Владимир Живетин.

Методы и средства обеспечения безопасности полета



скачать книгу бесплатно

1) формирование ресурсов и обоснование выходных данных;

2) проведение научно-исследовательских работ – выбор конструктивных параметров;

3) проведение опытно-конструкторских работ, включая натурные испытания опытного образца объекта;

4) проведение летных испытаний объекта – оценка возможностей.

На рис. 1.2 приведены следующие обозначения: R1j = R1j(?R1j, ?1j) – ресурсы подсистемы, принадлежащие R1 (целеполагания рис. 1.1); ?R1j – потери ресурсов, реализуемые в подсистеме j , обусловленные погрешностями ?1j соответственно.

Обозначения на рис. 1.3 аналогичны приведенным на рис. 1.2, т. е. R2j = R2j (?R2j, ?2j).


Рис. 1.3


Этап целереализации в жизненном цикле самолета является замыкающим и вместе с тем самым ответственным. Синтезированная структура этой подсистемы (3) представлена на рис. 1.4. На этом этапе система должна окупить все расходы, произведенные при ее создании.

На этом этапе осуществляются:

1) цель эксплуатации: где, когда, с какой целью объект будет эксплуатироваться;

2) организация эксплуатации, обеспечение безопасности, экономичности, регулярности функционирования объекта;

3) эксплуатация;

4) оценка итогов работы, текущий капитальный ремонт, оценка возможностей.

На рис. 1.4. приведены следующие обозначения: R(2)1 – ресурсы (финансовые), полученные из банка в кредит; R3j = R3j(?R3j, ?3j), где  – номера подсистем, осуществляющих целереализацию (рис. 1.1); R34 – ресурсы получены с рынка 3 от потребителя.


Рис. 1.4


Замыкание жизненного цикла: происходит деструктуризация, достигается критическая область, что приводит к потерям функциональных возможностей, неспособности выполнять поставленную цель, в том числе по причине падения функциональных свойств.

Структурно-функциональное представление на уровне системы реализации жизненного цикла новой техники и отдельных ее подсистем необходимо при построении моделей различного уровня для математического моделирования процессов:

– анализа риска в начальный момент времени t0;

– анализа риска в упрежденный момент времени t = t0+?;

– управления риском и контроля его величины.

Каждый из этапов жизненного цикла характеризуется ресурсами Ri и потерями ?Ri, соответствующими данному этапу.

Потери ?Ri на каждом из этапов зависят от величины погрешностей ?i , допущенных при проведении работ, а также от величины средств Ri , с использованием которых проводились работы [19]. В итоге получаем суммарные потери ресурсов


?R = ?(R1, …, R4, ?1, …, ?4, t),


где ? – оператор преобразования.

Основным звеном в структуре системы реализации жизненного цикла объекта является подсистема целеполагания, которая в свою очередь представляет систему со структурой, представленной на рис. 1.2. Ее основные задачи – осуществление синтеза, формирование идеи с учетом склонностей инвестора и возможностей создателей. При этом происходит оценка потребных ресурсов Rр = Rр(?р, ?R), где ?р – ошибка в расчетах потребных ресурсов, порождающая погрешность ?R(?р).

Рассмотрим возможные потери на этапах жизненного цикла самолета [18].

1. На этапе научно-исследовательских работ (НИР) потери инвестора обусловлены невозможностью достичь заданную цель, например обеспечить заданные регулярность, экономичность и безопасность полета самолета. Это приводит к потерям тех финансовых средств, которые были затрачены инвестором на проведение таких работ (рис. 1.4). Обозначим их ?R(1)22.

Другой крайностью является ситуация, в которой результаты научно-исследовательской работы показали возможность достижения поставленной цели, а этап опытно-конструкторских работ их не подтвердил – возникают потери ?R(2)22. Между этими крайними случаями находится проект, позволяющий достичь заданную цель, но который был отклонен.

Таким образом, научно-исследовательский риск характеризуется ситуациями, возникающими в процессе проведения работ, которые могут характеризоваться потерями ?R22 = ?R(1)22 + ?R(2)22.

2. На этапе опытно-конструкторских работ (ОКР), например для самолета, включающем проектирование и изготовление опытного образца, проведение аэродинамических, прочностных и летных испытаний, возможны те же ситуации, что и на этапе НИР. Однако потери возрастают за счет более высокой стоимости ОКР. Причиной таких ситуаций являются погрешности ?22, полученные и не обнаруженные на этапе НИР, а также погрешности ОКР ?23.

3. На этапе серийного производства показатели риска увеличиваются по следующим причинам:

– ухудшение показателей объекта за счет влияния несовершенств технологических процессов производства, обусловленных свойствами металла, станков и инструментов, квалификацией специалистов и т. п., в результате получаем погрешность ?24;

– повышение стоимости производства объекта по отношению к заявленной стоимости, что увеличивает численную величину риска, связанную с финансовыми расходами.

Отметим, что изменение характеристик объекта за счет технологических процессов сказывается и учитывается на этапе эксплуатации.

4. Последний этап – эксплуатационный – характеризуется соответствующим риском, связанным, прежде всего, с полной или частичной потерей техники при авариях, катастрофах, а также с фактическими (финансовыми) расходами для обеспечения функционирования объекта, которые превышают расчетные или оптимальные, например, за счет неоптимального или нерасчетного расхода топлива.


Рис. 1.5


Суммарные потери при создании новой техники можно представить в несколько обобщенном виде: экономические и функциональные потери (рис. 1.5). Последние обусловлены функциональным несовершенством новой техники. Указанные на рис. 1.5 потери возникают, прежде всего, в связи с тем, что объект, созданный в результате инвестирования, в общем случае способен быть экономической системой – приносить прибыль, которая зависит от стоимости этого объекта и его функциональных свойств. Суммарные потери обусловливают суммарные риски.

Рассмотрим этапы принятия проекта инвестором.

I. Оценка располагаемых ресурсов R, включающих банковский кредит.

II. Анализ затрат ресурсов на поэтапный проект.

III. Анализ возвратных ресурсов от реализации.

Важное значение на процесс инвестирования оказывает банк. Инвестору необходимо оценить, на что он может рассчитывать.

Если инвестор располагал только ресурсами R(1)1, полученными из банка, то итоговая величина риска обусловлена выполнением неравенства R(2)1 > R34, где R(2)1 = R(1)1 + ?R(1)1, ?R(1)1 – величина процента банковского кредита, подлежащего возврату, R(2)1 – ресурсы, подлежащие возврату в банк; R34 – ресурсы, полученные от потребителя [33, 34].

При этом проблема инвестирования и инвестиционного риска включает оценку потерь ресурсов ?R, затраты на реализацию проекта, успех при эксплуатации объекта. Анализ потерь и рисков включает в себя, как правило, моделирование технико-экономических процессов.

Математические модели для подсистемы целеполагания (1) (что делать) – это особые модели, где принятие решений происходит на индивидуальном уровне человека, на уровне его ноосферы [20]. При этом осуществляется синтез особого рода, в котором соединяются объекты различной природы, из различных областей знаний, различных наук; в итоге формируется идея, например, в виде структуры нового объекта с неизвестными ранее свойствами, т. е. здесь создается «сущность» нового объекта.

Эта идея в дальнейшем в подсистеме аналитических решений (2) получает теоретическо-практический образ, т. е. образ, который может быть реализован в современных условиях в виде реального объекта. Образно говоря, в подсистеме (2) объект получает и наделяется своими «личностными» свойствами, которые воспринимаются человеком. И только в оптимальном сочетании «сущности» и «личности» получаются, например, «Ил», «Ту», «Боинг», т. е. то, что востребовано жизнедеятельностью человека и высоко ценится человечеством.

Модели подсистемы «как делать» включают в себя иерархию от модели отрасли до модели цеха. Этот необыкновенно большой диапазон систем рассматривает процессы производства, включающие описание потоков товаров во времени, финансовых потоков, обеспечивающих или сопровождающих потоки товаров. Как правило, эти модели используются управленческим звеном экономики, которое включает в себя управленцев-пользователей от начальника цеха и выше до уровня отрасли. В этих моделях явно присутствует человеческий фактор, его свойства, ноосфера, с помощью которой при принятии решений реализуется не столько анализ, сколько синтез.

Наиболее понятными для практики являются математические модели производственного процесса, которые включают в себя, например, технологические процессы с расчетами времени изготовления детали, квалификации исполнителя и оплаты его труда. Здесь человеческий фактор учитывается только на этапе учета квалификации и в дальнейшей детализации не нуждается. Основная роль в разработке модели принадлежит аналитику (естественнику), создающему станки, оборудование.

«Контроль» в широком понятии включает две сферы: внутреннюю и внешнюю [2, 6]. Во внутренней сфере контроль связан с качеством и сроками изготовления изделия. Здесь математические модели разработаны достаточно хорошо. Неоднозначность ситуации возникает тогда, когда технологический процесс, например изготовление крыла самолета, необходимо увязывать с бортовым приборным оборудованием с помощью функциональных (целевых) и экономических показателей. При этом решается проблема выбора путем перераспределения точности производства несущих поверхностей и бортового приборного оборудования [18]. Во внешней сфере функции контроля выполняет рынок, который учитывает эксплуатационные свойства самолета.

1.2. Истоки технико-экономических потерь. Прибыль и убытки

Прибыль и убытки в авиации, как и везде в экономике, взаимосвязаны, взаимозависимы. Это антиподы, не существующие друг без друга. Таков основной закон среды жизнедеятельности.

В необходимости учета потерь при разработке проекта (создания ЛА и его систем или организации эксплуатационного предприятия) заинтересованы следующие его участники: заказчик, инвестор, исполнитель, страховая компания. При анализе потерь и соответствующих рисков любого из участников проекта используются положения, предложенные американским экспертом Б. Берлимером:

– потери от рисков независимы друг от друга;

– потеря по одному направлению «портфеля рисков» не обязательно увеличивает вероятность потери по другому (за исключением форс-мажорных обстоятельств);

– возможный максимальный ущерб не должен превышать финансовые и другие возможности участника проекта.

При рассмотрении характеристик риска выделим два взаимно дополняющих друг друга вида анализа: количественный и качественный [11]. Качественный анализ может быть сравнительно простым, его главная задача – определить факторы, влияющие на риск, этапы и работы, при выполнении которых риск возникает. Количественный анализ сводится к численному расчету размеров отдельных компонент риска и риска проекта в целом. Этой проблеме посвящена данная работа.

Все факторы, так или иначе влияющие на рост величины риска в проекте, можно условно разделить на две группы: объективные и субъективные факторы риска.

К объективным относятся факторы, независящие непосредственно от самой фирмы или авиационного комплекса: это инфляция, анархия, политические и экономические кризисы, экология, таможенные пошлины, наличие режима наибольшего благоприятствования.

К субъективным относятся факторы, характеризующие непосредственно данную фирму, данный проект, данный авиационный комплекс. Эти факторы включают: производственный потенциал, техническое оснащение, уровень предметной и технологической специализации, организация труда, уровень производительности.

При разработке нового ЛА или доработке старой модификации (путем установки нового бортового оборудования) возникают как взаимный интерес инвестора и конструкторского бюро, так и противоречия. Задача заказчика состоит в том, чтобы при минимальных затратах создать такой ЛА, который по основным показателям превысил бы известные ЛА. Задача конструкторского бюро в том, чтобы найти возможность удовлетворить требования заказчика. Как правило, не удается полностью достичь того, что хочет заказчик на те средства, которые он выделил. При этом эксплуатационники, а также пользователи услуг, страховые компании, организации типа ICAO требуют ЛА с заданной надежностью.

В качестве основного показателя, предъявляемого к ЛА, является экономический. Все остальные порождены этим показателем, за исключением показателя, который связан с человеческими жертвами. Так, например, такой показатель, как «регулярность» обеспечивает заданную величину отложенных полетов, учитывая их высокую стоимость. Показатель «безопасность» связан с расходами на поломку или восстановление техники, а также со страховыми выплатами. При этом, по существу, из одного показателя экономичности был введен векторный показатель: экономичность, безопасность, регулярность.

Введем общее расчетное (максимальное) количество полетов n, которые может совершить самолет за время Т. Пусть из-за погодных условий он не сможет совершить (при его низком показателе регулярности) n1 полетов. Из-за аварийных ситуаций (в том числе поломок) он не завершит n2 полетов, а из-за недостоверной информации как бортового оборудования, так и средств управления воздушным движением – n3 полетов. Таким образом, полеты n0 = n – (n1 + n2 + n3)=n n4 завершены благополучно и могут принести прибыль, а полеты n4 = n1 + n2 + n3 принесут убытки. Каждая из составляющих вектора = {n0, n1, n2, n3} несет в себе определенную информацию с позиции функционирования бортового оборудования:

n0 – выполнение поставленной цели;

n1 – невыполнение поставленной цели при правильном функционировании систем контроля и управления бортовым оборудованием;

n2 – возникновение аварийных ситуаций, включая катастрофы, обусловленные превышением критических значений параметров состояния ЛА из-за погрешностей функционирования систем контроля бортового оборудования;

n3 – недостижение поставленной цели, в том числе отказ ее достижения из-за ложной информации систем контроля и средств управления воздушным движением.

Таким образом, убытки, следовательно, технический риск обусловливают те события, которые связаны с {n1, n2, n3}, из них {n2, n3} обусловлены погрешностями ?x получения и обработки информации.

Если в качестве цели ставится полет на дальность L, то в этом случае потери будем характеризовать частотой n1 – невыполнение полетов (в том числе по погодным условиям); безопасность характеризовать частотой n2; экономичность будем оценивать совокупностью {n1, n2, n3}, характеризующей потери в процессе эксплуатации; а с помощью n0 – прибыль, связанную с благополучным выполнением поставленной цели.

Для современной авиации характерны наперед заданные ограничения на компоненты потерь, связанные с безопасностью полетов, т. е., по существу, задана плата за риск эксплуатации и связанная с ним прибыль. Так, на посадке суммарный риск не должен превышать Р = 10–9. При этом предполагается, что современная авиация с современным оборудованием гарантированно имеет потери (убытки). Если абстрагироваться от реальности, то можно добиться от бортового оборудования такого функционирования, при котором нет катастроф, но стоимость такого самолета будет так высока, что доходы за счет n0, как правило, не покрывают эти расходы.

В общем случае количественные характеристики риска представляют векторные величины, а задача построения и прогноза их чрезвычайно сложна [1, 21]. Таким образом, приступая к проектированию самолета, мы должны учитывать:

– затраты на создание и эксплуатацию;

– прибыль при эксплуатации;

– потери в процессе создания и эксплуатации.

В качестве примера рассмотрим техническую постановку задачи создания новых образцов авиационной техники.

Одной из основных задач, стоящих перед проектировщиками и разработчиками таких сложных и дорогостоящих технических систем, как авиационный комплекс, включающий: самолет и его бортовое оборудование; системы управления воздушным движением; аэродромные средства, – является задача выбора и обоснования технических требований к комплексу, в которых отражалось бы его целевое назначение и которые соответствовали бы научно-техническому потенциалу разработчиков. При проектировании авиационного комплекса выбор технических требований к нему должен производиться исходя из целей и задач, стоящих перед проектировщиком самолета, в том числе и его бортовым оборудованием. Такие цели формулируются, как правило, на качественном уровне и позволяют судить лишь об общем направлении работ по созданию авиационного комплекса и его совершенствованию. Для обеспечения необходимой ясности и однозначности формулировок целей последние лучше задать в терминах характеристик авиационного комплекса. Для этого генеральную цель – выполнение самолетом полетного задания – приходится разбивать на совокупность более частных, более простых и конкретных подцелей, т. е. проводить квантификацию целей.

Из множества технических показателей систем авиационного комплекса лицо, принимающее решение, выделяет тот или те, которые, по его мнению, в наибольшей степени характеризуют соответствие системы заданному целевому назначению. Поскольку авиационный комплекс служит для обеспечения регулярности (R), безопасности (Б) и экономичности (Э) полета самолета, последние являются показателями эффективности авиационного комплекса. Отсюда следует, что задача проектирования авиационного комплекса заключается в том, чтобы создать такой авиационный комплекс, который обеспечивал бы самолету значения показателей регулярности, безопасности и экономичности его полета не хуже существующих, и при этом обеспечивал бы прибыль.

Таким образом, целью создания нового авиационного комплекса или совершенствования старого является, как следует из вышеизложенного, повышение регулярности, безопасности и экономичности полетов самолета. Как правило, реализация этой цели поддается экономической оценке, в результате чего могут быть получены зависимости


J1 = J1(?R, ?Б, ?Э, Т), J2 = J2(?R, ?Б, ?Э, Т),


где J1 – прибыль за время эксплуатации самолета, оснащенного таким авиационным комплексом; ?R, ?Б, ?Э – соответственно приращения показателей регулярности, безопасности и экономичности полета нового самолета по отношению к аналогичным показателям старого варианта самолета; J– затраты на создание авиационного комплекса; Т – время эксплуатации. Очевидно, что эффект от внедрения


?J = J1J2.          (1.1)


Пусть А – вектор параметров, полностью характеризующих авиационный комплекс. Тогда R = R(A), Б = Б(А), Э = Э(А), и задача заключается в отыскании такого А = А*, при котором показатель (1.1) достигает максимальной величины на множестве значений ?J, на границах которого значения ?J достигают порога, характеризующего целесообразность создания авиационного комплекса. Таким образом, задача состоит в отыскании А = А*, удовлетворяющего условию



В результате процесс проектирования авиационного комплекса сводится к построению алгоритма, с помощью которого устанавливается связь между свойствами вектора А* параметров авиационного комплекса и значениями R, Б, Э, а также метода нахождения А*, удовлетворяющего условию (1.2).

Предположим, что показатели регулярности R, безопасности Б и экономичности Э полета представляют собой вероятности возникновения некоторых событий. Предположим также, что алгоритм (метод) расчета эффекта J1 в зависимости от значений указанных показателей известен. В качестве примера такого алгоритма рассмотрим алгоритм, устанавливающий зависимость между эффектом J1 и значениями показателя безопасности полета, под которым будем понимать вероятность или частоту особых ситуаций.

С учетом введенных предположений определение вектора А*, характеризующего авиационный комплекс, сведется к задаче определения затрат J2 на создание комплекса, обеспечивающего самолету значения показателей R, Б, Э полета не хуже заданных (требуемых).

Решение данной задачи может быть сведено к последовательному решению следующих двух задач: задачи синтеза структуры авиационного комплекса, обеспечивающего значения указанным показателям не хуже требуемых, и задачи определения затрат на создание авиационного комплекса, имеющего такую структуру.

В простейшем случае процесс создания нового ЛА или совершенствования старого связан с инвестором (рис. 1.6). Как правило, инвестор, стремясь получить максимальный доход, заказывает конструкторскому бюро (КБ) проектирование нового самолета с характеристиками R, Б, Э. Назовем их условно характеристиками идеального самолета. В силу ограниченных возможностей КБ создает вариант самолета с характеристиками (R1, Б1, Э1); назовем его проектный вариант ЛА. На последней стадии создания, на стадии производства, мы получаем ЛА с характеристиками (R2, Б2, Э2). Назовем такой самолет реальным или фактическим. В результате идеальный доход (Dи), на который рассчитывал инвестор, не получился и стал равен некоторому фактическому значению Dф. В случае, если расхождение ?D = Dи Dф велико, в КБ проводятся исследования, направленные на поиск наилучшего соответствия между ?D и стоимостью оборудования, необходимого для его уменьшения (рис. 1.7)


Рис. 1.6


Представленная на рис. 1.7 структурная модель поиска наилучшего решения включает финансовые вложения (финансовые потоки) и порожденные ими технические совершенства, которые обеспечивают регулирование (изменение) дохода D(t) и прибыль Dп(t). При этом новая техника внедряется, если происходит увеличение n0/n, т. е. частоты выполненных полетов, при уменьшении n1/n, n2/n, n3/n, где – общее количество полетов.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26