
ПРОЕКТИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ЕВРОНОРМАМ

В.О. Алмазов

ПРОЕКТИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ЕВРОНОРМАМ

Репензенты:

ОКС ЦНИИПромзданий

(гл. инженер, заслуженный деятель науки РФ, д.т.н., профессор Э.Н. Кодыш) OOO «Товарищество театральных архитекторов» (гл. конструктор, к.т.н., профессор МАРХИ С.А. Белов)

Алмазов В.О.

Проектирование железобетонных конструкций по ЕВРОНОРМАМ. Научное издание. – Москва: Издательство АСВ, 2011. – 216 с.

ISBN 978-5-93093-502-8

Предлагаемая книга содержит подробное изложение требований и рекомендаций ЕВРОНОРМ — международных норм по проектированию железобетонных конструкций с обычным армированием. В книге приведены требования к бетону и арматуре, принципы проектирования железобетонных конструкций. Подробно излагаются методы расчетов несущей способности и пригодности к нормальной эксплуатации изгибаемых, сжатых, растянутых элементов, конструкций, работающих на кручение и изгиб. Содержится развернутое изложение метода «тяжей и распорок». У специалистов вызовут интерес конструктивные требования и методы конструирования, отличные от используемых в России. Особый интерес вызовут требования и описание связевой арматуры, необходимой для обеспечения сопротивления прогрессирующему разрушению многоэтажных каркасов.

Книга представляет интерес для студентов, аспирантов, инженеров, научных сотрудников и преподавателей, изучающих железобетонные конструкции.

Цель руководства

- Позволяет понять сходства и различия Еврокода 2 и СНиП нового поколения.
- 2. Оценить преимущества и недостатки того или иного метода расчета.
- 3. При проектировании объектов для зарубежного строительства, включая страны СНГ, расчеты и чертежи, выполненные по СНиП, скорректировать в соответствии с требованиями ЕС2.
- 4. При использовании зарубежных проектов объектов или изделий из железобетона обосновать сертификат соответствия.
- 5. В соответствии с Законом РФ №184 использовать методы, не противоречащие международному стандарту Евронормам.
- 6. Студентам, магистрантам, аспирантам, научным работникам всех рангов позволяет познакомиться с альтернативными методами расчета и проектирования железобетонных конструкций и стать источником разработки новых методов.

ПРЕДИСЛОВИЕ АВТОРА

При разработке этого пособия требовалось выполнить задачу по сохранению специфики Еврокода 2 и одновременно с этим сделать его легко читаемым для инженеров и специалистов, привычных к терминологии русской технической и, в первую очередь, нормативной литературы.

Преимущество отдано первому принципу, поскольку общая задача состоит именно в воспроизведении специфики ЕС. Трудно ожидать полного успеха в решении этих противоречащих задач. Автор полагает, что недостаточно строгая стилистика изложения не повредит главному — знакомству с особенностями этого международного стандарта и облегчению его использования целиком или в виде отдельных методов в научной и проектной работе российских специалистов.

Оглавление

ВВЕДЕНИЕ	7
ГЛАВА 1. Общие сведения	9
Цели	9
Нормативные ссылки	
Обозначения принципов и применяемых правил	
Символы	
ГЛАВА 2. Основы проектирования	16
Требования	16
Влияние нагрузок и окружающей среды	
Свойства материалов и изделий	
Геометрические характеристики	
Расчеты с использованием коэффициентов надежности	
Расчеты, сопровождающие испытания	
Дополнительные требования для фундаментов	
Требования к узлам преднапряженных элементов	22
ГЛАВА 3. Материалы	23
Бетон	23
Арматурная сталь	33
Предварительно напрягаемая арматура	39
Устройства для предварительного напряжения	44
ГЛАВА 4. Долговечность и защитный слой	46
Условия окружающей среды	46
Требования к долговечности	
Методы проверок соответствия	
ГЛАВА 5. Расчет конструкций	55
Общие сведения	55
Геометрические несовершенства	
Идеализация конструкций	59
Линейные упругие расчеты	62
Линейные упругие расчеты с ограниченным	
перераспределением	
Пластический расчет	
Расчеты на основе модели «тяжи и распорки»	
Нелинейные расчеты	66

Эффекты второго порядка при осевои нагрузке	
Критерии для пренебрежения эффектами 2-го порядка	78
Поперечная неустойчивость тонких балок	80
Предварительно напряженные элементы и конструкции	80
Напряжения в арматуре при плоском напряженном	
состоянии	87
Фундаменты мелкого заложения	
Свайные фундаменты	
ГЛАВА 6. Предельное состояние по несущей способности	91
Изгиб с осевыми силами или без осевых сил	91
Поперечная сила	92
Кручение	103
Продавливание	106
Расчет с помощью модели «Тяжей и распорок»	
Анкеры и нахлестки	
Местное действие нагрузки	
Усталость	
Проверка сжатого бетона на раздробление	
при эквивалентном уровне напряжений	126
ГЛАВА 7. Предельное состояние по несущей способности	129
Ограничения напряжений	129
Контроль трещинообразования	130
Контроль прогибов	
Расчетный метод вычисления прогибов	142
ГЛАВА 8. Конструирование арматуры и напрягающих элементов	144
Расстояние между стержнями	144
Разрешенные диаметры оправок загибаемых стержней	
Анкеровка продольной арматуры	146
Анкеровка связей и поперечной арматуры	
Анкеровка путем приварки стержней	
Соединения внахлестку и механические соединения	
Дополнительные требования для стержней	
большого диаметра	156
Пакеты	
Напрягающие элементы	
ГЛАВА 9. Конструирование элементов и отдельные требования	164
Балки	
Толстые плиты	1/1

	Плиты перекрытий	172
	Колонны	
	Стены	178
	Высокие балки	
	Фундаменты	180
	Области с разрывами в геометрии и воздействиях	185
	Системы связей	
ГЛАВ	ВА 10. Дополнительные правила для сборных	
	элементов и конструкций	188
	Основы расчета, основные требования	189
	Материалы	
	Расчет конструкций	
	Отдельные правила расчета и конструирования	
	Стыки и опирание сборных элементов	
	Узлы опираний	
	Углы рам	200
	Консоли	
ГЛАВ	ВА 11. Конструкции из легкого бетона	204
	Основы расчета	204
	Расчет конструкций	
	Конструирование арматуры	209
ГЛАВ	3A 12. Бетонные и слабо армированные конструкции	210
	Материалы	210
	Расчет конструкций	
	Конструирование элементов	
	и дополнительные требования	215

ВВЕДЕНИЕ

Цель настоящего издания – познакомить научных работников, проектировщиков и строителей России с методами проектирования железобетонных конструкций на основании Еврокода 2.

Европейский Стандарт EN 1992, Еврокод 2: Проектирование железобетонных конструкций: Часть 1.1: Общие правила и правила для зданий, подготовлен Техническим Комитетом CEN/TC250 и включен Генеральным Секретариатом в Еврокоды для сооружений.

В 1975 году Комиссия Европейского сообщества приняла решение о Программе в области строительства. Целью Программы стало удаление препятствий в торговле и гармонизации технических требований.

Комиссия проявила инициативу в обеспечении гармонии для технических правил проектирования, строительных работ и разработке правил, альтернативных национальным.

В составе пакета Еврокодов имеются следующие части:

EN 1990	Еврокод 0:	Основы проектирования сооружений
EN 1991	Еврокод 1:	Воздействия на конструкции
EN 1992	Еврокод 2:	Проектирование железобетонных конструкций
EN 1993	Еврокод 3:	Проектирование стальных конструкций
EN 1994	Еврокод 4:	Проектирование сталебетонных конструкций
EN 1995	Еврокод 5:	Проектирование деревянных конструкций
EN 1996	Еврокод 6:	Проектирование каменных конструкций
EN 1997	Еврокод 7:	Проектирование оснований
EN 1998	Еврокод 8:	Проектирование сейсмостойких сооружений
EN 1999	Еврокод 9:	Проектирование алюминиевых конструкций

Евронормы обеспечивают совместимость строительных проектов при каждодневном использовании при проектировании сооружений целиком или их элементов при традиционном или инновационном (экспериментальном) проектировании.

При необычной форме сооружения или проекта от проектировщика в каждом отдельном случае требуются специфическое оформление и дополнительная специальная экспертиза.

Национальные стандарты, использующие Евронормы

Если национальные нормы какой-либо страны используют Евронормы, они должны включать полный текст Евронорм (в т. ч. Приложения).

Эти Приложения могут ограничиться информацией только о тех параметрах, которые сохранены в национальных нормах; они должны быть параметрами, одобренными в национальном масштабе для того, чтобы ими можно было пользоваться в проектах зданий и инженерных сооружений в конкретной стране, то есть:

- величины и/или классы, которые альтернативны приведенным в Евронормах;
- величины, приведенные только в Евронормах;
- данные, специфичные только для конкретной страны (географические, климатические и т.п.), в том числе карты;
- процедуры, альтернативные процедурам, используемым в Евронормах.

Они могут содержать:

- решения по применению информационных Приложений;
- ссылки на непротиворечивую дополнительную информацию, помогающую пользоваться Евронормами.

Для связи между гармонизированными (согласованными) техническими инструкциями для строительной продукции и техническими правилами производства работ необходимо, чтобы на всю информацию о строительной продукции была сделана четкая ссылка в параметрах, принятых в конкретной стране.

EN 1992-1-1 описывают принципы и требования безопасности, а также пригодности железобетонных конструкций к нормальной эксплуатации, вместе с мерами предосторожности для зданий. Они основаны на принципе предельных состояний, используемом совместно с коэффициентами надежности.

Числовые значения коэффициентов надежности и других параметров надежности рекомендуются как базовые значения, обеспечивающие приемлемый уровень надежности. Они были назначены в соответствии с достигнутым уровнем производства и качества принятой организации производства. При использовании EN 1992-1-1 в национальном стандарте следует при проектировании и строительстве использовать значения параметров для конкретной страны.

В тех случаях, когда национальный стандарт содержит величины параметров, отличные от рекомендуемых EN 1992-1-1, последний разрешает в оговоренных случаях вносить необходимые изменения в соответствующие разделы.

Глава 1 ОБЩИЕ СВЕДЕНИЯ

Пели

Еврокод 2 предназначен для проектирования и строительства монолитных зданий и инженерных сооружений из обычного и преднапряженного железобетона. Это соответствует принципам и требованиям безопасности и пригодности к нормальной эксплуатации. В основу проектирования и проверок положен EN 1990: Основы проектирования сооружений.

Еврокод 2 ограничивается требованиями к сопротивлению, пригодности к нормальной эксплуатации, долговечности и огнестойкости железобетонных конструкций.

Еврокод 2 предназначен для использования совместно с:

EN 1990: Основы проектирования сооружений

EN 1991: Воздействия на сооружения

hEN's: Производство продукции, для железобетонных конструкций

ENV 13670: Производство железобетонных конструкций

EN 1997: Проектирование основания

EN 1998: Проектирование сейсмостойких конструкций из железобетона в сейсмоактивных зонах.

Еврокод 2 разделен на следующие части:

Часть 1.1: Основные правила и правила для зданий

Часть 1.2: Проектирование огнестойких конструкций

Часть 2: Мосты с обычной и преднапряженной арматурой

Часть 3: Конструкции для хранения и транспортировки жидкостей

В настоящем издании приводится и комментируется только Часть 1.1, которая состоит из 12 глав:

Глава 1. Общие сведения

Глава 2. Основы проектирования

Глава 3. Материалы

Глава 4. Долговечность и защитный слой

Глава 5. Расчет конструкций

Глава 6. Предельное состояние по несущей способности (ULS)

Глава 7. Пригодность к нормальной эксплуатации (SLS)

Глава 8. Детали армирования и напрягаемых элементов. Общие положения

Глава 9. Конструирование элементов и частные требования

Глава 10. Дополнительные правила для преднапряженных элементов и конструкций

Глава 11. Конструкции из легкого бетона

Глава 12. Линейные и плоские железобетонные конструкции.

Нормативные ссылки

При пользовании EC2 необходимо иметь ввиду, что этот документ использует и ссылается на несколько международных стандартов:

EN 1990: Основы проектирования сооружений

EN 1991-1-5: Воздействия на сооружения: температурные воздействия

EN 1991-1-6: Воздействия на сооружения: воздействия в период строительства

EN 1997: Проектирование основания

EN 197-1: Цемент: Состав, спецификации и соответствующие критерии для обычных цементов

EN 206-1: Бетон: Спецификация, приготовление, производство и соответствие.

EN 12350: Испытание свежеприготовленного бетона

EN 10080: Сталь для обычного армировния

EN 10138: Сталь для предварительно напряженного железобетона

EN ISO 17760: Допускаемые стыки при армировании

EN 13670: Возведение железобетонных конструкций

EN 13791: Испытание бетона

EN ISO 15630: Сталь для обычной и преднапряженной арматуры: Методы испытаний

В дополнение к основным допущениям, описанным в EN 1990, приняты следующие условия:

- сооружения следует проектировать при использовании квалифицированного персонала;
- на заводах, полигонах и на объектах должен быть обеспечен контроль качества и соответствующий надзор;
- строительство следует выполнять с помощью персонала, имеющего соответствующий опыт и квалификацию;
- строительные материалы и изделия должны быть сертифицированы в соответствии с этим Еврокодом или на основании прилагаемых спецификаций на материалы;
- конструкции должны иметь соответствующую несущую способность;
- конструкции следует использовать в соответствии с требованиями проекта;
- требования к выпуску и производству приведены в ENV 13679;

Глава 2. ОСНОВЫ ПРОЕКТИРОВАНИЯ

Требования

Проектирование железобетонных конструкций соответствует основным правилам, приведенным в EN 1990.

Эти требования основаны на том, что конструкции и конструктивные элементы должны быть спроектированы, выполнены и сохраняться так, чтобы в период эксплуатации они обладали достаточной долговечностью. Это означает, что

- производство должно отвечать всем возможным воздействиям;
- сопротивление всем воздействиям и иным влияниям должно обеспечиваться как во время сооружения, так и при эксплуатации;
- обеспечение долговечности должно достигаться за приемлемую цену;
- не допускается последствий, несоразмерных с величиной исходного воздействия, таких как пожар, взрыв, удар или террористический акт.

Требования EN 1990 приемлемы для железобетонных конструкций, если выполнены следующие условия:

- предельное состояние по несущей способности вместе с системой коэффициентов надежности соответствует EN 1990;
- воздействия соответствуют EN 1991;
- комбинации воздействий соответствуют EN 1990;
- сопротивление, долговечность и пригодность к нормальной эксплуатации соответствуют этому EC2.

При этом по условиям огнестойкости могут потребоваться большие размеры элементов, чем необходимо для обеспечения сопротивления конструкции при нормальной температуре.

Правила управления надежностью приведены в EN 1990 раздел 2.

Расчет с использованием коэффициентов надежности содержатся в этом Еврокоде, а коэффициенты надежности, приведенные в EN 1990, дополнены на основании положения конструкции в соответствии с требованием долговечности для класса RC2.

Правила расчетов продолжительности эксплуатации, долговечности и управления качеством приведены в разделе 2 EN 1990.

Влияние нагрузок и окружающей среды

Нагрузки, используемые в расчете, принимают по соответствующим разделам EN 1991, которые включают:

EN 1991-1.1: Плотность, собственный вес и прикладываемые нагрузки

EN 1991-1.2: Воздействие огня

EN 1991-1.3: Снеговая нагрузка

EN 1991-1.4: Ветровая нагрузка

EN 1991-1.5: Температурные воздействия

EN 1991-1.6: Нагрузки при изготовлении

EN 1991-1.7: Случайные нагрузки в виде ударов и взрывов

EN 1991-2: Подвижные нагрузки на мостах

EN 1991-3: Нагрузки от кранов и других механизмов

EN 1991-4: Нагрузки в силосах и резервуарах.

Принципиально подход Евронорм совпадает с подходом СНиП РФ. Однако оценка частотности возникновения тех или иных нагрузок и опасности их приложения может отличаться от той, что требуют СНиПы РФ. Именно эти различия являются одним из важнейших компонентов, создающих основу для несовпадения результатов расчетов железобетонных конструкций по ЕN и СНиП РФ.

Влияние температурных воздействий учитывают в расчетах по пригодности к нормальной эксплуатации.

В предельном состоянии по несущей способности влияние температуры учитывают только в том случае, если они значимы (например, выносливость, проверка устойчивости, когда имеют существенное значение эффекты второго порядка, и т. д.). В других случаях их не нужно учитывать при условии, что обеспечены пластичность и сопротивление элементов кручению.

Влияние температуры учитывают как временную нагрузку и применяют с коэффициентом надежности и коэффициентом ψ , значение которого определяют по EN 1990 и EN 1991-1-5.

Различные осадки (перемещения) сооружения, вызванные падением слоев грунта, классифицируют, как постоянное воздействие G_{set} , возникающее при этой комбинации нагрузок. В основном, G_{set} представлено значениями, соответствующими различным (отвечающим рассматриваемым уровням) осадкам (перемещениям) между отдельными фундаментами или частями всего фундамента $d_{set,i}$ (i обозначает номер отдельного фундамента или части фундамента).

Влияние неуравновешенных осадок следует в основном учитывать в расчетах по пригодности к нормальной эксплуатации.

В предельных состояниях по несущей способности их следует учитывать только в том случае, если они оказывают заметное влияние (например, при расчетах выносливости, проверке устойчивости с учетом существенных вторичных эффектов и т. д.). В других случаях предельных состояний по несущей способности нет необходимости их учета, в особенности, если обеспечены несущая способность элементов на кручение и их пластичность.

Если неуравновешенные осадки используются в расчете, то осадку следует учитывать с коэффициентом надежности. Значения коэффициентов надежности для осадок приведены в EN 1990.

Предварительное напряжение, описываемое в этом Еврокоде, должно выполняться с помощью элементов из высокопрочной стали (проволоки, тросов, стержней).

Напрягающие элементы могут быть помещены в бетон. Преднапряжение может осуществляться на бетон и на упоры. Стержни могут иметь сцепление с бетоном или не иметь его.

Напрягающие стержни могут находиться вне конструкции и контактировать с ней только в местах поворота элементов и в анкерах.

Свойства материалов и изделий

Требования к свойствам материалов и изделий приведены в разделе 4 EN 1990.

Свойства бетона, обычной и предварительно напряженной арматуры содержатся в разделе 3 или в соответствующих стандартах на изделия.

Усадка и ползучесть являются свойствами бетона, зависящими от времени.

Влияние усадки и ползучести следует учитывать в расчетах предельного состояния по несущей способности только при значимости этих эффектов, например, при проверке предельного состояния по устойчивости, если значительно влияние эффектов второго порядка. В других случаях эти эффекты несущественны для предельного состояния по несущей способности, если обеспечены несущая способность элементов на кручение и их пластичность.

Если ползучесть учитывается в расчетах, то она должна быть определена от действия квази-постоянных комбинаций нагрузок независимо от расчетных ситуаций, в том числе временных и случайных нагрузок. В большинстве случаев эффекты ползучести могут учитываться только от постоянных нагрузок и среднего значения предварительного напряжения.

В расчетах должны быть учтены последствия деформаций от температуры, ползучести и усадки. Влияние этих факторов учитывают одновременно на основании правил этого стандарта. Согласно им также следует:

- минимизировать деформации и наличие трещин до начала загружения, ползучесть и усадку при подборе состава бетонной смеси;
- минимизировать стеснение деформаций при обеспечении несущей способности или связей;
- если стеснение присутствует, то необходимо убедиться, что его влияние соответствующим образом учтено в расчетах.

В конструкциях зданий влияния температуры и усадки могут быть учтены в общем расчете и применены в пределах участка d_{joint} в виде объединенной результирующей деформации. Рекомендуемое значение d_{joint} равно 30 м*). Для преднапряженных конструкций с натяжением на упоры это зна-

^{*}Значение d_{ioint} можно принять по национальному стандарту.

чение может быть большим, чем для монолитных конструкций с натяжением на бетон, в которых часть усадки и ползучести уже проявилась.

Геометрические характеристики

Требования для геометрических характеристик содержатся в разделе 4 EN 1990.

При проектировании следует учесть отклонения размеров поперечных сечений в монолитных стойках и процесс бетонирования:

- если $d_{nom} < 400$ мм, то $d = d_{nom} 20$ мм;
- -если $400 < d_{nom} \le 1000$ мм, то $d = 0.95 d_{nom}$;
- -если $d_{nom} > 1000$ мм, то $d = d_{nom} 50$ мм;

где d_{nom} – номинальный диаметр стойки.

Расчеты с использованием коэффициентов надежности

Общие требования метода коэффициентов надежности содержатся в разделе 6 EN 1990.

При необходимости учета действия усадки в расчетах по несущей способности необходимо использовать коэффициент надежности $\gamma_{SH} = 1,0*$.

Предварительное напряжение в большинстве случаев является преимущественным.

Для расчетов в предельном состоянии по несущей способности и выносливости необходимо воспользоваться частным коэффициентом $\gamma_{P,\text{fav}}=1,0.$

При проверке предельного состояния конструкции с внешним предварительным напряжением, по устойчивости, когда преднапряжение может оказаться неблагоприятным, необходимо применить коэффициент надежности $\gamma_{P,unfor} = 1,3*$).

Коэффициентом $\gamma_{P,unfav} = 1,2$ следует воспользоваться также и при проверке локальных эффектов в зонах анкеровки напрягающих элементов, описанных в Главе 8.

Коэффициент надежности для нагрузки, вызывающей усталость – $\gamma_{_{F,fat}}=1$ **).

Для материалов в предельном состоянии по несущей способности следует применить коэффициенты надежности γ_{c} и γ_{s} по $\mathit{ma6n.}\ 2.1^{**}**).$

 ** В расчетах огнестойкости эти значения неприемлемы, эти расчеты следует выполнять по EN1992-1-1-2.

^{*}Значения $\gamma_{SH}, \gamma_{P,mfor}, \gamma_{F,fot}, \gamma_{C}, \gamma_{S}$ можно принять по национальному стандарту.

При проверке выносливости частные коэффициенты для постоянной нагрузки, содержащиеся в maбл.~2.1, рекомендуются как γ_{Cfat} и $\gamma_{S,fat}$.

Таблица 2.1. Коэффициенты надежности для материалов в предельном состоянии по несущей способности

Расчетная нагрузка	$\gamma_{\scriptscriptstyle C}$ для бетона	$\gamma_{_S}$ для обычной арматуры	γ_s для преднапря- женной арматуры
Постоянная и временная	1,5	1,15	1,15
Случайная	1,2	1,0	1,0

Значения коэффициентов надежности для материалов в предельных состояниях по пригодности к нормальной эксплуатации следует принимать такими, как это указано в соответствующих разделах Еврокода. Рекомендуемые значения для ситуаций, не оговоренных в соответствующих разделах Еврокода, равны 1,0).

Если это подтверждено измерениями, разрешается понижать значения коэффициентов γ_c и γ_s .

В частности, если производство оборудовано системой контроля качества, которая обеспечивает уверенность в том, что неблагоприятные отклонения в размерах поперечного сечения не превышают величин, приведенных в maбл. 2.2, коэффициент надежности для арматуры может быть уменьшен до $\gamma_{s,red1} = 1,1$.

Таблица 2.2.

Ограниченные отклонения			
	Ограниченные отклонения (мм)		
<i>h</i> или <i>b</i> (мм)	Размер поперечного	Положение арматуры	
	сечения $\pm \Delta h$, Δb (мм)	$\pm \Delta c$	
≤150	5	5	
400	10	10	
≥2500	30	20	

Примечание 1: Для нахождения промежуточных значений возможна линейная интерполяция.

Примечание $2:\pm\Delta c$ уточняет положение обычной или преднапряженной арматуры в поперечном сечении по высоте и ширине на один метр (в том числе плит и стен).

Если проектное сопротивление основывается на уточненных геометрических данных, включая рабочую высоту (см. рис. 2.1), которая получена одним из двух способов: уменьшением отклонений или измерением вы-

Научное издание

Владлен Ованесович Алмазов

ПРОЕКТИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ЕВРОНОРМАМ

Компьютерная верстка: Т.А. Кузьмина Дизайн обложки: Н.С. Романова Редактор: Ю.Р. Аделова

Лицензия ЛР № 0716188 от 01.04.98. Формат 60x90/16. Гарнитура Таймс. Печать офсетная. Усл. 13,5 п.л. Тираж 1000 экз. Заказ №

Издательство Ассоциации строительных вузов (АСВ) 129337, Москва, Ярославское шоссе, 26, отдел реализации – оф. 511 тел., факс: (499)183-56-83, e-mail: iasv@mgsu.ru, http://www.iasv.ru/