В. Корнеев.

Основные магистральные самолёты авиакомпаний России. Особенности конструкции и лётной эксплуатации



скачать книгу бесплатно

© В. М. Корнеев, 2017


ISBN 978-5-4483-8829-3

Создано в интеллектуальной издательской системе Ridero

Характеристики основных магистральных самолетов, эксплуатируемых в авиакомпаниях России

Основные массовые и геометрические данные самолета A320:

– Максимальная взлетная масса – 73500 кг;

– Максимальное количество топлива – 18740 кг;

– Длина самолета – 37,57 м;

– Размах крыла – 34,1 м;

– Угол стреловидности крыла (по ? хорды) – 25?;

– Удлинение крыла – 9,42;

– Высота самолета – 11,76 м;

В конструкции самолета A320 широко применяются композитные материалы (около 20%). В основном используется Glass-fiberre inforced plastic (пластик со стеклянными армирующими волокнами), Carbon-fiberre inforced plastic (пластик с углеродными армирующими волокнами), honey combcore (сотовый заполнитель). Практически вся механизация крыла (предкрылки, закрылки, панели спойлеров, лючки, носовой обтекатель) и киль полностью изготовлены из композитных материалов. Передняя кромка горизонтального стабилизатора также композитная.

На законцовках крыла A320 установлены шарклеты – это новые увеличенные законцовки крыла, улучшающие аэродинамические характеристики. Основным преимуществом шарклетов является снижение расхода топлива до 4%, увеличение дальности полета и улучшенные взлетные характеристики. Шарклеты сделаны из композитных материалов, а по форме они напоминают акульи плавники.

Применение электродистанционной системы управления ЭДСУ на A320 имеет ряд преимуществ. Исключается механическая проводка управления, что делает проще техническое обслуживание, и улучшает массогабаритные показатели.


Примечание: Вообще то, на этом самолёте имеется только три троса для аварийного ручного управления: аварийный выпуск шасси, управление рулём направления и управление переставным стабилизатором. Всё остальное управляется только электродистанционно, хотя приводы, как правило, гидравлические.


При выполнении сложных маневров (уход на второй круг, уход от столкновения с воздушными и наземными препятствиями, сложные метеорологические условия) пилот A320 может полностью сконцентрироваться на выполнение маневра без риска выхода на опасные режимы полета.

Кабина экипажа, разработанная для A320, очень эргономична и до сих пор остаётся стандартом для лайнеров этой компании с минимальными изменениями.

Применение дисплеев позволяет уменьшить количество информации, представляемой пилотам A320 в каждый определенный момент времени (на каждом этапе полета предъявляется только необходимая для данного этапа информация). Однако применение дисплеев не позволяет категорически утверждать, что количество информации уменьшается. Действительно, индикаторов стало значительно меньше, но информации на каждом из них значительно больше, чем на традиционных индикаторах, при этом необходимо учесть, что каждый экран имеет, как правило, большое число страниц, которые экипаж имеет возможность «листать», как книгу.

Слева перед пилотом A320 расположен основной пилотажный дисплей, а справа – навигационный дисплей.

Картинки на них могут меняться местами при нажатии круглой кнопки на панели подсветки.

На навигационном дисплее A320 отображается маршрут полёта, картинка с погодного локатора и символы близлетящих самолётов от системы предупреждения столкновений ТСAS.

На основном пилотажном дисплее A320, кроме символического изображения авиагоризонта, слева отображается полоска воздушной скорости, справа – вертикальной скорости, выставленное давление аэродрома и данные радиовысотомера.

На центральной приборной доске A320 расположены два системных дисплея, взаимозаменяемых с дисплеями командира корабля и второго пилота.

Вверху центральной части приборной доски A320 – дисплей параметров двигателей, предупреждающих и информационных сообщений. Как правило, цвет информации на дисплее показывает состояние системы, к которой относится информация:

– зелёный или белый – всё в порядке;

– жёлтый – ненормально;

– крестики – нет данных;

– красный – опасность.

Под этим дисплеем находится системный дисплей A320. Он отображает состояние систем самолёта.

На боковых пультах слева и справа от каждого пилота A320 установлены ручки управления самолетом «сайдстик» (Sidestick), с помощью которых пилоты могут управлять креном и углом атаки.

С цепью обеспечения свободного перемещения запястья, каждое пилотское кресло A320 оборудовано регулируемым подлокотником.

На caмой ручке управления самолетом A320 есть красная кнопка для включения приоритета управления. В обычном режиме сигналы с обоих сайдстиков алгебраически суммируются. Если один из пилотов захочет управлять самолётом, он должен известить об этом другого пилота словами «I have controls» («Я управляю») и может нажимать на эту кнопу (или наоборот, сначала нажать, если нет времени на предупреждение). После нажатия кнопки будет работать только его сайдстик, а речевая информация «человеческим голосом» объявит об этом и индикация сверху приборной доски покажет это обоим пилотам.

При управлении сайдстиками A320 следует учитывать, что:

– точность управляющих сигналов зависит от регулировки подлокотников;

– усилия на ручке управления не соответствуют аэродинамическим силам, действующим на руль высоты и элероны;

– ручки управления пилотов не связаны между собой;

– переключение с одного сайдстика на другой может сопровождаться изменением траектории полета;

– возможно случайное одновременное управление самолетом обоими пилотами.


Примечание: Часть вышеперечисленных недостатков вызвана тем, что сайдстик одного пилота A320 не синхронизирован с ручкой управления другого пилота. При движении джойстика одним и другим пилотом, электронный блок управления не расставляет приоритеты в управлении, а определяет математически среднее отклонение из передвижения ручек управления обоими пилотами.


Подлокотник кресла пилота A320 располагают так, чтобы удобнее лежала рука при управлении самолётом. В подлокотнике есть окошечко, где видны стрелки, указывающие относительное положение подлокотника. Таким образом, не нужно подбирать каждый раз для себя удобное положение, а достаточно подобрать его один раз и записать эти значения. Потом на любом самолёте при их выставлении подлокотник окажется именно в том же положении, как и в первый раз. Между педалями есть площадки для ног, куда можно их ставить в полёте.

Основные массовые и геометрические данные самолета B737NG:

– максимальная взлетная масса – 79000 кг;

– максимально заправляемое количество топлива – 20896 кг;

– длина самолета – 42,1 м;

– высота самолета – 12,55 м;

– размах крыла – 34,3 м;

– угол стреловидности крыла (по ? хорды) – 25?;

– удлинение крыла – 9,16;

Серия самолетов B37NG заметно отличающиеся от первых самолётов семейства. Крупнейшими изменениями стали новые крылья, авионика, усовершенствованные двигатели. На NG был установлена так называемая «стеклянная кабина» – оснащённый дисплеями вместо привычных «будильников» – аналоговых приборов, и цифровыми системами. К дополнительным преобразованиям относятся также вертикальные законцовки крыльев Винглеты, в результате применения которых экономится 4—5% топлива.

В то же время для управления самолетом по тангажу и крену на самолете B737NG используется классическая штурвальная колонка.

Основные массовые и геометрические данные самолета Суперджет 100:

– максимальная взлетная масса – 45880 кг;

– максимально количество топлива – 12327 кг;

– длина самолета – 29,9 м;

– размах крыла – 27,8 м;

– угол стреловидности крыла (по ? хорды) – 25?;

– удлинение крыла – 9,82;

– высота самолета – 10,45 м.

Дизайн кабины экипажа самолета Суперджет 100 включил в себя наиболее перспективные решения современного авиастроения: «пассивную» боковую ручку, «активные» рычаги управления двигателями. В сочетании с концепциями «Темная и тихая кабина», обеспечивается возможность точного удобного и надежного пилотирования самолетов.

Основные массовые и геометрические данные Ту-204—300:

– максимальная взлетная масса – 105000 кг;

– максимальная масса топлива – 35530 кг;

– длина самолета – 40,188 м;

– размах крыла – 40,88 м;

– удлинение крыла – 10:

– угол стреловидности крыла (по ? хорды) – 28?;

– высота самолета – 13,879 м.

Основной цифровой контур электродистанционной системы управления самолетом Ту-204 резервируется трехканальным аналоговым контуром управления.

При последовательных отказах основного цифрового и резервного аналогового контуров управления происходит переход на управление через аварийный гидромеханический контур управления.

Основные массовые и геометрические данные самолета B747—400:

– максимальная взлетная масса – 412000 кг;

– максимально количество топлива – 183380 кг;

– длина самолета – 70?6 м;

– размах крыла – 64,4 м;

– угол стреловидности крыла (по ? хорды) – 37,5?;

– удлинение крыла – 7,4;

– высота самолета – 19,4 м.

Boeing 747 называют «королём небес». Это, наверное, самый знаменитый и легендарный самолёт в истории.

Благодаря своему знаковому «горбу», 747 стал одним из самых популярных и узнаваемых самолётов в мире, заслужив своё прозвище «слон».

Закрылки Фаулера из трёх частей увеличивают площадь крыла на 21% и подъёмную силу на 90%.

На самолете B747—400 установлен обычный штурвал. Boeing продолжает ставить штурвалы на свои самолёты. В целом сайдстик универсальнее, штурвалом удобнее пилотировать самолет. Сайдстиком пилот дает команду компьютеру на выдерживание крена и тангажа. В то время, как штурвал управляет отклонением руля высоты и элеронов.

Планер самолёта

Фюзеляж

Фюзеляж магистрального самолета, как правило, представляет собой полумонокок. Носовая, передняя и средняя части фюзеляжа представляют собой единую герметическую кабину, в которой размещаются кабина экипажа, пассажирский салон, багажно-грузовые отсеки (под полом пассажирского салона) и оборудование, которое по характеру работы должно находиться в герметических отсеках.

Полумонокок является разновидностью стрингерного фюзеляжа при наличии толстой работающей обшивки, т. к. внешние силовые факторы воспринимаются продольными элементами совместно с обшивкой.

Хвостовая часть фюзеляжа – негерметичная. К ней крепятся стабилизатор и киль.

Конструктивно фюзеляж состоит из обшивки и каркаса, состоящего из набора продольных (стрингеры) и поперечных (шпангоуты) силовых элементов, скрепленных между собой заклепками.

В герметической части фюзеляжа имеются двери: входные по левому борту, служебные по правому борту и аварийных выхода.

Для загрузки багажных помещений багажом и грузами используются багажно-грузовые отсеки, люки которых расположены на правом борту и открываются наружу.

В носовой части фюзеляжа расположен отсек для передней опоры шасси. Закрывается отсек створками. К средней части фюзеляжа присоединен центроплан крыла.

Для предупреждения взлета самолета с открытыми дверями и люками, а также для оповещения экипажа о закрытом или открытом положении входных и служебных дверей и люков багажно-грузовых отсеков предназначена сигнализация положения дверей и люков.

На кадре «Двери» системного дисплея отражается мнемоническая картинка расположения дверей, на которой открытая дверь обозначена желтым цветом. После закрытия двери соответствующее обозначение на кадре изменяет цвет на зеленый.

Для экономии веса конструкции планера самолета «работающая» обшивка имеет переменную толщину в зависимости от испытываемых нагрузок. Изменение толщины обшивки производится путем химической или механической обработки. Стрингеры и шпангоуты фюзеляжа крепятся заклепками.

Крыло

Крыло магистральных самолетов имеет моноблочную конструкцию и, как правило, состоит из трех частей: центроплана и двух консолей. Конструкция крыла включает в себя продольный и поперечный силовой набор. При этом в продольный силовой набор входят лонжероны, стрингеры и толстая «рабтающая» обшивка, а в поперечный силовой набор – нервюры.

Моноблочным называется крыло, у которого во всех сечениях изгибающий момент воспринимается верхней и нижней панелями, состоящими из толстой обшивки, подкрепленной набором мощных стрингеров. В полёте верхняя панель работает на сжатие, нижняя – на растяжение. Крутящий момент в моноблочном крыле воспринимается верхней и нижней панелями, а также стенками лонжеронов, в которых возникают касательные напряжения, направленные против часовой стрелки. Усилия от сдвига в вертикальной плоскости в моноблочном крыле воспринимаются стенками лонжеронов, в которых возникают касательные напряжения, направленные в полете вниз.

Крыло имеет кессонную конструкцию, внутренние объемы крыла являются баками для размещения топлива.

Конструктивно-силовая схема крыла определяется по названию силового элемента крыла, воспринимающего основную нагрузку на крыло, которой является изгибающий момент от подъемной силы крыла. На магистральном самолете изгиб крыла вверх воспринимается моноблочными панелями, состоящими из толстой «работающие» обшивки подкрепленной стрингерами. Поэтому крыло и является моноблочным. Тот факт, что крыло одновременно является и кессоном топливных баков, говорит, прежде всего, о его герметичности.

Кессон ограничен лонжеронами и герметичными нервюрами.

Крыло умеренной стреловидности имеет трапециевидную форму в плане.

На крыле установлены элементы основного управления самолетом и механизации крыла: элероны, предкрылки, закрылки и спойлеры.

Механизация крыла является неотъемлемой частью крыльев современных самолетов. К ней относятся устройства, позволяющие изменять аэродинамические характеристики крыла на отдельных этапах полёта.

Различают два вида механизации по выполняемым функциям:

– для улучшения взлетно-посадочных характеристик (закрылки и предкрылки);

– для управления в полете (спойлеры в режиме гасителей подъемной силы и в элеронном режиме).

Простой закрылок представляет собой отклоняющийся вниз до 45° участок хвостовой части крыла. Для повышения эффективности закрылка он делается щелевым. При отклонении выдвижного закрылка между его носком и крылом образуется профилированная щель. На современных самолетах используются двух– или трехщелевые закрылки.

Предкрылки представляют собой часть носка крыла у передней кромки, которая отклоняется вниз на угол до 25° и выдвигается вперед, образуя с крылом профилированную щель. Так же, как и закрылки, предкрылки уменьшают взлетно-посадочные скорости самолета, а самое главное – увеличивают критический угол атаки.

К средствам механизации относятся спойлеры (интерцепторы), используемые как тормозные щитки, воздушные тормоза, гасители подъемной силы, элементы управления по крену и т. д. При отклонении спойлеров вверх нарушается обтекание крыла, что приводит к уменьшению коэффициента подъемной силы. С помощью спойлеров можно изменять вертикальную скорость снижения, уменьшать длину пробега при посадке за счет более эффективного торможения колес шасси и повышать эффективность управления по крену.

Для повышения аэродинамического качества крыла служит вертикальные законцовки крыльев Винглеты (Шарклеты), в результате применения которых уменьшается расход топлива.

Хвостовое оперение

Современные магистральные самолеты имеют стреловидное хвостовое оперение самолета классической схемы, которое состоит из горизонтального и вертикального оперения.

К горизонтальному оперению относятся стабилизатор и руль высоты. Стабилизатор может изменять угол установки в полете с помощью приводов управления.

К вертикальному оперению относятся киль и руль направления.


Примечание: Недостатком классической схемы является неизбежное затенение стабилизатора впереди находящимся крылом на определенных углах атаки, что может привести к бафтингу и потере эффективности руля высоты [1]. С точки зрения безопасности полетов нельзя называть такую схему хвостового оперения «нормальной».


Стабилизатор может изменять угол установки в полете с помощью приводов управления.

Стабилизатор и киль состоят из лонжеронов, нервюр и обшивки. Перед ним установлен форкиль.


Примечание: Использование термина «вертикальный стабилизатор» для киля – просто нелогично. Русский язык достаточно «богат», чтобы не использовать подобного рода терминологию.

Источники давления гидросистемы

Принцип работы гидросистемы

Для приведения в действие подвижных элементов систем и агрегатов на самолете используют различные виды энергии. В зависимости от вида используемой энергии системы бывают гидравлические, газовые и электрические.

Применение гидравлических приводов на самолете вызвано их сравнительно малыми габаритами и массой, большим быстродействием и малой инерционностью частей исполнительных механизмов (в отличие от электродвигателей), простой фиксацией промежуточных положений исполнительных механизмов (в отличие от воздушных приводов). Масса и габариты гидравлического агрегата составляют примерно 10—20% массы и габаритов электрического агрегата подобного назначения и той же мощности.

Гидросистема самолета представляет собой сочетание двух частей: сети источников давления и сети потребителей.

Сеть источников давления предназначена для создания рабочего давления, аккумулирования энергии, регулирования давления в системе, распределения по потребителям и размещения некоторого запаса жидкости.

Сеть потребителей состоит из отдельных частей, каждая из которых предназначена для привода в действие какого-либо механизма.

Для обеспечения надежности и дублирования по гидропитанию потребителей гидросистема магистрального самолета имеет, как минимум, три независимых гидравлических подсистемы. Потребители гидросистем, влияющие на безопасность полетов, имеют дублированное гидропитание, т. е. работают от двух, трех, а на самолете B747—400 даже от четырех гидросистем. Менее ответственные потребители и потребители, которые работают только на земле, управляются от двух или одной гидросистемы.

К основным потребителями гидросистемы относятся:

– органы основного управления полетом;

– предкрылки;

– закрылки;

– спойлеры;

– система уборки и выпуска опор шасси;

– система торможения колёс шасси;

– управление поворотом колес носовой опоры шасси;

– реверс тяги двигателей.

Основными источниками гидравлической мощности в гидросистемах являются механические насосы переменной производительности, работающие от двигателей.


Примечание: Насос переменной производительность имеет режим максимальной производительности при работающих потребителях и режим минимальной производительности при не работающих потребителях. Производительность насоса изменяется автоматически в зависимости от давления в гидросистеме. Минимальная производительность насоса необходима для охлаждения и смазки самого насоса.


Гидросистема с насосами переменной производительности используется в качестве основной на большинстве магистральных самолетов гражданской авиации. Повышение давления здесь создается аксиальными плунжерными насосами переменной производительности.

При выключении потребителей и достижении определенного давления, близкого к рабочему давлению гидросистемы, срабатывает автоматическое устройство, и производительность насоса уменьшается до минимальной, которая необходима для его смазки и охлаждения. Этот расход жидкости поддерживается дросселем минимального расхода, а охлаждение жидкости происходит в теплообменнике.

При включении потребителей и понижении давления жидкости насос перенастраивается на полную производительность.

Преимуществом гидросистемы с насосами переменной производительности является плавная разгрузка насосов, что уменьшает гидроудары.

Давление в гидросистеме, создаваемое при минимальной производительности насосов (при неработающих потребителях) составляет 210 кг/см?. Кроме этого к основным параметрам гидросистемы относится количество гидрожидкости в баках гидросистем и температура жидкости.

В каждой гидросистеме кроме основных насосов предусмотрены резервные источники питания. В качестве таких используются гидротрансформаторы, установленные между гидросистемами, а также турбонасосные установки и электрические насосные станции. Иногда используются ручные гидронасосы.

Резервным источником давления в гидросистемах является электронасосная станция, предназначенная для создания давления в гидросистеме при отказе двигателя или при работе на земле. Насосные станции включаются на щитке «ГИДРОСИСТЕМА» верхнего пульта.

В качестве аварийного источника гидравлической мощности примененяется турбонасосная установка с приводом от набегающего потока воздуха.

Устройство передачи мощности (PTU) используется в качестве резервного источника давления при потере давления в одной из гидросистем.


Примечание: Устройство передачи мощности – это своего рода гидротрансформатор представляющий собой агрегат, состоящий из двух нерегулируемых моторов-насосов, соединенных общим валом. Каждый из моторов-насосов гидротрансформатора подключен к своей системе, и их жидкостные полости между собой не сообщаются. При работе гидротрансформатора один из моторов-насосов (в исправной гидросистеме) работает в режиме гидромотора и вращает второй мотор-насос, который работает как насос и создает давление жидкости в отказавшей гидросистеме. Поэтому можно использовать устройство передачи мощности для двухсторонней работы.


Подпорные (приоритетные) клапаны, установленные в каждой гидросистеме, перекрывают подачу жидкости на менее важные потребители при падении давления в гидросистеме, чтобы обеспечить гарантированную работу наиболее важных потребителей (таких, например, как основное управление самолетом).



скачать книгу бесплатно

страницы: 1 2

Поделиться ссылкой на выделенное