форме, дополнив ее условием

$$\mathbf{q}\big|_{x=0} = \mathbf{q}_0. \tag{1.2.9}$$

Решение системы (1.2.5) при этих условиях записывается в форме (1.2.7), куда вместо произвольной постоянной C входит вектор начальных данных \mathbf{q}_0 :

$$\mathbf{q} = \mathbf{Q} \left(x, \mathbf{q}_0 \right). \tag{1.2.10}$$

Выражая из (1.2.10) вектор начальных данных \mathbf{q}_0 , получаем первый интеграл нормальной системы (1.2.5), записанный (вместо (1.2.6)) в виде

$$\mathbf{q}_0 = \mathbf{Q}_0\left(x, \mathbf{q}\right). \tag{1.2.11}$$

Подстановка (1.2.11) в произвольную дифференцируемую функцию Φ приводит к следующему общему решению уравнения (1.2.16) (см. (1.2.8)):

$$f(x, \mathbf{q}) = \Phi\left(\mathbf{Q}_0(x, \mathbf{q})\right). \tag{1.2.12}$$

Для окончательного решения задачи Коши (1.2.16)–(1.2.26) нужно только установить конкретный вид пока еще произвольной функции Ф.

По самому своему определению функция \mathbf{Q}_0 постоянна вдоль векторной линии (1.2.10), называемой характеристикой уравнения (1.2.16)¹). Поэтому, вдоль характеристики сохраняет свое значение и решение уравнения (1.2.16), являющееся функцией \mathbf{Q}_0 . Это означает, что если в решение $f(x, \mathbf{q})$ вместо независимой переменной **q** подставить характеристику (1.2.10), то получится значение, которое функция *f* имела в той точке **q**-пространства, откуда при x = 0 вышла характеристика, т. е. в точке **q**₀ (см. (1.2.9)). Таким образом,

$$f(x, \mathbf{Q}(x, \mathbf{q}_0)) = f(0, \mathbf{q}_0).$$
 (1.2.13)

С другой стороны подстановка в (1.2.12) характеристики (1.2.10) дает

$$f(x, \mathbf{Q}(x, \mathbf{q}_0)) = \Phi(\mathbf{q}_0). \qquad (1.2.14)$$

При написании (1.2.14) учтена взаимная обратимость преобразований (1.2.10) и (1.2.11), означающая, что равенства

$$\mathbf{q} = \mathbf{Q}\left(x, \mathbf{Q}_0\left(x, \mathbf{q}\right)\right), \quad \mathbf{q}_0 = \mathbf{Q}_0\left(x, \mathbf{Q}\left(x, \mathbf{q}_0\right)\right) \tag{1.2.15}$$

выполняются тождественно. Сравнивая (1.2.13) и (1.2.14) и учитывая условие (1.2.26), получим соотношение для определения произвольной функции Φ

$$\Phi\left(\mathbf{q}\right) = f_0\left(\mathbf{q}\right). \tag{1.2.16}$$

¹) В многомерном случае обычно говорят не о характеристике, а о характеристиках. Мы используем единственное число, поскольку все записи осуществляем в векторном виде.

Окончательно решение задачи Коши для уравнения (1.2.16) с дополнительным условием (1.2.26) дается формулой

$$f(x, \mathbf{q}) = f_0(\mathbf{Q}_0(x, \mathbf{q})).$$
 (1.2.17)

Практическая реализация изложенного здесь традиционного метода решения задачи Коши для линейного однородного уравнения в частных производных первого порядка, основанного на интегрировании характеристической системы и нахождении первого интеграла, сопряжена с большими трудностями, а во многих случаях вообще невозможна. Это обусловлено тем, что характеристическая система уравнений в общем случае является нелинейной. И если даже удается найти ее решение, то возникает не менее сложная проблема выразить начальные данные q_0 через независимые переменные x и q. При численном же решении задачи Коши этого сделать вообще нельзя. Поэтому требуется определить иной подход, позволяющий находить решение задачи Коши последовательно, «двигаясь» вдоль характеристик из начальной точки, и минуя этап построения первого интеграла характеристической системы. При этом, при каждом значении «эволюционной» переменной х задачи Коши ее решение выражается как интеграл по вектору начальных данных q₀. Этот факт и обусловливает название предлагаемого метода: «метод интегрирования по начальным данным», суть и основные положения которого излагаются в следующем параграфе.

1.3. Решение задачи Коши методом интегрирования по начальным данным

Представим решение рассматриваемой задачи Коши (1.2.16)-(1.2.26) в виде

$$f(x, \mathbf{q}) = \int d\mathbf{q}_0 f_0(\mathbf{q}_0) \,\delta\left(\mathbf{q} - \mathbf{Q}\left(x, \mathbf{q}_0\right)\right). \tag{1.3.1}$$

Здесь функция f_0 определена в (1.2.26), $Q(x, \mathbf{q}_0)$ — решение (1.2.10) нормальной системы уравнений (1.2.5), дополненной начальными данными (1.2.9),

$$\delta\left(\mathbf{q} - \mathbf{Q}\left(x, \mathbf{q}_{0}\right)\right) = \prod_{i=2}^{n} \delta\left(x_{i} - X_{i}\left(x, \mathbf{q}_{0}\right)\right), \qquad (1.3.2)$$

где $\delta(z)$ — дельта-функция, а X_i (i = 2, 3, ..., n) — компоненты вектора $\mathbf{Q} = \{X_2, X_3, ..., X_n\}$. Поскольку в силу (1.2.9), $\mathbf{Q}(0, \mathbf{q}_0) = \mathbf{q}_0$, то функция (1.3.1) очевидно удовлетворяет начальному условию (1.2.26). Выясним, при каких условиях (1.3.1) удовлетворяет и уравнению (1.2.16), что осуществим прямой подстановкой решения (1.3.1) в уравнение (1.2.16).

Вычисление производных функции (1.3.1) дает следующий результат:

$$\begin{pmatrix} \frac{\partial f}{\partial \mathbf{q}} \end{pmatrix}_{k} = \int d\mathbf{q}_{0} f_{0} (\mathbf{q}_{0}) \, \delta_{k}^{\prime} \prod_{\substack{i=2\\i \neq k}}^{n} \delta \left(x_{i} - X_{i} \left(x, \mathbf{q}_{0} \right) \right), \quad k = 2, 3, \dots, n,$$

$$\frac{\partial f}{\partial x} = \sum_{k=2}^{n} \int d\mathbf{q}_{0} f_{0} (\mathbf{q}_{0}) \, \delta_{k}^{\prime} \left(-\frac{dX_{k}}{dx} \right) \prod_{\substack{i=2\\i \neq k}}^{n} \delta \left(x_{i} - X_{i} \left(x, \mathbf{q}_{0} \right) \right),$$

$$(1.3.3)$$

где δ'_k — производная дельта-функции $\delta(x_k - X_k(x, \mathbf{q}_0))$ по x_k . Подставляя (1.3.3) в левую часть (1.2.16), с учетом (1.2.5) преобразуем ее к виду

$$\sum_{k=2}^{n} \int d\mathbf{q}_{0} f_{0}\left(\mathbf{q}_{0}\right) \delta_{k}^{\prime} \prod_{\substack{i=2\\i\neq k}}^{n-1} \delta\left(x_{i} - X_{i}\left(x, \mathbf{q}_{0}\right)\right) \times \left[Y_{k}\left(x, \mathbf{q}\right) - Y_{k}\left(x, \mathbf{Q}\left(x, \mathbf{q}_{0}\right)\right) \frac{Y\left(x, \mathbf{q}\right)}{Y\left(x, \mathbf{Q}\left(x, \mathbf{q}_{0}\right)\right)}\right]. \quad (1.3.4)$$

Для вычисления интеграла в (1.3.4) сделаем замену переменной интегрирования: перейдем от интегрирования по \mathbf{q}_0 к интегрированию по \mathbf{Q} . Чтобы не путать независимую переменную \mathbf{q} с новой переменной интегрирования \mathbf{Q} введем обозначение $\hat{\mathbf{q}} \equiv \mathbf{Q}$, или в компонентах $\hat{\mathbf{q}} = \{\hat{x}_2, \hat{x}_3, \dots, \hat{x}_n\}$. Переход к новой переменной интегрирования осуществляется путем замен

$$\mathbf{q}_0 \to \mathbf{Q}_0\left(x, \widehat{\mathbf{q}}\right), \quad \mathbf{Q}\left(x, \mathbf{q}_0\right) \to \widehat{\mathbf{q}}, \quad d\mathbf{q}_0 \to D^{-1}d\widehat{\mathbf{q}},$$
(1.3.5)

где $\mathbf{Q}_0 - \phi$ ункция (1.2.11), а $D^{-1} - якобиан$ преобразования от переменной \mathbf{q}_0 к переменной $\widehat{\mathbf{q}}$, обратный якобиану

$$D \equiv \det (a_{ik}) = \frac{\partial (\widehat{\mathbf{q}})}{\partial (\mathbf{q}_0)} = \frac{\partial (\widehat{x}_2, \widehat{x}_3, \dots, \widehat{x}_n)}{\partial (x_{02}, x_{03}, \dots, x_{0n})}.$$
 (1.3.6)

Здесь через a_{ik} (i, k = 2, 3, ..., n) обозначен элемент определителя, стоящий на пересечении *i*-й строки и *k*-го столбца:

$$a_{ik} = \frac{\partial \hat{x}_i}{\partial x_{0k}}.$$
(1.3.7)

В результате перехода к новым переменным интеграл (1.3.4) преобразуется к виду

$$\sum_{k=2}^{n} \int d\widehat{\mathbf{q}} D^{-1} f_0 \left(\mathbf{Q}_0 \left(x, \widehat{\mathbf{q}} \right) \right) \delta' \left(x_k - \widehat{x}_k \right) \prod_{\substack{i=2\\i \neq k}}^{n-1} \delta \left(x_i - \widehat{x}_i \right) \times \\ \times \left[Y_k \left(x, \mathbf{q} \right) - Y_k \left(x, \widehat{\mathbf{q}} \right) \frac{Y \left(x, \mathbf{q} \right)}{Y \left(x, \widehat{\mathbf{q}} \right)} \right]. \quad (1.3.8)$$

Используя свойство дельта функции $\int dz f(z) \delta(z-a) = f(a)$, произведем в (1.3.8) сначала интегрирование по \hat{x}_i для $i \neq k$, что дает

$$\sum_{k=2}^{n} \int d\widehat{x}_{k} D^{-1} f_{0} \left(\mathbf{Q}_{0} \left(x, \mathbf{q}^{(k)} \right) \right) \delta' \left(x_{k} - \widehat{x}_{k} \right) \times \\ \times \left[Y_{k} \left(x, \mathbf{q} \right) - Y_{k} \left(x, \mathbf{q}^{(k)} \right) \frac{Y \left(x, \mathbf{q} \right)}{Y \left(x, \mathbf{q}^{(k)} \right)} \right], \quad (1.3.9)$$

где $\mathbf{q}^{(k)} = \{x_2, \dots, \widehat{x}_k, \dots, x_n\}, \ k = 2, 3, \dots, n.$ Используя теперь другое свойство дельта-функции $\int dz f(z) \delta'(z-a) = -f'(a)$, выполним в (1.3.9) последнее интегрирование по \widehat{x}_k . В результате получим

$$D^{-1}(\mathbf{q}) f_0(Q_0(x,\mathbf{q})) Y(x,\mathbf{q}) \sum_{k=2}^n \frac{\partial}{\partial x_k} \left(\frac{Y_k(x,\mathbf{q})}{Y(x,\mathbf{q})}\right), \qquad (1.3.10)$$

где $\mathbf{q} = \{x_2, \ldots, x_k, \ldots, x_n\}$ — вектор независимых переменных. Равенство нулю выражения (1.3.10) означает, что при подстановке (1.3.1) в левую часть уравнения (1.2.16) получился нуль, т.е. функция (1.3.1) действительно является решением линейного дифференциального уравнения в частных производных первого порядка.

Видно, что (1.3.10) обращается в ноль, если

$$\sum_{k=2}^{n} \frac{\partial}{\partial x_{k}} \left(\frac{Y_{k}(x,\mathbf{q})}{Y(x,\mathbf{q})} \right) = \frac{\partial}{\partial \mathbf{q}} \left(\frac{\mathbf{G}(x,\mathbf{q})}{Y(x,\mathbf{q})} \right) = 0.$$
(1.3.11)

Удовлетворить условию (1.3.11) можно различными способами. Мы здесь предположим, что:

• функция $Y(x, \mathbf{q})$ — коэффициент в уравнении (1.2.16) перед производной от f по «эволюционной» переменной x, зависит только от этой переменной, но не от \mathbf{q} ;

• функции $Y_k(x, \mathbf{q})$ (k = 2, 3, ..., n) — коэффициенты в уравнении (1.2.1б) перед производными от f по переменным x_k , не зависят от «своей» переменной x_k .

Таким образом, при выполнении условий

$$Y = Y(x);$$
 $\frac{\partial Y_k}{\partial x_k} = 0$ при $k = 2, 3, ..., n$ (1.3.12)

интеграл по начальным данным (1.3.1) является решением рассматриваемой задачи Коши (1.2.16)–(1.2.26).

Для придания физического смысла условиям (1.3.12) рассмотрим якобиан (1.3.6) и выясним когда он не зависит от «эволюционной» переменной x. Поскольку $\mathbf{Q}|_{x=0} = \mathbf{q}_0$, а значит и $\widehat{\mathbf{q}}|_{x=0} = \mathbf{q}_0$, то

$$D|_{x=0} = 1. \tag{1.3.13}$$

Дифференцируя (1.3.6) по x, имеем

$$\frac{dD}{dx} = \sum_{i,k=2}^{n} \frac{\partial D}{\partial a_{ik}} \cdot \frac{da_{ik}}{dx}.$$
(1.3.14)

Из теории определителей известно, что

$$\frac{\partial D}{\partial a_{ik}} = A_{ik},\tag{1.3.15}$$

где A_{ik} – алгебраические дополнения, удовлетворяющие соотношению

$$\sum_{k=2}^{n} A_{ik} a_{jk} = D \delta_{ij}, \qquad (1.3.16)$$

где δ_{ij} — символ Кронекера. Учитывая (1.3.7) и (1.2.5), имеем

$$\frac{da_{ik}}{dx} = \frac{d}{dx} \left(\frac{\partial \hat{x}_i}{\partial x_{0k}} \right) = \frac{\partial}{\partial x_{0k}} \left(\frac{Y_i}{Y} \right) = \sum_{j=2}^n \frac{\partial}{\partial \hat{x}_j} \left(\frac{Y_i}{Y} \right) \frac{\partial \hat{x}_j}{\partial x_{0k}} = \sum_{j=2}^n a_{jk} \frac{\partial}{\partial \hat{x}_j} \left(\frac{Y_i}{Y} \right).$$
(1.3.17)

С учетом (1.3.15) и (1.3.17) из (1.3.14) следует

$$\frac{dD}{dx} = \sum_{i,j,k=2}^{n} A_{ik} a_{jk} \frac{\partial}{\partial \hat{x}_j} \left(\frac{Y_i}{Y}\right).$$
(1.3.18)

В силу (1.3.16) при осуществлении суммирования по k получаем в (1.3.18) при $i \neq j$ нули, а при i = j имеем

$$\frac{dD}{dx} = D \sum_{i=2}^{n} \frac{\partial}{\partial \hat{x}_{i}} \left(\frac{Y_{i}\left(x, \hat{\mathbf{q}}\right)}{Y\left(x, \hat{\mathbf{q}}\right)} \right) = D \frac{\partial}{\partial \hat{\mathbf{q}}} \left(\frac{\mathbf{G}\left(x, \hat{\mathbf{q}}\right)}{Y\left(x, \hat{\mathbf{q}}\right)} \right).$$
(1.3.19)

Сумма в (1.3.19) отличается от аналогичной суммы из (1.3.11) только обозначением индекса суммирования и заменой независимой переменной \mathbf{q} на переменную $\hat{\mathbf{q}}$. Поэтому, если (1.3.11) обращается в нуль, то и производная якобиана (1.3.19) равна нулю. Отсюда и из (1.3.13) следует, что

$$D = D^{-1} = 1. \tag{1.3.20}$$

Значит при выполнении условий (1.3.12) не только задача Коши (1.2.16)–(1.2.26) имеет решение в форме (1.3.1), но и справедлива теорема Лиувилля о сохранении объема в **q**-пространстве:

$$\int_{G_0} d\mathbf{q}_0 = \int_G d\hat{\mathbf{q}},\tag{1.3.21}$$

где G_0 — объем в **q**-пространстве, занимаемый системой при x = 0, а G — объем, занимаемый той же системой при любом x > 0. В дополнение к (1.3.21) видно, что элементарное интегрирование (1.3.1) по **q** дает результат

$$\int d\mathbf{q}f(x,\mathbf{q}) = \int d\mathbf{q}_0 f_0(\mathbf{q}_0) = \text{const}, \qquad (1.3.22)$$

означающий сохранение нормы решения задачи Коши (1.2.16)–(1.2.26). Следовательно, при выполнении условий (1.3.12) уравнение (1.2.16) имеет основные свойства кинетического уравнения, а его решение (1.3.1) может трактоваться как функция распределения в **q**-пространстве.

Не сложно в самом общем виде показать, что решение (1.3.1) не отличается от общего решения (1.2.17) уравнения (1.2.16), рассмотренного в предыдущем разделе. Действительно, перейдем в (1.3.1) от интегрирования по \mathbf{q}_0 к интегрированию по $\hat{\mathbf{q}} = \mathbf{Q}$. Поступая в точности, как и при получении из (1.3.4) выражения (1.3.8) и учитывая (1.3.20), преобразуем (1.3.1) к виду

$$f(x,\mathbf{q}) = \int d\widehat{\mathbf{q}} f_0\left(\mathbf{Q}_0\left(x,\widehat{\mathbf{q}}\right)\right) \delta\left(\mathbf{q}-\widehat{\mathbf{q}}\right), \qquad (1.3.23)$$

где \mathbf{Q}_0 — определена в (1.2.11). Интеграл по $\widehat{\mathbf{q}}$ из-за присутствия дельта-функции вычисляется, что дает результат

$$f(x, \mathbf{q}) = f_0(\mathbf{Q}_0(x, \mathbf{q})),$$
 (1.3.24)

совпадающий с общим решением (1.2.17), полученным в предыдущем разделе.

Хотя решение (1.3.1) по существу сводится к традиционному, оно оказывается чрезвычайно удобным для практического применения в расчетных задачах. Это решение получается иным путем – последовательно, от начальной функции f_0 , интегрированием обыкновенных дифференциальных уравнений (1.2.5) и вычислением интегралов по начальным данным. В удобстве конструкции (1.3.1) мы убедимся ниже конкретно для кинетического уравнения Власова.

1.4. Начальная задача Коши для уравнения Власова и метод интегрирования по начальным данным

В случае начальной задачи кинетическое уравнение Власова

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \frac{\partial f_{\alpha}}{\partial \mathbf{r}} + \mathbf{F} \left(t, \mathbf{r}, \mathbf{v} \right) \frac{\partial f_{\alpha}}{\partial \mathbf{p}} = 0 \qquad (1.4.1)$$

для функции распределения $f_{\alpha}(t, \mathbf{r}, \mathbf{p})$ дополняется в момент времени t = 0 следующим начальным условием:

$$f_{\alpha}\left(0,\mathbf{r},\mathbf{p}\right) = f_{\alpha 0}\left(\mathbf{r},\mathbf{p}\right),\qquad(1.4.2)$$

где $f_{\alpha 0}$ — заданная функция координат и импульсов, а **F** $(t, \mathbf{r}, \mathbf{v})$ — правая часть второго уравнения (1.1.5). Задача (1.4.1)–(1.4.2) рассматривается в области t > 0. Очевидно, что «эволюционной» переменной данной задачи является время t.

Применим к задаче Коши (1.4.1)–(1.4.2) общие результаты двух предыдущих разделов. Из сравнения уравнений (1.2.1) и (1.4.1) видно, что обозначения (1.2.3) сводятся к следующему:

$$x = t, \quad Y = 1, \quad \mathbf{q} = \{\mathbf{r}, \mathbf{p}\} = \{x, y, z, p_x, p_y, p_z\}, \mathbf{G} = \{\mathbf{v}, \mathbf{F}\} = \{v_x, v_y, v_z, F_x, F_y, F_z\}.$$
 (1.4.3)

Характеристическая система уравнения (1.4.1) записывается при этом в симметричной форме (1.2.4) как

$$\frac{dt}{1} = \frac{d\mathbf{r}}{\mathbf{v}} = \frac{d\mathbf{p}}{\mathbf{F}},\tag{1.4.4}$$

а в виде нормальной системы (1.2.5) как

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{p}}{dt} = \mathbf{F}. \tag{1.4.5}$$

Очевидно, что нормальная система (1.4.5) является обычной системой уравнений движения частицы (1.1.5). Вектор начальных данных (1.2.9) системы (1.4.5) имеет вид $\mathbf{q}_0 = \{\mathbf{r}_0, \mathbf{p}_0\}$, т. е.

$$\mathbf{r}|_{t=0} = \mathbf{r}_0, \quad \mathbf{p}|_{t=0} = \mathbf{p}_0.$$
 (1.4.6)

Решение системы (1.4.5) при этих условиях записывается в форме

$$\mathbf{r} = \mathbf{R} (t, \mathbf{r}_0, \mathbf{p}_0), \quad \mathbf{p} = \mathbf{P} (t, \mathbf{r}_0, \mathbf{p}_0), \quad (1.4.7)$$

а вектор **Q** из общего решения (1.2.10) определяется соотношением $\mathbf{Q} = \{\mathbf{R}, \mathbf{P}\}$. Начальные данные (1.4.6) выражаются из (1.4.7) по формулам

$$\mathbf{r}_{0} = \mathbf{R}_{0}\left(t, \mathbf{r}, \mathbf{p}\right), \quad \mathbf{p}_{0} = \mathbf{P}_{0}\left(t, \mathbf{r}, \mathbf{p}\right), \qquad (1.4.8)$$

при этом вектор \mathbf{Q}_0 из (1.2.11) имеет вид $\mathbf{Q}_0 = \{\mathbf{R}_0, \mathbf{P}_0\}$. И наконец общее решение (1.2.17) в случае задачи (1.4.1)–(1.4.2) определяется выражением

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = f_{\alpha 0}(\mathbf{R}_{0}(t, \mathbf{r}, \mathbf{p}), \mathbf{P}_{0}(t, \mathbf{r}, \mathbf{p})). \qquad (1.4.9)$$

Выражение (1.4.9) построено традиционным способом решения линейных однородных уравнений в частных производных первого порядка — с использованием первых интегралов (1.4.8).

Запишем теперь общее решение начальной задачи Коши (1.4.1)–(1.4.2) в виде интеграла по начальным данным. Структура векторов \mathbf{q}_0 , \mathbf{q} , и \mathbf{Q} была установлена при получении (1.4.3)–(1.4.9). Подстановка их в общее выражение (1.3.1) приводит к следующему результату:

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = \int \int d\mathbf{r}_0 \, d\mathbf{p}_0 f_{\alpha 0}(\mathbf{r}_0, \mathbf{p}_0) \, \delta\left(\mathbf{r} - \mathbf{R}\left(t, \mathbf{r}_0, \mathbf{p}_0\right)\right) \delta\left(\mathbf{p} - \mathbf{P}\left(t, \mathbf{r}_0, \mathbf{p}_0\right)\right),$$
(1.4.10)

где $\mathbf{R}(t, \mathbf{r}_0, \mathbf{p}_0)$ и $\mathbf{P}(t, \mathbf{r}_0, \mathbf{p}_0)$ — решения (1.4.7) нормальной системы (1.4.5) с дополнительными условиями (1.4.6). Для того, чтобы функция распределения (1.4.10) действительно являлась решением задачи Коши

(1.4.1)-(1.4.2), должны выполняться условия (1.3.12). Проверим это для уравнения Власова в постановке начальной задачи.

Поскольку Y = 1 = const, то первое условие (1.3.12) очевидно выполнено. Второе же условие подробно расписывается в виде следующих равенств:

$$\frac{\partial v_x}{\partial x} = 0, \quad \frac{\partial v_y}{\partial y} = 0, \quad \frac{\partial v_z}{\partial z} = 0,$$

$$\frac{\partial F_x}{\partial p_x} = 0, \quad \frac{\partial F_y}{\partial p_y} = 0, \quad \frac{\partial F_z}{\partial p_z} = 0.$$
(1.4.11)

Первые три выполняются всегда, поскольку скорости и пространственные координаты в начальной задаче — независимые друг от друга величины. Выполнение последних трех равенств (1.4.11) означает независимость силы, действующей на частицу, от проекции импульса (следовательно, и скорости) на направление действия силы. Выполнение данного условия означает отсутствие в системе диссипации. При наличии диссипации не сохраняется также и якобиан (1.3.6), точнее

$$D = \frac{\partial \left(\hat{\mathbf{r}}, \hat{\mathbf{p}} \right)}{\partial \left(\mathbf{r}_0, \mathbf{p}_0 \right)}.$$
 (1.4.12)

Если же последние три равенства (1.4.11) выполнены, то якобиан (1.4.12) тождественно равен единице, что является отражением теоремы Лиувилля о сохранении фазового объема. Таким образом, в начальной задаче Коши для уравнения Власова единственным условием применимости интеграла по начальным данным (1.4.10) в качестве решения задачи является отсутствие в системе диссипативных сил. Что касается зависимости силы от перпендикулярной к ней составляющей импульса, она естественно допускается.

Особенно простой оказывается функция распределения (1.4.10) для первоначально моноскоростной однородной в пространстве системы частиц. Пусть, например

$$f_{\alpha 0}\left(\mathbf{r},\mathbf{p}\right) = n_{\alpha} \cdot \delta\left(\mathbf{p} - \mathbf{p}_{\alpha}\right), \qquad (1.4.13)$$

где n_{α} — концентрация частиц сорта α , а \mathbf{p}_{α} — их импульс. Подставляя (1.4.13) в (1.4.10) и выполняя интегрирование по \mathbf{p}_{0} , получим

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = n_{\alpha} \int d\mathbf{r}_0 \delta\left(\mathbf{r} - \mathbf{R}(t, \mathbf{r}_0)\right) \delta\left(\mathbf{p} - \mathbf{P}(t, \mathbf{r}_0)\right).$$
(1.4.14)

Здесь $\mathbf{R}(t, \mathbf{r}_0)$ и $\mathbf{P}(t, \mathbf{r}_0)$ — решения нормальной системы (1.4.5) с начальными условиями

$$\mathbf{r}|_{t=0} = \mathbf{r}_0, \quad \mathbf{p}|_{t=0} = \mathbf{p}_{\alpha}.$$
 (1.4.15)

Представления функций распределения в виде интегралов по начальным данным (1.4.10) или (1.4.14) оказываются очень удобными для практического применения в расчетных задачах. Тем более, что сама функция распределения часто бывает не нужна, а требуются только некоторые ее интегралы, например, моменты. Такие интегралы имеют более простую структуру, чем (1.4.10) и (1.4.14). Вычислим для примера плотности заряда и тока, определяемые формулами (1.1.11). Подставляя (1.4.10) в (1.1.11) и выполняя интегрирование по импульсу, получим плотности заряда и тока, определяемые по формулам

$$\rho_{\alpha}(t, \mathbf{r}) = e_{\alpha} \int \int d\mathbf{r}_{0} d\mathbf{p}_{0} f_{\alpha 0}(\mathbf{r}_{0}, \mathbf{p}_{0}) \,\delta\left(\mathbf{r} - \mathbf{R}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right), \tag{1.4.16}$$
$$\mathbf{j}_{\alpha}\left(t, \mathbf{r}\right) = e_{\alpha} c \int \int d\mathbf{r}_{0} \,d\mathbf{p}_{0} f_{\alpha 0}\left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \frac{\mathbf{P}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)}{\sqrt{m_{\alpha}^{2} c^{2} + P^{2}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)}} \times \delta\left(\mathbf{r} - \mathbf{R}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right), \tag{1.4.16}$$

а в случае распределения (1.4.14) выражения (1.4.16) становятся еще более простыми:

$$\rho_{\alpha}(t, \mathbf{r}) = e_{\alpha} n_{\alpha} \int d\mathbf{r}_{0} \delta\left(\mathbf{r} - \mathbf{R}\left(t, \mathbf{r}_{0}\right)\right),$$

$$\mathbf{j}_{\alpha}(t, \mathbf{r}) = e_{\alpha} n_{\alpha} c \int d\mathbf{r}_{0} \frac{\mathbf{P}\left(t, \mathbf{r}_{0}\right)}{\sqrt{m_{\alpha}^{2} c^{2} + P^{2}\left(t, \mathbf{r}_{0}\right)}} \delta\left(\mathbf{r} - \mathbf{R}\left(t, \mathbf{r}_{0}\right)\right).$$
(1.4.17)

Еще более простую структуру имеют коэффициенты разложения моментов функций распределения (1.4.10) или (1.4.14) в ряды или интегралы по **r**. Так компоненты Фурье величин (1.4.16) имеют вид

$$\rho_{\alpha}(t, \mathbf{k}) = e_{\alpha} \int \int d\mathbf{r}_{0} d\mathbf{p}_{0} f_{\alpha 0}(\mathbf{r}_{0}, \mathbf{p}_{0}) \exp\left(-i\mathbf{k}\mathbf{R}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right),$$

$$(1.4.18)$$

$$\mathbf{j}_{\alpha}(t, \mathbf{k}) = e_{\alpha} c \int \int d\mathbf{r}_{0} d\mathbf{p}_{0} f_{\alpha 0}\left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \frac{\mathbf{P}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)}{\sqrt{m_{\alpha}^{2} c^{2} + P^{2}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)}} \times \exp\left(-i\mathbf{k}\mathbf{R}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right),$$

а компоненты Фурье величин (1.4.17) оказываются следующими:

$$\rho_{\alpha}\left(t,\mathbf{k}\right) = e_{\alpha}n_{\alpha}\int d\mathbf{r}_{0}\exp\left(-i\mathbf{k}\mathbf{R}\left(t,\mathbf{r}_{0}\right)\right),$$
$$\mathbf{j}_{\alpha}\left(t,\mathbf{k}\right) = e_{\alpha}n_{\alpha}c\int d\mathbf{r}_{0}\frac{\mathbf{P}\left(t,\mathbf{r}_{0}\right)}{\sqrt{m_{\alpha}^{2}c^{2} + P^{2}\left(t,\mathbf{r}_{0}\right)}}\exp\left(-i\mathbf{k}\mathbf{R}\left(t,\mathbf{r}_{0}\right)\right), \quad (1.4.19)$$

где **k** — двойственная к **r** переменная. Величины (1.4.18) и (1.4.19) рассчитываются без труда (в общем случае конечно на ЭВМ): нужно только решать обыкновенные дифференциальные уравнения движения частиц (1.4.5) и вычислять определенные интегралы.

Отметим еще, что функция распределения (1.4.10) (и (1.4.14)) сохраняет нормировку, так как (см. (1.3.22))

$$\int \int f_{\alpha} \left(t, \mathbf{r}, \mathbf{p} \right) d\mathbf{r} d\mathbf{p} = \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}, \qquad (1.4.20)$$

поэтому, если в начальный момент функция распределения была нормированной, она останется нормированной и для всех последующих моментов времени. Соотношение (1.4.20) отражает факт сохранения полного числа частиц.

Есть важный случай, который следует оговорить особо – релятивистская плазма с магнитным полем. В этом случае в силе **F** появляется составляющая $\mathbf{F}_B = (e_{\alpha}/c) [\mathbf{v} \cdot \mathbf{B}]$, где **B** — вектор магнитной индукции. Используя формулу (1.1.13) для магнитной составляющей силы, имеем

$$\mathbf{F}_{B} = e_{\alpha} \left(m_{\alpha}^{2} c^{2} + p_{x}^{2} + p_{y}^{2} + p_{z}^{2} \right)^{-1/2} \left[\mathbf{p} \cdot \mathbf{B} \right].$$
(1.4.21)

Видно, что для (1.4.21) последние три условия (1.4.11) не выполняются. Дело в том, что требования (1.4.11) сильно завышены, что сделано было нами в целях упрощения изложения. На самом деле, как видно из (1.3.11), необходимо, чтобы выполнялось условие

$$\frac{\partial F_x}{\partial p_x} + \frac{\partial F_y}{\partial p_y} + \frac{\partial F_z}{\partial p_z} = 0, \qquad (1.4.22)$$

которое для (1.4.21) и для любой другой гироскопической силы выполняется.

В качестве методической иллюстрации изложенной в данном параграфе теории решения начальных задач Коши для уравнения Власова в разд. 1.7 рассматриваются простые примеры плазменных систем, для которых функция распределения легко вычисляется как традиционным методом, так и методом интегрирования по начальным данным (примеры 1 и 2).

1.5. Особенности граничной задачи для уравнения Власова и ее решение методом интегрирования по начальным данным

Пусть через плоскость z = 0 перпендикулярно этой плоскости в полупространство z > 0 инжектируются частицы плазмы (т. е. пучок) с известной при z = 0 функцией распределения. Требуется определить функцию распределения в области z > 0. Очевидно, что речь идет о граничной задаче, «эволюционной» переменной в которой является координата z. Запишем кинетическое уравнение Власова в постановке граничной задачи в виде

$$v_{z}\frac{\partial f_{\alpha}}{\partial z} + \frac{\partial f_{\alpha}}{\partial t} + F_{z}\frac{\partial f_{\alpha}}{\partial p_{z}} + \mathbf{v}_{\perp}\frac{\partial f_{\alpha}}{\partial \mathbf{r}_{\perp}} + \mathbf{F}_{\perp}\frac{\partial f_{\alpha}}{\partial \mathbf{p}_{\perp}} = 0, \qquad (1.5.1)$$

где $\mathbf{r}_{\perp} = \{x, y\}, \mathbf{v}_{\perp} = \{v_x, v_y\}, \mathbf{p}_{\perp} = \{p_x, p_y\}$ и $\mathbf{F}_{\perp} = \{F_x, F_y\}$ – поперечные к направлению инжекции составляющие координаты, скорости, импульса и силы. Уравнение (1.5.1) дополним следующим начальным условием:

$$f_{\alpha}\left(0, t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}\right) = f_{\alpha 0}\left(t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}\right).$$
(1.5.2)

Как видно из (1.5.2), при рассмотрении граничной задачи принимается следующий порядок перечисления аргументов функции распределения: $f_{\alpha}(z, t, p_z, \mathbf{r}_{\perp}, \mathbf{p}_{\perp})$, но в окончательных формулах будем придерживаться обычного порядка — $t, \mathbf{r}, \mathbf{p}$.

Применим к задаче Коши (1.5.1)–(1.5.2) общие результаты разд. 1.2 и 1.3. Из сравнения уравнений (1.2.1) и (1.5.1) следует, что обозначения (1.2.3) сводятся к

$$x = z, \quad Y = v_z, \quad \mathbf{q} = \{t, p_z, \mathbf{r}_\perp, \mathbf{p}_\perp\}, \quad \mathbf{G} = \{1, F_z, \mathbf{v}_\perp, \mathbf{F}_\perp\}.$$
 (1.5.3)

Характеристическая система уравнения (1.5.1), записанная в виде нормальной системы (1.2.5), имеет вид

$$\frac{dt}{dz} = \frac{1}{v_z}, \quad \frac{dp_z}{dz} = \frac{F_z}{v_z}, \quad \frac{d\mathbf{r}_\perp}{dz} = \frac{\mathbf{v}_\perp}{v_z}, \quad \frac{d\mathbf{p}_\perp}{dz} = \frac{\mathbf{F}_\perp}{v_z}.$$
 (1.5.4)

Очевидно, что нормальная система (1.5.4) отнюдь не сводится к обычной системе уравнений движения частицы. С этим связаны существенные особенности граничной задачи по сравнению с начальной. Вектор начальных данных (1.2.9) системы (1.5.4) имеет вид $\mathbf{q}_0 = \{t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}\},$ т.е.

$$t|_{z=0} = t_0, \quad p_z|_{z=0} = p_{z0}, \quad \mathbf{r}_{\perp}|_{z=0} = \mathbf{r}_{\perp 0}, \quad \mathbf{p}_{\perp}|_{z=0} = \mathbf{p}_{\perp 0}, \quad (1.5.5)$$

а t_0 — есть момент влета (инжекции) частицы в полупространство z > 0.

Решение системы (1.5.4) при условиях (1.5.5) записывается в форме

$$t = T (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \quad p_z = P_z (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \mathbf{r}_{\perp} = \mathbf{R}_{\perp} (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \quad \mathbf{p}_{\perp} = \mathbf{P}_{\perp} (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}),$$
(1.5.6)

а вектор **Q** из общего решения (1.2.10) определяется соотношением $\mathbf{Q} = \{T, P_z, \mathbf{R}_{\perp}, \mathbf{P}_{\perp}\}$. Начальные данные (1.5.5) выражаются из (1.5.6) по формулам

$$t_{0} = T_{0}(z, t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), \quad p_{z0} = P_{z0}(z, t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), \mathbf{r}_{\perp 0} = \mathbf{R}_{\perp 0}(z, t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), \quad \mathbf{p}_{\perp 0} = \mathbf{P}_{\perp 0}(z, t, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}),$$
(1.5.7)

при этом вектор \mathbf{Q}_0 из (1.2.11) имеет вид $\mathbf{Q}_0 = \{T_0, P_{z0}, \mathbf{R}_{\perp 0}, \mathbf{P}_{\perp 0}\}$. И, наконец, общее решение (1.2.17) в случае граничной задачи (1.5.1)–(1.5.2) определяется выражением

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = f_{\alpha 0}(T_0(z, t, p_z, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), P_{z0}(z, t, p_z, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), \mathbf{R}_{\perp 0}(z, t, p_z, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}), \mathbf{P}_{\perp 0}(z, t, p_z, \mathbf{r}_{\perp}, \mathbf{p}_{\perp})).$$
(1.5.8)

Выражение (1.5.8) построено традиционным методом решения линейных уравнений в частных производных первого порядка — с использованием первых интегралов (1.5.7).

Запишем теперь интеграл по начальным данным для случая, рассматриваемой граничной задачи. Структура векторов \mathbf{q}_0 , \mathbf{q} , и \mathbf{Q} была установлена при получении (1.5.3)-(1.5.8). Подстановка их в общее выражение (1.3.1) приводит к следующему результату:

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = \int dt_0 dp_{z0}, d\mathbf{r}_{\perp 0} d\mathbf{p}_{\perp 0} f_{\alpha 0}(t_0, p_{z0}, \mathbf{r}_{\perp 0}, p_{\perp 0}) \times \delta(t - T) \,\delta(p_z - P_z) \,\delta(\mathbf{r}_{\perp} - \mathbf{R}_{\perp}) \,\delta(\mathbf{p}_{\perp} - \mathbf{P}_{\perp}), \quad (1.5.9)$$

где $T, P_z, \mathbf{R}_{\perp}$ и \mathbf{P}_{\perp} — решения (1.5.6) нормальной системы (1.5.4) с дополнительными условиями (1.5.5) (чтобы сократить запись их аргументы в (1.5.9) опущены). Для того, чтобы функция распределения (1.5.9) действительно являлась решением задачи Коши (1.5.1)–(1.5.2), должны выполняться условия (1.3.12). Проверим это для уравнения Власова в постановке граничной задачи.

Запишем условия (1.3.12) с учетом определений (1.5.3) и (1.2.3) в виде таблицы

1	2	3	4	5	6	7
v_z	1	F_z	v_x	v_y	F_x	F_y
z	t	p_z	x	y	p_x	p_y

В первой строке указан номер производной от f_{α} в том порядке, как записано в уравнении (1.5.1). Во второй строке приведены коэффициенты при соответствующих производных. В третьей строке выписаны независимые переменные, по которым вычисляются соответствующие производные. Заметим, что $v_{x,y,z}$ — не независимые переменные, а функции независимых переменных $p_{x,y,z}$. Условия (1.3.12) означают, что:

- коэффициент из второй строки в первом столбце зависит только от переменной, находящейся в этом столбце;
- 2) коэффициенты из второй строки таблицы, стоящие в столбцах 2-7, не зависят от переменной, находящейся в том же столбце.

Видно, что не выполнено уже первое условие: коэффициент v_z от переменной z как раз не зависит, но зависит от p_z , а в релятивистском случае — и от $p_{x,y}$. Следовательно, в постановке граничной задачи функция распределения в виде интеграла по начальным данным (1.5.9) представлена быть не может. (Единственным исключением из этого правила является не имеющий практического интереса случай, когда $v_z = \text{const}$, соответствующий движению нерелятивистских частиц по инерции вдоль оси инжекции.) Убедиться, что (1.5.9) не удовлетворяет уравнению (1.5.1) легко непосредственной подстановкой. Не сохраняются в граничной задаче и якобианы преобразований (1.5.6) и (1.5.7).

Существенное отличие в постановке начальной и граничной задач Коши для уравнения Власова непосредственно видно и из сравнения характеристических систем уравнений (1.4.5) и (1.5.4). Для уравнений (1.5.4) точка $v_z = 0$ является особой. Обращение же в каких-то точках z скорости в нуль означает поворот (отражение) в этих точках частиц в сторону места инжекции. В этих точках преобразования (1.5.6) и (1.5.7) не являются взаимно однозначными. На рис. 1.5.1 представлено характерное поведение решения нормальной системы уравнений в случае начальной задачи — функции $Z(t, z_0)$ (рис. 1.5.1*a*) и решения

Рис. 1.5.1. Характерное поведение решения нормальной системы для одномерного кинетического уравнения: a - в случае начальной задачи — функция $Z(t, z_0)$; b - в случае граничной задачи — функция $T(z, t_0)$

нормальной системы уравнений в случае граничной задачи — функции $T(z, t_0)$ (рис. 1.5.16). Разница очень значительна. Причем функция $Z(t, z_0)$ всегда однозначна. Ее неоднозначность (и даже обращение в бесконечность производной) означает нарушение принципа причинности. Для $T(z, t_0)$ неоднозначность означает только отражение, показанное на рисунке в точке O. Но даже если исключить появление отраженных частиц, просто не рассматривая соответствующие случаи, якобианы преобразований от (t_0, p_{z0}) к (t, p_z) и обратно не сохраняются, а функция распределения в граничной задаче в виде интеграла по начальным данным представлена быть не может. Но в важном случае системы частиц, у которых скорость в направлении инжекции достаточно велика и изменяется незначительно, метод интегрирования по начальным данным можно применять (приближенно) и при решении граничной задачи. Это очень существенно, поскольку именно граничная задача представляет основной интерес для приложений.

Итак, пусть все частицы плазмы имеют большую среднюю направленную скорость u_0 , параллельную оси z. Такая плазма представляет собой пучок, инжектируемый через плоскость z = 0 в полупростран-

ство z > 0. Предположим, что отклонения скорости частиц от средней скорости u_0 , обусловленные тепловым разбросом и действием силы **F**, $\tilde{v}_z = v_z - u_0$ малы, так, что

$$\frac{|\tilde{v}_z|}{u_0} \ll 1. \tag{1.5.10}$$

Такого же порядка малости считаем и отношения $|v_{x,y}|/u_0$. Другими словами величины $\tilde{v}_z, v_{x,y}$ являются малыми возмущениями скорости инжекции u_0 . В нерелятивистском случае малыми будут и возмущения среднего импульса $p_0 = m_\alpha u_0$, с которым осуществляется инжекция. В релятивистском же случае малым возмущениям скорости могут соответствовать значительные изменения импульса.

В первом приближении по параметру (1.5.10) перепишем нормальную систему (1.5.4) в виде

$$\frac{dt}{dz} = \frac{1}{u_0} \left(1 - \frac{\widetilde{v}_z}{u_0} \right), \quad \frac{dp_z}{dz} = \frac{F_z}{u_0}, \quad \frac{d\mathbf{r}_\perp}{dz} = \frac{\mathbf{v}_\perp}{u_0}, \quad \frac{d\mathbf{p}_\perp}{dz} = \frac{\mathbf{F}_\perp}{u_0}. \quad (1.5.11)$$

С той же точностью переписываем и кинетическое уравнение (1.5.1):

$$\frac{\partial f_{\alpha}}{\partial z} + \frac{1}{u_0} \left(1 - \frac{\widetilde{v}_z}{u_0} \right) \frac{\partial f_{\alpha}}{\partial t} + \frac{F_z}{u_0} \frac{\partial f_{\alpha}}{\partial p_z} + \frac{\mathbf{v}_{\perp}}{u_0} \frac{\partial f_{\alpha}}{\partial \mathbf{r}_{\perp}} + \frac{\mathbf{F}_{\perp}}{u_0} \frac{\partial f_{\alpha}}{\partial \mathbf{p}_{\perp}} = 0. \quad (1.5.12)$$

Заметим, что в этих уравнениях \tilde{v}_z и \mathbf{v}_\perp — не независимые переменные, а функции независимых переменных p_z и \mathbf{p}_\perp . Поэтому для решения нормальной системы (1.5.11) необходимы формулы, задающие связь между данными величинами. Для релятивистского случая эти формулы можно записать в следующем виде:

$$\widetilde{v}_{z} = \frac{cp_{z}}{\sqrt{m^{2}c^{2} + p_{z}^{2} + p_{\perp}^{2}}} - \frac{cp_{z0}}{\sqrt{m^{2}c^{2} + p_{z0}^{2} + p_{\perp}^{2}}},$$

$$\mathbf{v}_{\perp} = \frac{c\mathbf{p}_{\perp}}{\sqrt{m^{2}c^{2} + p_{z}^{2} + p_{\perp}^{2}}},$$
(1.5.13)

где $\frac{cp_{z_0}}{\sqrt{m^2c^2+p_{z_0}^2+p_{\perp 0}^2}}=u_0.$ При этом будем предполагать, что измене-

ния поперечных составляющих импульса \mathbf{p}_{\perp} также являются столь малыми, чтобы обеспечивалось выполнение неравенства (1.5.10). В нерелятивистском случае можно использовать следующие формулы связи:

$$\widetilde{v}_z = \frac{p_z - p_0}{m_\alpha}, \quad \mathbf{v}_\perp = \frac{\mathbf{p}_\perp}{m_\alpha},$$
 (1.5.14)

а можно записать кинетическое уравнение (1.5.12) через возмущения импульсов, что полностью эквивалентно.

Введем новую переменную $\tau = z/u_0 - t$, т.е. $f(t, \mathbf{r}, \mathbf{p}) = f(z, \tau, p_z, \mathbf{r}_\perp, \mathbf{p}_\perp)$. Тогда уравнения (1.5.12) и (1.5.11) запишутся в виде

$$\frac{\partial f_{\alpha}}{\partial z} + \frac{\tilde{v}_z}{u_0^2} \frac{\partial f_{\alpha}}{\partial \tau} + \frac{F_z}{u_0} \frac{\partial f_{\alpha}}{\partial p_z} + \frac{\mathbf{v}_{\perp}}{u_0} \frac{\partial f_{\alpha}}{\partial \mathbf{r}_{\perp}} + \frac{\mathbf{F}_{\perp}}{u_0} \frac{\partial f_{\alpha}}{\partial \mathbf{p}_{\perp}} = 0, \quad (1.5.15)$$

$$\frac{d\tau}{dz} = \frac{\widetilde{v}_z}{u_0^2}, \quad \frac{dp_z}{dz} = \frac{F_z}{u_0}, \quad \frac{d\mathbf{r}_\perp}{dz} = \frac{\mathbf{v}_\perp}{u_0}, \quad \frac{d\mathbf{p}_\perp}{dz} = \frac{\mathbf{F}_\perp}{u_0}, \quad (1.5.16)$$

а дополнительные условия (условия инжекции) к уравнениям (1.5.16) оказываются следующими:

$$\tau|_{z=0} = -t_0, \quad p_z|_{z=0} = p_{z0}, \quad \mathbf{r}_{\perp}|_{z=0} = \mathbf{r}_{\perp 0}, \quad \mathbf{p}_{\perp}|_{z=0} = \mathbf{p}_{\perp 0}.$$
 (1.5.17)

Уравнения (1.5.15) и (1.5.16) только обозначениями отличаются от рассмотренных ранее уравнений начальной задачи (1.4.1) и (1.4.5). Поэтому, по аналогии с (1.4.10), решение кинетического уравнения (1.5.15) в задаче с граничными условиями запишем как

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = f_{\alpha}(z, \tau, p_{z}, \mathbf{r}_{\perp}, \mathbf{p}_{\perp}) = \int dt_{0} dp_{z0}, d\mathbf{r}_{\perp 0} d\mathbf{p}_{\perp 0} \times f_{\alpha 0}(t_{0}, p_{z0}, \mathbf{r}_{\perp 0}, p_{\perp 0}) \,\delta(\tau - \mathbf{T}) \,\delta(p_{z} - P_{z}) \,\delta(\mathbf{r}_{\perp} - \mathbf{R}_{\perp}) \,\delta(\mathbf{p}_{\perp} - \mathbf{P}_{\perp}),$$
(1.5.18)

где

$$\tau = \mathrm{T} (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \quad p_z = P_z (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \mathbf{r}_{\perp} = \mathbf{R}_{\perp} (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0}), \quad \mathbf{p}_{\perp} = \mathbf{P}_{\perp} (z, t_0, p_{z0}, \mathbf{r}_{\perp 0}, \mathbf{p}_{\perp 0})$$
(1.5.19)

 решение нормальной системы (1.5.16) с граничными условиями инжекции (1.5.17). Итак, в условиях (1.5.10) граничная задача математически эквивалентна начальной задаче.

Все отмеченные в данном параграфе особенности решения граничных задач Коши для уравнения Власова проиллюстрированы в примере 3, приведенном в разд. 1.7.

1.6. Метод интегрирования по начальным данным и неоднородные кинетические уравнения

В теории дифференциальных уравнений с частными производными первого порядка разработаны методы решения и неоднородных линейных уравнений вида

$$Y_1\frac{\partial f}{\partial x_1} + Y_2\frac{\partial f}{\partial x_2} + \dots + Y_n\frac{\partial f}{\partial x_n} = R(x_1,\dots,x_n,f).$$
(1.6.1)

Решение уравнения (1.6.1) ищется в неявной форме

$$V(x_1, \dots x_n, f) = 0, \tag{1.6.2}$$

и поскольку из (1.6.2) следует, что

$$\frac{\partial f}{\partial x_i} = -\frac{\partial V/\partial x_i}{\partial V/\partial f} \quad (i = 1, \dots, n), \tag{1.6.3}$$

то при подстановке (1.6.3) в (1.6.1) это уравнение приводится к однородному линейному уравнению относительно V:

$$Y_1\frac{\partial V}{\partial x_1} + Y_2\frac{\partial V}{\partial x_2} + \dots + Y_n\frac{\partial V}{\partial x_n} + R\frac{\partial V}{\partial f} = 0, \qquad (1.6.4)$$

которое решается по рассмотренной ранее схеме. А именно, составляется соответствующая (1.6.4) характеристическая система уравнений, например, в симметричной форме:

$$\frac{dx_1}{Y_1} = \frac{dx_2}{Y_2} = \dots = \frac{dx_n}{Y_n} = \frac{df}{R},$$
(1.6.5)

находится n независимых первых интегралов этой системы, которые подставляются в произвольную дифференцируемую функцию. Приравнивая эту функцию нулю, мы и получаем общее решение уравнения (1.6.1) в неявном виде. Если же удается из этого общего решения выразить f, то мы получим общее решение (1.6.1) в явном виде.

Не рассматривая специально процедуру построения решения задачи Коши для уравнения (1.6.1) проверим лишь условия сохранения якобиана и, соответственно, возможности представления решения задачи Коши в виде интеграла по начальным данным. Эти условия по аналогии с (1.3.12) запишутся в данном случае в виде

$$Y_1 = Y_1(x_1);$$
 $\frac{\partial Y_k}{\partial x_k} = 0$ при $k = 2, 3, \dots, n;$ $\frac{\partial R}{\partial f} = 0$ (1.6.6)

(за независимую переменную, как и прежде, выбрана x_1).

Из этих условий наиболее важным является последнее, согласно которому функция, стоящая в правой части (1.6.1), не должна зависеть от f. Важность этого условия обусловлена тем, что неоднородное кинетическое уравнение, записанное для одночастичной функции распределения

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \frac{\partial f_{\alpha}}{\partial \mathbf{r}} + \mathbf{F} \left(t, \mathbf{r}, \mathbf{v} \right) \frac{\partial f_{\alpha}}{\partial \mathbf{p}} = I_{\rm ct} \left(f \right), \qquad (1.6.7)$$

содержит в правой части интеграл столкновений, описывающий изменение функции распределения вследствие столкновений частиц. Эти интегралы являются функциями f. Например, в простейшем случае τ -приближения

$$I_{\rm ct}(f) = \frac{f - f_0}{\tau}.$$
 (1.6.8)

Поскольку физический смысл интегралов столкновения заключается в описании процессов релаксации, то фазовый объем (якобиан) при таких процессах не сохраняется, а, следовательно, и невозможно представление функции распределения в виде интеграла по начальным данным, о чем уже говорилось в § 1.4.

1.7. Примеры решения начальных и граничных задач для уравнения Власова методом интегрирования по начальным данным

Пример 1. В случае одномерной плазмы, функция распределения которой не зависит от координат x и y, находящейся под действием силы вида $\mathbf{F} = (0, 0, F)$, уравнение Власова и начальное условие

записываются в виде

$$\frac{\partial f_{\alpha}}{\partial t} + v_z \frac{\partial f_{\alpha}}{\partial z} + F(t, z) \frac{\partial f_{\alpha}}{\partial p_z} = 0,$$

$$f_{\alpha}(0, z, p_z) = f_{\alpha 0}(z, p_z).$$
(1.7.1)

Соответствующая нормальная система (1.4.5) с дополнительными условиями (1.4.6) записываются следующим образом:

$$\frac{dz}{dt} = v_z, \quad \frac{dp_z}{dt} = F,
z|_{t=0} = z_0, \quad p_z|_{t=0} = p_{z0}.$$
(1.7.2)

В простейшем случае постоянной силы, $F = F_0 = \text{const}$, решение нормальной системы уравнений (1.7.2) имеет вид

$$z = Z(t, z_0, p_{z0}) = z_0 + \frac{c}{F_0} \left(\sqrt{m_\alpha^2 c^2 + (F_0 t + p_{z0})^2} - \sqrt{m_\alpha^2 c^2 + p_{z0}^2} \right),$$

$$p_z = P_z(t, z_0, p_{z0}) = p_{z0} + F_0 t.$$
 (1.7.3)

Эти формулы являются конкретным примером (1.4.7). Пример формул (1.4.8) получим, выражая из (1.7.3) постоянные z_0 и p_{z0} :

$$z_{0} = Z_{0}(t, z, p_{z}) = z + \frac{c}{F_{0}} \left(\sqrt{m_{\alpha}^{2} c^{2} + (p_{z} - F_{0} t)^{2}} - \sqrt{m_{\alpha}^{2} c^{2} + p_{z}^{2}} \right),$$

$$p_{z0} = P_{z0}(t, z, p_{z}) = p_{z} - F_{0} t.$$
(1.7.4)

Подставляя интегралы движения (1.7.4) в общее решение начальной задачи для уравнения Власова (1.4.9), получим решение задачи (1.7.1)

$$f_{\alpha}(t, z, p_{z}) = f_{\alpha 0} \left(Z_{0}(t, z, p_{z}), P_{z0}(t, z, p_{z}) \right) = = f_{\alpha 0} \left(z + \frac{c}{F_{0}} \left(\sqrt{m_{\alpha}^{2} c^{2} + (p_{z} - F_{0} t)^{2}} - \sqrt{m_{\alpha}^{2} c^{2} + p_{z}^{2}} \right), p_{z} - F_{0} t \right).$$
(1.7.5)

Прямой подстановкой легко убедиться, что функция (1.7.5) удовлетворяет кинетическому уравнению и начальному условию (1.7.1).

Покажем, как то же решение получается методом интегрирования по начальным данным. Для этого в одномерный вариант общей формулы (1.4.10)

$$f_{\alpha}(t, z, p_{z}) = \int \int dz_{0} dp_{z0} f_{\alpha 0}(z_{0}, p_{z0}) \,\delta\left(z - Z\left(t, z_{0}, p_{z0}\right)\right) \times \\ \times \,\delta\left(p_{z} - P_{z}\left(t, z_{0}, p_{z0}\right)\right) \quad (1.7.6)$$

следует подставить выражения (1.7.3) и выполнить интегрирование. Выполняя сначала интегрирование по z_0 , будем иметь

$$\begin{aligned} f_{\alpha}\left(t,z,p_{z}\right) &= \\ &= \int dp_{z0} f_{\alpha 0} \bigg(z - \frac{c}{F_{0}} \bigg(\sqrt{m_{\alpha}^{2} c^{2} + (p_{z0} + F_{0} t)^{2}} - \sqrt{m_{\alpha}^{2} c^{2} + p_{z0}^{2}} \bigg), p_{z0} \bigg) \times \\ &\times \delta\left(p_{z} - p_{z0} - F_{0} t\right), \quad (1.7.7) \end{aligned}$$

окончательное интегрирование по p_{z0} приводит в точности к (1.7.5).

Пример 2. В качестве следующего примера рассмотрим опять одномерную плазму, но при наличии силы, соответствующей одиночной потенциальной яме, типа $F = -m_{\alpha}\omega^2 z$, где ω — заданная величина. Для простоты ограничимся нерелятивистским случаем. Решение характеристической системы (1.7.2) при этом запишется в виде

$$z = Z(t, z_0, p_{z_0}) = z_0 \cos \omega t + \frac{p_{z_0}}{m_\alpha \omega} \sin \omega t,$$

$$= P(t, z_0, p_z) = m_z \cos(\omega t - m_\alpha \omega) z_0 \sin(\omega t),$$
(1.7.8)

 $p_z = P_z (t, z_0, p_{z0}) = p_{z0} \cos \omega t - m_\alpha \omega z_0 \sin \omega t.$

Эти соотношения дают конкретный вид формул (1.4.7). Выражая отсюда постоянные интегрирования и, получим конкретный вид соотношений (1.4.8)

$$z_0 = Z_0(t, z, p_z) = z \cos \omega t - \frac{p_z}{m_\alpha \omega} \sin \omega t,$$

$$p_{z0} = P_{z0}(t, z, p_z) = p_z \cos \omega t + m_\alpha \omega z \sin \omega t,$$
(1.7.9)

подставляя которые в общее решение (1.4.9), получим выражение для функции распределения рассматриваемой плазмы

$$f_{\alpha}(t, z, p_z) = f_{\alpha 0} \left(Z_0(t, z, p_z), P_{z0}(t, z, p_z) \right) = f_{\alpha 0} \left(z \cos \omega t - \frac{p_z}{m_{\alpha} \omega} \sin \omega t, p_z \cos \omega t + m_{\alpha} \omega z \sin \omega t \right). \quad (1.7.10)$$

Распределение (1.7.10) для системы частиц (а это, очевидно — гармонические осцилляторы) в потенциальной яме является самым общим. Можно из (1.7.10) сформировать более простую, но и более важную функцию распределения. Действительно, из (1.7.9) видно, что имеет место соотношение

$$m_{\alpha}^{2}\omega^{2}z_{0}^{2} + p_{z0}^{2} = m_{\alpha}^{2}\omega^{2}z^{2} + p_{z}^{2}.$$
 (1.7.11)

Поэтому стационарная функция распределения вида

$$f_{\alpha}(z, p_z) = f_{\alpha 0} \left(p_z^2 + m_{\alpha}^2 \omega^2 z^2 \right)$$
(1.7.12)

также является решением кинетического уравнения (1.7.1) с $F = -m_{\alpha}\omega^2 z$. Распределение (1.7.12) является частным случаем распределения Максвелла-Больцмана

$$f_{\alpha}(z, p_z) = \Phi\left(\frac{p_z^2}{2m_{\alpha}} + U(z)\right)$$
(1.7.13)

2 Ю.В. Бобылёв, М.В. Кузелев

. .

в поле с потенциалом $U(z) = m\omega^2 z^2/2$.

Получим теперь решение (1.7.10) методом интегрирования по начальным данным. После подстановки (1.7.8) в правую часть (1.7.7) имеем

$$\int \int dz_0 dp_{z0} f_{\alpha 0} (z_0, p_{z0}) \,\delta\left(z - z_0 \cos \omega \,t - \frac{p_{z0}}{m_\alpha \omega} \sin \omega \,t\right) \times \\ \times \,\delta\left(p_z - p_{z0} \cos \omega \,t + m_\alpha \omega \,z_0 \sin \omega \,t\right). \quad (1.7.14)$$

Используя известные свойства дельта-функции

$$\delta\left(eta z
ight)=\left|eta
ight|^{-1}\delta\left(z
ight)$$
 и $\int\delta\left(z-a
ight)\delta\left(z-b
ight)dz=\delta\left(a-b
ight),$

выполним в (1.7.14) сначала интегрирование по z_0 . В результате получим

$$\frac{1}{|\cos\omega t|} \int dp_{z0} f_{\alpha 0} \left(\frac{z}{\cos\omega t} - \frac{p_{z0} \sin\omega t}{m_{\alpha} \omega \cos\omega t}, p_{z0} \right) \times \\ \times \delta \left(p_{z} - \frac{p_{z0}}{\cos\omega t} + m_{\alpha} \omega z \frac{\sin\omega t}{\cos\omega t} \right). \quad (1.7.15)$$

Заключительное интегрирование по p_{z0} осуществляется с помощью первого из приведенных выше свойств дельта-функции и дает результат, стоящий в правой части (1.7.10).

Пример 3. Рассмотрим снова одномерную плазму, находящуюся в поле постоянной силы $\mathbf{F} = \{0, 0, F_0\}$ (см. пример 1), но теперь в постановке граничной задачи. Для простоты ограничимся нерелятивистским случаем. Решение (1.5.6) нормальной системы (1.5.4) для этого случая оказывается следующим ($z \ge 0$):

$$p_{z} = P_{z} (z, t_{0}, p_{z0}) = \sqrt{2m_{\alpha}F_{0}z + p_{z0}^{2}},$$

$$t = T (z, t_{0}, p_{z0}) = (F_{0})^{-1} \left(\sqrt{p_{z0}^{2} + 2m_{\alpha}F_{0}z} - p_{z0}\right) + t_{0}.$$
 (1.7.16)

Выражая отсюда константы интегрирования t_0 и p_{z0} , имеем функции (1.5.7) в виде

$$p_{z0} = P_{z0}(z, t, p_z) = \sqrt{p_z^2 - 2m_\alpha F_0 z},$$

$$t_0 = T_0(z, t, p_z) = t + (F_0)^{-1} \left(\sqrt{p_z^2 - 2m_\alpha F_0 z} - p_z\right).$$
(1.7.17)

Подставляя теперь (1.7.17) в (1.5.8), получим окончательно следующее выражение для функции распределения в задаче с граничными условиями:

$$f_{\alpha}(t, z, p_{z}) = f_{\alpha 0} \left(T_{0}(z, t, p_{z}), P_{z 0}(z, t, p_{z}) \right) = f_{\alpha 0} \left(t + (F_{0})^{-1} \left(\sqrt{p_{z}^{2} - 2m_{\alpha}F_{0}z} - p_{z} \right), \sqrt{p_{z}^{2} - 2m_{\alpha}F_{0}z} \right).$$
(1.7.18)

1.7. Примеры решения начальных и граничных задач уравнения Власова 35

Рассмотрим теперь возможность получения решения данной задачи методом интегрирования по начальным данным. Непосредственной подстановкой формул (1.7.16) в (1.5.9) можно убедиться, что результат интегрирования отличается от (1.7.18) и уже не будет удовлетворять уравнению Власова. Это обусловлено тем, что в отличие от начальной задачи, аргумент у δ -функции $\delta (p_z - P_z (z, t_0, p_{z0}))$, где $P_z (z, t_0, p_{z0})$ определен в (1.7.16), уже не является линейным относительно переменной интегрирования p_{z0} . Поэтому для проведения интегрирования по p_{z0} необходимо воспользоваться следующей формулой разложения δ -функции:

$$\delta\left(\varphi\left(p_{z0}\right)\right) = \sum_{j} \frac{\delta\left(p_{z0} - p_{z0}^{(j)}\right)}{\left|\varphi'\left(p_{z0}^{(j)}\right)\right|},$$

где $\varphi(p_{z0}) = p_z - P_z(z, t_0, p_{z0})$, а $p_{z0}^{(j)}$ — корни уравнения $\varphi(p_{z0}) = 0$, что в свою очередь приводит к появлению дополнительного, в сравнении с (1.7.18), множителя $\frac{p_z}{\sqrt{p_z^2 - 2m_\alpha F_0 z}}$.

Следовательно, представить решение рассматриваемой граничной задачи в виде интеграла по начальным данным (1.5.9) невозможно, что является серьезным отличием в сравнении с начальной задачей (пример 1). Однако этим отличия двух задач не исчерпываются.

Вычислим якобиан преобразования от переменных (t, p_z) к переменным (t_0, p_{z0}) . Используя (1.7.16), имеем

$$D(z) = \frac{\partial(t, p_z)}{\partial(t_0, p_{z0})} = \begin{vmatrix} \frac{\partial T}{\partial t_0} & \frac{\partial T}{\partial p_{z0}} \\ \frac{\partial P_z}{\partial t_0} & \frac{\partial P_z}{\partial p_{z0}} \end{vmatrix} = \frac{p_{z0}}{\sqrt{p_{z0}^2 + 2m_\alpha F_0 z}}.$$
 (1.7.19)

Здесь z — произвольное значение пространственной координаты. Заметим, что вычисление якобиана D(z) можно провести и для более общего, чем при наличии постоянной силы случая. Рассмотрим стационарную одномерную систему, описываемую кинетическим уравнением с независящей от времени потенциальной силой

$$F(z) = -\frac{dU(z)}{dz}, \quad z \ge 0, \quad U(0) = 0.$$
 (1.7.20)

Решение нормальной системы для этого случая имеет вид

$$p_{z} = P_{z} (z, t_{0}, p_{z0}) = \sqrt{p_{z0}^{2} - 2m_{\alpha}U(z)},$$

$$t = T_{0} (z, t_{0}, p_{z0}) = t_{0} + m_{\alpha} \int_{0}^{z} dz' \left(p_{z0}^{2} - 2m_{\varepsilon}U(z)\right)^{-1/2}.$$
 (1.7.21)

 2^*

1

При $U(z) = -F_0 z$ (1.7.21) переходит в (1.7.16). Подставляя далее (1.7.21) в (1.7.19), получим

$$D(z) = \frac{p_{z0}}{\sqrt{p_{z0}^2 - 2m_{\alpha}U(z)}}.$$
(1.7.22)

Якобиан (1.7.22) обращается в бесконечность в той точке, где скорость $v_z = p_z/m_{\alpha}$ (см. (1.7.21)) обращается в нуль. То, что точка $v_z = 0$ является особой видно и из самих характеристических уравнений (1.5.4). Обращение в каких-то точках z скорости в нуль означает поворот (отражение) в этих точках частиц в сторону места инжекции. В этих точках преобразования (1.5.6) и (1.5.7) не являются взаимно однозначными.

Рассмотрим теперь возможность построения решения задачи примера 3 в рамках приближения (1.5.10). Решение (1.5.19) уравнений (1.5.16) с условиями (1.5.17) при этом имеет вид (случай опять нерелятивистский)

$$p_{z} = P_{z} (z, t_{0}, p_{z0}) = \frac{F_{0}}{u_{0}} z + p_{z0},$$

$$\tau = T (z, t_{0}, p_{z0}) = \frac{1}{2} \frac{F_{0}}{m_{\alpha} u_{0}^{3}} z^{2} + \frac{p_{z0} - p_{0}}{m_{\alpha} u_{0}^{2}} z - t_{0}.$$
(1.7.23)

Подстановка этих решений в интеграл по начальным данным (1.5.18) приводит к следующей функции распределения:

$$f_{\alpha}(z,\tau,p_z) = f_{\alpha 0} \left(\frac{p_z - p_0}{m_{\alpha} u_0^2} z - \frac{1}{2} \frac{F_0}{m_{\alpha} u_0^3} z^2 - \tau, \quad p_z - \frac{F_0}{u_0} z \right). \quad (1.7.24)$$

Непосредственной подстановкой проверяется, что (1.7.24) удовлетворяет кинетическому уравнению (1.5.15). Начальные данные (формулы типа (1.5.7)) можно также выразить из (1.7.23) и, подставив их в граничную функцию распределения (1.5.2), снова получить (1.7.24). Наконец, можно разложить точное решение (1.7.18) по малому возмущению импульса $p_z - p_0$, и опять будет получено решение (1.7.24).

1.8. Многожидкостная гидродинамика и интегрирование по начальным данным

Покажем, как с помощью метода интегрирования по начальным данным получаются уравнения многожидкостной гидродинамики холодной плазмы. При этом для простоты рассмотрим нерелятивистский случай. Будем исходить из выражения для интеграла по начальным данным (1.4.10)

$$f_{\alpha}(t, \mathbf{r}, \mathbf{p}) = \iint f_{\alpha 0}(\mathbf{r}_{0}, \mathbf{p}_{0}) \,\delta\left(\mathbf{r} - \hat{\mathbf{r}}(t, \mathbf{r}_{0}, \mathbf{p}_{0})\right) \delta\left(\mathbf{p} - \hat{\mathbf{p}}(t, \mathbf{r}_{0}, \mathbf{p}_{0})\right) d\mathbf{r}_{0} d\mathbf{p}_{0}.$$
(1.8.1)

Поскольку получение квазигидродинамических уравнений сводится к отысканию замкнутой системы уравнений для моментов функции

распределения заряженных частиц каждого сорта, запишем используемые в дальнейшем моменты нулевого, первого, второго, а также третьего порядков с помощью интеграла (1.8.1)

$$N_{\alpha}(t,\mathbf{r}) = \int f_{\alpha}(t,\mathbf{r},\mathbf{p}) d\mathbf{p} = \int \int f_{\alpha 0}(\mathbf{r}_{0},\mathbf{p}_{0}) \delta(\mathbf{r}-\widehat{\mathbf{r}}(t,\mathbf{r}_{0},\mathbf{p}_{0})) d\mathbf{r}_{0} d\mathbf{p}_{0},$$
(1.8.2)

$$N_{\alpha}(t, \mathbf{r}) \mathbf{V}_{\alpha}(t, \mathbf{r}) = \int \mathbf{v} f_{\alpha}(t, \mathbf{r}, \mathbf{p}) d\mathbf{p} =$$
$$= \int \int \widehat{\mathbf{v}}(t, \mathbf{r}_{0}, \mathbf{p}_{0}) f_{\alpha 0}(\mathbf{r}_{0}, \mathbf{p}_{0}) \delta(\mathbf{r} - \widehat{\mathbf{r}}(t, \mathbf{r}_{0}, \mathbf{p}_{0})) d\mathbf{r}_{0} d\mathbf{p}_{0}, \quad (1.8.3)$$

$$N_{\alpha}(t,\mathbf{r})\left(V^{2}\right)_{\alpha i j}(t,\mathbf{r}) = \int v_{i}v_{j}f_{\alpha}(t,\mathbf{r},\mathbf{p}) d\mathbf{p} = \int \int \widehat{v}_{i}(t,\mathbf{r}_{0},\mathbf{p}_{0}) \times \\ \times \widehat{v}_{j}(t,\mathbf{r}_{0},\mathbf{p}_{0}) f_{\alpha 0}(\mathbf{r}_{0},\mathbf{p}_{0}) \delta\left(\mathbf{r}-\widehat{\mathbf{r}}(t,\mathbf{r}_{0},\mathbf{p}_{0})\right) d\mathbf{r}_{0} d\mathbf{p}_{0}, \quad (1.8.4)$$

$$N_{\alpha}(t,\mathbf{r})\left(V^{3}\right)_{\alpha i j k}(t,\mathbf{r}) = \int v_{i}v_{j}v_{k}f_{\alpha}(t,\mathbf{r},\mathbf{p}) d\mathbf{p} = \int \int \widehat{v}_{i}(t,\mathbf{r}_{0},\mathbf{p}_{0}) \times \widehat{v}_{j}(t,\mathbf{r}_{0},\mathbf{p}_{0})\widehat{v}_{k}(t,\mathbf{r}_{0},\mathbf{p}_{0})f_{\alpha 0}(\mathbf{r}_{0},\mathbf{p}_{0})\delta(\mathbf{r}-\widehat{\mathbf{r}}(t,\mathbf{r}_{0},\mathbf{p}_{0})) d\mathbf{r}_{0} d\mathbf{p}_{0}.$$
 (1.8.5)

Здесь $\hat{\mathbf{r}}(t, \mathbf{r}_0, \mathbf{p}_0)$ и $\hat{\mathbf{p}}(t, \mathbf{r}_0, \mathbf{p}_0)$ — решения системы уравнений

$$\frac{d\widehat{\mathbf{r}}}{dt} = \widehat{\mathbf{v}}, \quad \frac{d\widehat{\mathbf{p}}}{dt} = \mathbf{F} = e_{\alpha} \left(\mathbf{E} + \frac{1}{c} \left[\widehat{\mathbf{v}}, \mathbf{B} \right] \right), \quad \widehat{\mathbf{p}} = m_{\alpha} \widehat{\mathbf{v}}$$
(1.8.6)

при начальных условиях

$$\widehat{\mathbf{r}}|_{t=0} = \mathbf{r}_0; \qquad \widehat{\mathbf{p}}|_{t=0} = \mathbf{p}_0. \tag{1.8.7}$$

Введем, наряду с моментами (1.8.4) и (1.8.5), также и центральные моменты второго и третьего порядков

$$N_{\alpha}(t, \mathbf{r}) \left(\overline{V^{2}}\right)_{\alpha i j}(t, \mathbf{r}) = \\ = \int \int \left(\widehat{v}_{i} - V_{\alpha i}\right) \left(\widehat{v}_{j} - V_{\alpha j}\right) f_{\alpha 0}\left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \delta\left(\mathbf{r} - \widehat{\mathbf{r}}\right) d\mathbf{r}_{0} d\mathbf{p}_{0}, \quad (1.8.8)$$
$$N_{\alpha}(t, \mathbf{r}) \left(\overline{V^{3}}\right)_{\alpha i j k}(t, \mathbf{r}) = \int \int \left(\widehat{v}_{i} - V_{\alpha i}\right) \left(\widehat{v}_{j} - V_{\alpha j}\right) \left(\widehat{v}_{k} - V_{\alpha k}\right) \times \\ \times f_{\alpha 0}\left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \delta\left(\mathbf{r} - \widehat{\mathbf{r}}\right) d\mathbf{r}_{0} d\mathbf{p}_{0}. \quad (1.8.9)$$

Выразим моменты (1.8.4) и (1.8.5) через центральные моменты (1.8.8) и (1.8.9) и произведения моментов низших порядков. Например, учитывая, что центральные моменты первого порядка равны нулю, имеем

$$\begin{split} N_{\alpha} \left(V^{2} \right)_{\alpha i j} &= \int \int \left(\widehat{v}_{i} - V_{\alpha i} + V_{\alpha i} \right) \left(\widehat{v}_{j} - V_{\alpha j} + V_{\alpha j} \right) f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \times \\ &\times \delta(\mathbf{r} - \widehat{\mathbf{r}}) d\mathbf{r}_{0} d\mathbf{p}_{0} = \int \int f_{\alpha 0} (\mathbf{r}_{0}, \mathbf{p}_{0}) (\widehat{v}_{i} - V_{\alpha i}) (\widehat{v}_{j} - V_{\alpha j}) \delta(\mathbf{r} - \widehat{\mathbf{r}}) d\mathbf{r}_{0} d\mathbf{p}_{0} + \\ &+ \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) V_{\alpha i} \widehat{v}_{j} \delta\left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0} + \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \left(\widehat{v}_{i} - V_{\alpha i} \right) V_{\alpha j} \times \\ &\times \delta\left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0} = N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} + N_{\alpha} V_{\alpha j} V_{\alpha i}. \end{split}$$

Следовательно

$$N_{\alpha} \left(V^2 \right)_{\alpha i j} = N_{\alpha} \left(\overline{V^2} \right)_{\alpha i j} + N_{\alpha} V_{\alpha i} V_{\alpha j}.$$
(1.8.10)

Проводя аналогичные преобразования, из (1.8.5) имеем

$$N_{\alpha} \left(V^{3} \right)_{\alpha i j k} = N_{\alpha} \left(\overline{V^{3}} \right)_{\alpha i j k} + N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} V_{k} + N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha j k} V_{i} + N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i k} V_{j} + N_{\alpha} V_{\alpha i} V_{\alpha j} V_{\alpha k}.$$
(1.8.11)

Для вывода уравнения, которому удовлетворяет момент (1.8.2), вычислим его производную по времени

$$\frac{\partial N_{\alpha}}{\partial t} = -\int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \widehat{\mathbf{v}} \left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right) \cdot \nabla \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right) d\mathbf{r}_{0} d\mathbf{p}_{0}.$$
(1.8.12)

Замечая, что интеграл, стоящий в правой части (1.8.12), может быть получен в результате дифференцирования момента (1.8.3) по координатам

$$\left(\nabla \cdot N_{\alpha} \mathbf{V}_{\alpha}\right) = \iint f_{\alpha 0}\left(\mathbf{r}_{0}, \mathbf{p}_{0}\right) \widehat{\mathbf{v}}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right) \cdot \nabla \delta\left(\mathbf{r} - \widehat{\mathbf{r}}\left(t, \mathbf{r}_{0}, \mathbf{p}_{0}\right)\right) d\mathbf{r}_{0} d\mathbf{p}_{0},$$
(1.8.13)

складывая (1.8.12) и (1.8.13), получаем уравнение непрерывности (первое уравнение (1.1.15))

$$\frac{\partial N_{\alpha}}{\partial t} + \nabla \left(N_{\alpha} \mathbf{V}_{\alpha} \right) = 0.$$
 (1.8.14)

В выражениях (1.8.12) и (1.8.13) обозначено

$$(\nabla \cdot \mathbf{A}) = \nabla_j A_j = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z},$$

$$\mathbf{A} \cdot \nabla \delta = A_j \nabla_j \delta = \left(A_x \frac{\partial}{\partial x} + A_y \frac{\partial}{\partial y} + A_z \frac{\partial}{\partial z} \right) \delta,$$
 (1.8.15)

где $\mathbf{A} = \{A_x, A_y, A_z\}$ — произвольный вектор, $\nabla \delta$ — градиент δ -функции (дифференцирование производится по координатам радиуса-вектора $\mathbf{r} = \{x, y, z\}$), а по дважды повторяющемуся индексу предполагается суммирование.

Для вывода уравнения, которому удовлетворяет момент (1.8.3), вычислим его производную по времени

$$\frac{\partial}{\partial t} N_{\alpha} V_{\alpha i} = \iint f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \left\{ \delta \left(\mathbf{r} - \hat{\mathbf{r}} \right) \frac{F_{i}}{m_{\alpha}} - \hat{v}_{i} \hat{v}_{j} \nabla_{j} \delta \left(\mathbf{r} - \hat{\mathbf{r}} \right) \right\} d\mathbf{r}_{0} d\mathbf{p}_{0} = \\ = \frac{1}{m_{\alpha}} \iint f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \delta \left(\mathbf{r} - \hat{\mathbf{r}} \right) F_{i} d\mathbf{r}_{0} d\mathbf{p}_{0} - \\ - \iint f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \hat{v}_{i} \hat{v}_{j} \nabla_{j} \delta \left(\mathbf{r} - \hat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}. \quad (1.8.16)$$

При записи первого интеграла в (1.8.16) было использовано второе уравнение из (1.8.6).

Замечая, что второй интеграл в (1.8.16) может быть получен дифференцированием по координатам момента второго порядка (1.8.4)

$$\nabla_{j} N_{\alpha} \left(V^{2} \right)_{\alpha i j} = \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \widehat{v}_{i} \widehat{v}_{j} \nabla_{j} \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}, \qquad (1.8.17)$$

складывая (1.8.16) и (1.8.17), получаем

$$\frac{\partial}{\partial t} N_{\alpha} V_{\alpha i} + \nabla_j N_{\alpha} \left(V^2 \right)_{\alpha i j} = \frac{1}{m_{\alpha}} \int \int f_{\alpha 0} \left(\mathbf{r}_0, \mathbf{p}_0 \right) F_i \delta \left(\mathbf{r} - \hat{\mathbf{r}} \right) d\mathbf{r}_0 \, d\mathbf{p}_0.$$
(1.8.18)

Выражение $\nabla_j N_{\alpha} (V^2)_{\alpha i j}$ в (1.8.17) представляет собой дивергенцию тензора $N_{\alpha} (V^2)_{\alpha i j}$

$$\nabla_{j} N_{\alpha} \left(V^{2} \right)_{\alpha i j} = \frac{\partial N_{\alpha} \left(V^{2} \right)_{\alpha i j}}{\partial x_{j}}, \qquad (1.8.19)$$

результатом вычисления которой является вектор, компонента которого и входит в (1.8.18).

Преобразуем левую часть в (1.8.18), подставив в нее вместо тензора $N_{\alpha} \left(V^2\right)_{\alpha i j}$ выражение (1.8.10) и производя соответствующие дифференцирования. С учетом уравнения непрерывности (1.8.14) имеем

$$\frac{\partial}{\partial t} N_{\alpha} V_{\alpha i} + \nabla_{j} N_{\alpha} \left(V^{2} \right)_{\alpha i j} = \\
= N_{\alpha} \frac{\partial V_{\alpha i}}{\partial t} + V_{\alpha i} \frac{\partial N_{\alpha}}{\partial t} + \nabla_{j} N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} + \nabla_{j} N_{\alpha} V_{\alpha j} V_{\alpha i} = \\
= N_{\alpha} \frac{\partial V_{\alpha i}}{\partial t} + V_{\alpha i} \frac{\partial N_{\alpha}}{\partial t} + \nabla_{j} N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} + V_{\alpha i} \nabla_{j} N_{\alpha} V_{\alpha j} + N_{\alpha} V_{\alpha j} \nabla_{j} V_{\alpha i} = \\
= N_{\alpha} \frac{\partial V_{\alpha i}}{\partial t} + \nabla_{j} N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} + N_{\alpha} V_{\alpha j} \nabla_{j} V_{\alpha i}. \quad (1.8.20)$$

Подставляя далее (1.8.20) в (1.8.18) и деля обе части этого уравнения на $N_{\alpha},$ получаем уравнение Эйлера

$$\frac{\partial V_{\alpha i}}{\partial t} + V_{\alpha j} \nabla_j V_{\alpha i} + \frac{1}{N_\alpha} \frac{1}{m_\alpha} \nabla_j \Pi_{\alpha i j} = \frac{1}{m_\alpha} F_i, \qquad (1.8.21)$$

где

$$\Pi_{\alpha i j} = m_{\alpha} N_{\alpha} \left(\overline{V^2} \right)_{\alpha i j} = m_{\alpha} \int \int f_{\alpha 0} \left(\mathbf{r}_0, \mathbf{p}_0 \right) \left(\widehat{v}_i - V_{\alpha i} \right) \left(\widehat{v}_j - V_{\alpha j} \right) \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_0 d\mathbf{p}_0, \quad (1.8.22)$$

или в векторном виде

$$\mathbf{\Pi}_{\alpha j} = m_{\alpha} \mathbf{e}_{i} N_{\alpha} \left(\overline{V^{2}} \right)_{\alpha i j} = m_{\alpha} \iint f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \left(\widehat{\mathbf{v}} - \mathbf{V}_{\alpha} \right) \left(\widehat{v}_{j} - V_{\alpha j} \right) \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}. \quad (1.8.22a)$$

Формулы (1.8.22) определяют тензор давления (см. (1.1.16)).

Уравнение (1.8.21) также можно записать в векторном виде: домножая левую и правую части (1.8.21) на орты \mathbf{e}_i ($\mathbf{e}_1 = \mathbf{i}, \ \mathbf{e}_2 = \mathbf{j}, \ \mathbf{e}_3 = \mathbf{k}$) и суммируя по индексу i, находим

$$\frac{\partial \mathbf{V}_{\alpha}}{\partial t} + (\mathbf{V}_{\alpha} \cdot \nabla) \ \mathbf{V}_{\alpha} + \frac{1}{N_{\alpha}} \frac{1}{m_{\alpha}} \nabla_{j} \mathbf{\Pi}_{\alpha j} = \frac{1}{m_{\alpha}} \mathbf{F}.$$
 (1.8.23)

Здесь

$$\mathbf{F} = e_{\alpha} \left(\mathbf{E} + \frac{1}{c} \left[\mathbf{V}_{\alpha}, \mathbf{B} \right] \right).$$
(1.8.24)

Очевидно, что уравнение (1.8.23) является нерелятивистской формой второго уравнения (1.1.15).

Получим еще уравнение, которому удовлетворяет тензор давления $\Pi_{\alpha j}$. Для вывода этого уравнения вычислим производную по времени момента (1.8.4)

$$\frac{\partial}{\partial t} N_{\alpha} \left(V^{2} \right)_{\alpha i j} = \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \left(\widehat{v}_{i} \frac{\partial \widehat{v}_{j}}{\partial t} + \widehat{v}_{j} \frac{\partial \widehat{v}_{i}}{\partial t} \right) \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0} - \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \widehat{v}_{i} \widehat{v}_{j} \widehat{v}_{k} \nabla_{k} \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}. \quad (1.8.25)$$

Второй интеграл в (1.8.25) может быть получен дифференцированием по координатам момента третьего порядка (1.8.5)

$$\nabla_{k} N_{\alpha} \left(V^{3} \right)_{\alpha i j k} = \iint f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \widehat{v}_{i} \widehat{v}_{j} \widehat{v}_{k} \nabla_{k} \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}. \quad (1.8.26)$$

Здесь $\nabla_k N_{\alpha} (V^3)_{\alpha i j k}$ представляет собой дивергенцию тензора третьего ранга $N_{\alpha} (V^3)_{\alpha i j k}$, результатом вычисления которой является тензор второго ранга (аналогично (1.8.19)).

Складывая (1.8.25) и (1.8.26), имеем

$$\frac{\partial}{\partial t} N_{\alpha} \left(V^{2} \right)_{\alpha i j} + \nabla_{k} N_{\alpha} \left(V^{3} \right)_{\alpha i j k} = \\ = \int \int f_{\alpha 0} \left(\mathbf{r}_{0}, \mathbf{p}_{0} \right) \left(\widehat{v}_{i} \frac{\partial \widehat{v}_{j}}{\partial t} + \widehat{v}_{j} \frac{\partial \widehat{v}_{i}}{\partial t} \right) \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_{0} d\mathbf{p}_{0}, \quad (1.8.27)$$

Заменим далее моменты $N_{\alpha} (V^2)_{\alpha ij}$ и $N_{\alpha} (V^3)_{\alpha ijk}$ через центральные моменты, используя (1.8.10) и (1.8.11), что дает

$$\frac{\partial}{\partial t} \left(N_{\alpha} \left(\overline{V^2} \right)_{\alpha i j} + N_{\alpha} V_{\alpha j} V_{\alpha i} \right) + \nabla_k \left(N_{\alpha} \left(\overline{V^3} \right)_{\alpha i j k} + N_{\alpha} \left(\overline{V^2} \right)_{\alpha i j} V_{\alpha k} + N_{\alpha} \left(\overline{V^2} \right)_{\alpha i k} V_{\alpha j} + N_{\alpha} \left(\overline{V^2} \right)_{\alpha j k} V_{\alpha i} + N_{\alpha} V_{\alpha i} V_{\alpha j} V_{\alpha k} \right) = \\ = \int \int f_{\alpha 0} \left(\mathbf{r}_0, \mathbf{p}_0 \right) \left(\widehat{v}_i \frac{\partial \widehat{v}_j}{\partial t} + \widehat{v}_j \frac{\partial \widehat{v}_i}{\partial t} \right) \delta \left(\mathbf{r} - \widehat{\mathbf{r}} \right) d\mathbf{r}_0 d\mathbf{p}_0. \quad (1.8.28)$$